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KYBERNETIKA — VOLUME 15 (1979), NUMBER 6

Multiple Channels under Fidelity Criteria*

BHU DEvV SHARMA, VED PRIYA

Communication under fidelity criterion was introduced by Shannon. The problems concerning
Multiple Channels have been the focus of recent interest. However fidelity criterion has not
been considered in the studies for Multiple Channels. In this paper an attempt has been made
to define rate distortion function for some special cases of Multiple Channels, viz., the Broadcast
Channel, the Two-User Channel and the Multiple Access Channel. Basic equations for these
channels are derived and convexity of the rate distortion functions is established. The investiga-
tions are then extended to the case of a general channel involving several sources and destinations.
For the Two-User Channel and the Multiple Access Channel, examples have also been formulated.

1. INTRODUCTION

Areas of recent interest in Communication Theory are the transmission of informa-
tion in a Multiple Access Channel introduced by Liao [4] and a Broadcast Channel
introduced by Cover [2] In a Multiple Access Channel several sources communicate
with one receiver over a common channel. The message output from any source
is assumed to be independent of the message outputs from other sources. Liao [4]
defined capacity region and proved a coding theorem and its converse for such
a discrete memoryless channel. Cover [2] introduced Broadcast Channels in which
one source communicates with several receivers and obtained upper and lower
bounds on the capacity region. Vander Meulen [8] obtained an inner bound to the
General Broadcast Channels for the three communication situations and Sato [5]
obtained an outer bound to the capacity region of Broadcast Channels. Shannon [7]
was the first to introduce the idea of a Two-Way Communication Channel which
involves sending information simultaneously in two directions over a Two-Way

* This work was supported by a Research Fellowship awarded to the second author by the
Council of Scientific and Industrial Research, New Delhi, India.



Channel and obtained inner and outer bounds to the capacity region of this channel.
All these are cases of “Multiple Channels”.

Study relating to communication under fidelity criteria which have been earlier
modified for classical channels has not yet been extended for the case of Multiple
Channels. In this paper we define rate distortion function for these channels. In
Section 2 we determine the basic equations for Broadcast Channel. Convexity of the
rate distortion function is established in Section 3. Section 4 deals with the basic
equations for a Two-User Channel for which an example is formulated in Section 5.
In Section 6, basic equations for a Multiple Access Channel are derived and an illu-
stration for the same is presented in Section 7. The last section deals with a general
model for M sources and N receivers which under certain conditions reduces to the
cases studied in earlier sections.

2. BASIC EQUATIONS FOR BROADCAST CHANNEL

A general Broadcast Channel with N receivers is shown in the diagram below.
There is one source which is denoted by X and there are N receivers which we denote
by Yy, Y5, ..., Yy. The memoryless Broadcast Channel with one input and N outputs
may bz characterised by (X, Q(yy, ¥z --» In| %) ¥y X ¥z x ... x Yy) where
O(yis V2 s Y 1 x) s the probability of receiving y, € Yy, ..., yy€ Yy when
x€X is sent on the channel. Further Q(y:|x) is the transition probability of
receiving y; € Y, by the i-th receiver (i = 1,2, ..., N) when x € X is transmitted.

\“"““”1 DECODER 1 |— ¥,
‘ L ]

BROADCAST ‘

X | \

SN DER |-——> — | DECODER 2 |—»

Source }ENCO ER‘ | CHANNEL | T Y2
L _l S
‘__»: DECODER N [ Yy
e ‘
. Broadcast Channel
Now

Qiyi} %) = ) Qi yas - yw X)) (=142 ...,N)

YireeosFim 15Vi4 1500 YN

and since the outputs are statistically independent, we have

Qs Yo o r Y| X) = :ﬂle(y.» | x).
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Further, let the distortion between the source letter x € X and the reproduced
letter y,eY; (i =1,2,...,N) in the i-th output be denoted by g,(x, y;), where
as is usual

e ) 20 (i=12...N)
with equality iff x = y,.

If P(x) is taken to denote the input probability of x € X, then the average distortion

for the i-th output may as usual be defined as

Y PO ya v [ xyodx,y) (i=1,2...,N).
XaY1s¥2eees¥N

If we communicate on the Broadcast Channel in such a way that the level of average
distortion between the source ‘and the i th reproduced letter does not exceed a given
level D;(i =1,2,...,N), then the rate distortion function Ry(D,, D,, ..., Dy)
for the Broadcast Channel may be defined as
(1 Ry(Dy, D, ..., Dy) = inf I(X; Y, Y, .., Yy,

Q150 ¥N|X)EQDL D2 D Y

where

(2) IX;Y, Y. Yy = Y PXy,ys ... 0y log MB)
xyin Qy1s s ¥N)

is the ordinary Shannon’s mutual information and

&) Opi...on =
={Q()’1v~~-x}’~|x): Z P(X) Q(yh""yNix)Qi(x)yi)gDi}y
i=1,2..,N.

The I(X; Yy, Y, ..., Yy) may be shown to be a convex U function with respect
to transition probabilities Q(yy, Y25 -+ > ¥n I x) as follows:

Consider two sets of transition probabilities {Q'(y,, - .., vy | )} and {Q"(y;, . ..
...» Vx| %)} and a number A€ [0, 1] and let

Qs vas o w | X) = 2QW yas o[ X) (L= D) Q' (s Y2 s o] %)
Then .
; HQ*(W1 ¥2s - s yw | X)) =
) Y OPE)[AQ( x| X))+ (1= D) Qs s vw | 0]

XYY
ng’(yl’,VZ’ ""lex) + (1 - A) QH(Yv,Vz’ ce Yle).

.lo
A Q'(J/n Var oes VN) F (1 - 4) Q" (Vi ¥ar oo os »n)




Now we use the inequality 449 |

atb_atb | L0 bxo,

log

>

a a
i.e.
5) log(a + b) < loga + bja
() g g /

with equality iff b = 0. Let us set

©) ay = QUeds ey |X) Q0 w] )

Q(()’la Yo oves YN) Q”()’I’YD . -~v)’/v) '
b, = =D[OWe W) QWi e i) = Qo y) Qs -y [ X)]
QWi o) [2QW - yw) + (1= 2) Qs -5 78]
b, = QWi ) QW o yw [ %) = Qs o yw) Qi -y [ X))
Qi - y)AQWe ) + (1= Q' (s - )]

Thus from (4), (5) and (6), we have

I(Q*(YJv.Vzw s LVN\X)) £ Z P(x) Q’(}’p}'z, ---sJ’.\'|X)-

X\P1s¥25ee ¥ N

Oy -y lx)
S log = 2ot LS 4
I:Og Q'(}’u caes }’N)

o = DLW 2| ) QG 13) = @t 0) Qi o 2y !Lﬂ] N
Qs i [ AQW oy + (1= 2 Q(vys - )]

(=2 % POy ]X). I:Iog Ql(')x;, ywlx) +
N Q" Wis - es )N)

) ER T ()
L MO ) QO yn [ X) = QWi s ) @O - ] x)]] -
QGrr e yn | AQ G - vw) + (1 =2 Qs - 98]

= AH(Q ey | 9) + (1= D@ (s - | ).

Hence I(X; Y;, Yy, ..., Yy) is a convex U function with respect to the transition

probabilities Q(y;, y5» - - -, ¥y | X)-
Thus our problem is to minimize I(X; Y,, Y,, ..., YN) subject to the constraints:

) Q(YU Yas -~-!)’le) =20,
(8) Z Q(ynyz,~-.,yn1x)=1

PLiY2er YN
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) Y POy - yn| X)edx y) = Dy

XY 1a¥20ee s ¥N

(i=1,2...,N).

We solve this problem by Lagrange method of multipliers. Ignoring the constraint
(7) temporarily, we form the augmented function

(10) JQ) =I(X: Y, Yoy ooy Yy) = e ), ! Lo/ PP ¥ ‘ x) —

__Z S; ] Z ) P(x) Q(.Vnyzs ~~>J’le)£7i(xa vi)s

where pu, and S; (i = 1,2, ..., N) are Lagiange multipliers. Taking log 2, = p,/P(x)
and using (2) in (10), we may rewrite (10) as
s ey ¥ X N
SO = X Q| ) log Do) S0,
XV1Ve YN oy, o)A, i
Now, for stationary points, we have
, ! N
e ] L ey M L] B2
dQ(yl, e .Vle Q(yl,---’ yN)}'x i=1

ie.
. N
() 0y o[ %) = 2 Qi v - yw) exp [T Si0i(x v9)] -

Summing (11) over y,, ¥,, ..., yy and using (8), we get

(12 =D E Q0 mewl ¥ Siofn )]

Thus from (9) and (11), we have

(1) D= 5 0 P A Q01 ya o) exp LY S0 )]

(i=12,...,N)

and

‘ N
XY, YY) = X P(x)2: Qi oo - yw)exp [ 2, Siedx v -

X LsensIN

N
-[log 2, + 'les odx vi)] -



Thus Ry(Dy, D5, ..., Dy) which in view of convexity of I(X;Y,,Y,, ..., Yy)
is the minimum of I{X; Y;, Y,, ..., Yy) has the parametric representation

N
(14) Ry(Dy, Dy, ..., Dy) = ¥ S:D; + YP(x) log 4,
i=1 x

where A is given by (12). Expressions (13) and (14) give the required form of the
basic equations for Broadcast Channel.

Now if for a particular value of S; (i = 1,2, ..., N), the unconstrained solution
procedure yields one or more Q(yy, ..., yy l x) < 0 then the results can be formulated
as in Berger [1, Lemma 1, p. 32].

3. CONVEXITY OF THE FUNCTION Ry(D,, D,, ..., Dy)

In this section we will prove that Ry(Dy, D,, ..., Dy) is a convex U function
of (Dy, D, ..., Dy).

Let Q¥ ¥s .- yv|x) and Q"(yy, ¥y ... yy|x) achieve the points
(D}, Dy, ..., Dy; Ry(DY, D5, ..., DY) and (DY, D5, ..., Dy; Re(D{, D, ..., D))
respectively and let
O (s Var - ¥ | X) =2 Q s vz o | ) H (L= D Qs yas oo | %)
where Ae [0, 1]. Now by definition

Di(Q): Z P(X)Q();l‘)’z---->y,v|x)9i(xs);i) (i= 1‘2--‘-,N)

XV 1sY2ye N
and in particular
Di(Q*(Me Y2 -5 VN | x)) = iD; + (1 ~ %) D} (i =12 ...,N).
This shows that D,(Q*) for i = 1,2, ..., N is a linear function of Q*(y,, y,, ...
..., ¥x | x) so that
Q*(}’u Yo, - N i X) € Qw.'+(1—;,)D,",.,.,;.DN'+(1~A)DN” .

Next we have

Ry(ADy + (1 = ) Dy, 2Dy + (1 — ) D3, ..., ADy + (1 — 2) D3) £

< I(Q*(,V:v Yas oo s IN [ ")) < AI(Q’(YD Yas oo s VN \ ")) +

+ (1 - l)[(QH(yla Yas o5 IN [ X)) =
= ARy(D}, D, ..., Dy) + (1 — ) Re(DY, D3, ..., D).

|

Hence Ry(D,, D, ..., Dy) is a convex U function of (Dy, D, ..., Dy).

a1



' 452 4. BASIC EQUATIONS FOR TWO-USER CHANNELS

In this section we derive basic equations for Two-User Channels. We first define
a Two-User Channel:

Xy ——| ENCODER1 | 1 [DECODERT}—‘._) Y,

CHANNEL

[ ENcCODER 2 | I
X, ——| ENCODER 2 | DECODER 2 Y

Two-User Channel

A channel with two sources and two receivers is called a Two-User Channel.
We shall consider it to be discrete and memoryless. Let X, X, be the two sources
and Y,, Y, be the two receivers. A discrete memoryless Two-User Channel with two
inputs and two outputs may be characterised by (X, X X, Q(yi, v, | x1 x,),
Y, x Y,). We shall denote by Qy(y;| x;, x,) the transition probability of receiving
y;€ Y, on the i-th receiver (i = 1,2) when x, € X, and x, €X, are transmitted,
then since y, and y, are statistically independent given x, and x,, we have

Q(yl’ Y2 I X xz) = Q:(Yl | X1s Xz) Qz()’z | Xi» xz) .

Further the distortion between the source letter x; € X; and the reproduced letter
y; € Y; is denoted by g,(x,, y;) where as usual

ofxi y) 20 (i=1,2)
with equality iff x; = y,.

If P(x,, x,) is taken to denote input probability of x;, € X, and x, € X, then the
average distortion for the i-th output may be defined as

Z P(x,, xz) Q(}"n V3 I X1s xz) Qi(xi’ yi) (i =1, 2) .
X15%2,Y1,¥2 .

Now if we communicate on the Two-User Channel in such a way that the average
distortion between the i-th receiver and the i-th input does not exceed a given distor-
tion level D; (i = 1,2) then the rate distortion function for the Two-User Channel
may be defined as

(1) Ry, 1Dy, D,) = inf (X, X0 Y. o),

Q(y1,¥21x1,%2)¢@D1,Dy



where

V2| Xy, X,
16)  IX. Xy YY) = Y Pley s v, ) log 20n 2l i)
X1,X2,¥1.¥2 Q(yl’ YZ)

is the ordinary Shannon’s mutual information and

(17) an D, =
= {Q(,Vn Y2 l Xps x,) Z P(x,, Xz) Q(J"Iv V2 | Xy Xz) Qi(xn ,\’i) = Di}

X1.X2.¥1.¥2

The I(X,, X,; Y;, Y,) may be easily shown to be a convex U function of
o(ri, y2 | Xy, X,). Thus our problem is to minimize I(X,, X,; Y,, Y,) subject to the
constraints:

(18) Oy, vz | %1, %) 20,

(19) 2 Qv [ X, x) =1

and o

(20) Y P x) Qe ya [ X x)elxs ) = Dy (i=12).

X1,X2,91.52

As before we construct the augmented function (ignoring the constraints (18)
temporarily)
J(Q) = I(Xl»Xz'-, Y, Yz) - Z Hxyxo Z Q(.V1~ V2 ! X1» Xz) -
2 Yi.y2

XX

_Zsi Z P(XI’XZ)Q()"V)'E|X1~xl)Qi(Xi!J'i)-

=1 xpxayrgn

where p and S;’s (i = 1,2) are Lagrange multipliers. Taking

X1.X2

_Hrix

log 4, x, = )
: - P(x],xl)

for stationary points, we have

dJ Q(yls }’2|x|s Xz) 2
- = P(x) {log 222 IS0 N Siedxey) | =0,
X1, X Q(YU .Vz) }“m.x; i=1

2
(1) Oy 72| X1, %2) = O(¥1s ¥2) Ay, EXP [_;Si efxi yi)] -

453



Summing (21) over ¥1» 2 and using (19), we get

2
(22) ;ou,-rz = ( Z Q(.an )/2) exXp [‘ZISE Qi(xi» yi)])‘l .
Yi,)y2 i=
Thus we have
2
(23 Ry, x{D1, D) =4Zl S:Di+ Y P(xy, x;) log 4y, 4,
i= x1'%
and
¢ 2
(24) D; = Z Qi(xh vi) P(Xl- -“Z) v Q015 ¥2) exp [ Z S; Qi(xis )’i)]
X1,%2,Y1:32 i=1
(i=1,2)

as the required basic equations for Two-User Channels.

Now if for a particular value of S; (i = 1,2), one or more Q(y, y, | X1, x,) £ 0
then as bzfore the results can be formulated as in Berger [1, Lemma 1, p. 32].

We can prove that the function Ry, x,(D;, D) is convex U with respect to D,
and D,. The proof can be developed on the lines adopted as in Section 3.

5. AN EXAMPLE OF A TWO-USER CHANNEL

Let us consider a discrete memoryless Two-User Channel with input alphabet
sets X, = {1,2} and X, = {3,4} and output alphabet scts Y, = {1,2} and Y, =
= {3,4}. Also let

0w =1 — 0y where oy =1 for i=k,
=0 for i%k,

so that
0y =0 for i=1k,

=1 for i+k; iLk=(1,2);(34).
Further we take the joint probability P(x, x,) to be given by

P(1,3)=p,: P(2,3)=p;;

P(1,4) =p,; P(2,4)=p,
and
S Plxpx) = 1.

X1,X2
Multiplying (21) by P(x,, x,) and summing over x,, X,, we get

(3 ¥ Pl 2) s 50 (5 S,2m00] = 1

X1,X3



Solving these simultaneous equations, we get 455 ¢

1

26 Appn = 75 x; = 1,2} x, = 3,4,
6) P+ ) (4 B) Pl k) 2

where

(27) a=expS; and f=expS,.

Also from (22) we have

1 2
T = X0 y)exp [ X Sialxey)]s oy =125y =34

xix2 iz

Solving these equations for Q(y,, ¥2), we get

(28) 0(1,3) = P — apy — PBp; + oafip, 0(1,4) = P> — aps — Bp, + aBp,

5 »

(=21 -5) (1-a)(1 - p)
= — Pps + afp, Ps — opy, — Bps + afp,
0(2,3) = Ps — ap, , 02, 4) = P4 = %P2 — PPy T 2PP,
&9 (1= -p) (1 -a)(-§)
On using (26), (27) and (28), equations (24) and (23) give
(29) p o= PSS _ x5 expS, B
! 1+expS, a+1 1+expS, B+1
and
(30) RX:.Xz(Dl’ Dz) = H(p,, p,» stl’.t) + . j_ 110ga + 5 i I log f —

~log (o + 1)( + 1).

Thus (29) and (30) determine the distortions and rate for the example considered.

6. MULTIPLE ACCESS CHANNEL

In this section we derive the basic cquations for Multiple Access Channel. We
consider a general Multiple Access Communication System with M sources commu-
nicating with one receiver over a common channel. The message output for one source
is assumed to be independent from message outputs for other sources. A general
Multiple Access Channel with M sources is shown in the diagram.

There are M sources which we denote by X, X,, ..., X, and one receiver which
we denote by Y. A Multiple Access Channel with M inputs and one output may be
characterized by (X; x X, X ... X Xp, O(y | X715 X35+« oy Xpe)s Y).
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[
X; ——>| ENCODER 1 I,————

* ENCS]_)E]:Z | CHANNEL |—» DECODER<}*_> Y

|

f - |
XM%_,‘{ ENCODER M |— |

Multiple Access Channel

Further the distortion between the source letter x; € X; and the reproduced letter
y € Yis denoted by ¢,(x;, y) where as usual
0x,y) 20 (i=1,2,..,M)

with equality iff x; = y.
If P(xy, X5, ..., Xy) is taken to denote the input probability of x, e X, x, €

€X,, ..., Xp € Xy then the average distortion may as usual be defined as
Z P(xl! Xgs o e es Xpg) QU’ I Xiys X5 -0y XM) Qi(xh )’)
Xy greeys XM,y

(i=1,2...,.M).

Now if we communicate on the Multiple Access Channel in such a way that the
level of average distortion between the i-th source and the reproduced letter does not

exceed a given level D; (i =1,2,..., M) then the rate distortion function
Ry, ..xy(D1s ..., Dy) for Multiple Access Channel may be defined as
(31) Rx,,“.,xM(Du ...,DM) = inf [(X1,X2, e X Y),
QU x1,..,xM)EQD1sD2s e DY
where
] ] Xg, Xa e Xy
(2 X, Xy Xy V)= 5 P(Xp Xa oy Xapo ¥) log Q[ X1 X3 +-» Xor)
iy Q(»)
is the ordinary Shannon’s mutual information and
(33) [P {Q(}’[xl»xm S Xy) Z P(xh ~--st)-
XiseesXMHY

O | xp e exny) S DY (i=1,2,..,M).

The I(X,, X,, ..., Xy; Y) may be easily shown to be a convex U function of
O(y | %> X2, ---» Xp). Thus our problem is to minimize I(X,,X,, ..., X,; Y)
subject to the constraints:

(34) O | X1 X3 X)) 20,
(35) Z}':Q(ylxl’xzv -~-’XM) =1
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(36) Z P(xb X25 o vy xM) Q(} | X5 X25 <o s xM) Qi(xh Y) = D;

XireensXMHY

(i=12...,M).
We construct the augmented function (ignoring the constraints (34) temporarily)

JQ) =IXy, - Xo Y) = Y M ZQ(J’ l Xy Xgp o es Xpg) =

Xigees XM

M
_,;S" Z P(xy x5 0y xu) Oy I X1 X5 0oy XM) 0dxi ),

i Xi e, XML

where pi., .. and S7s (i = 1,2, ..., M) are Lagrange multipliers. Taking

Hxyxaxa

log Ae,, . ane = - <
8 rvvnae P(x(, X5, 00y Xa)

we have for stationary points
4

R 14 . Miﬁﬂ _ 3 ) . =
d0(y [ x1r - xur) P(x"”"”’)[log 00) o on f;S‘g'(x"y)] o

i.e.
M
(37) Q(y I Xps o evy XM) = Q(y) )'xl,xz..“.xm exp [~§1si Qi(xh y)] .
Summing (37) over y and using (35), we get
M
(38) ay sz = (2O(Y) exp ['; S:edxe D7

Thus we have

and

(0 D= 5 o) o o) e ©0) 5P [ 3,51 )]

Xty s XMLY

(i=1,2...,M)

are the required basic equations for Multiple Access Channel.

Now if for a particular value of §; (i = 1,2, ..., M) one or more Q(y | Xiy Xy e
..., Xp) = 0 then as before the results can be formulated as in Berger [1, Lemma 1,
p. 32].



. 458 7. AN EXAMPLE OF A MULTIPLE ACCESS CHANNEL
Let us consider a Multiple Access Channel with input alphabet sets X, = {1, 2},
X, = {2, 3} and output alphabet set Y = {1, 2, 3, 4}. Also let

Qu =1 -0y where oy =1 for i=k,

=0 for i%*k,
so that

ou =0 for i=k
=1 for i+k; i=123 k=12234.
Further we take the joint probability P(x,, xz) to be given by
P(1,2) = p,; P(2,2) = ps5;

P(1,3) = ps; P(2,3)=ps
and Y, P(x;, x;) = 1.

X14X2
Now from (37), we have

Z P(XUXZ)AJC. £73 CXp[ZS Q(V“ y)] =1.

X1,X2

Solving these simultaneous equations for 1., .,, we get

af — 1 «+ B — 20f
= ), = A .
(41) Aps B0 PTG
1 1 —oap = af — 1
3= > Mz = N
Bl — ) (B~ ) ps B~ o) (B~ 1) s
where
(42) a=¢expSy and f=expS,.

Also we have from (38),
1 .
— =2 )eXp[Zsz\i(be)J :
¥y

X1,%2

Solving these equations for Q(.V), we get

3) [ﬁlﬁ + Pzt Pa + ﬁPg ]
ap

ocﬁ—l 20 — o — B

02) = P1+P2+P4+77P3,77],
ap 20 —a— ]



_ [P+ taps  apy . 459
Q(3)_ﬁ[ aff — 1 +2aﬁ—a—/}:]’

(e+p+appy 1
o+ - 20 1—of’

U+ B+af)p+ (L +a+B)p, + (1 +a+af)p].

24) =

Thus on using (41), (42) and (43), we have from (40) and (39)

(44) D, =1 _“(ﬁ_“L)[.Ii!.ﬂzi.l_’ﬁ+
! 1 —a off — 1 '
D=1_p(1_0‘)[171+172+1’4+77p3 :l
: g1 o — 1 22 — o — B

and
(45) Ry, x;(Dx, Dz) =8,D,+8,D, + H(I’u P2 P3s 174) + (171 + pa) log (O‘ﬂ s 1) +
+ pylog(1 — af) + pylog(x + B — 24f) — logaf(l — ) (B — 1).

Equations (44) and (45) determine the distortions and rate for the example conside-
red.

8. BASIC EQUATIONS FOR A GENERAL CASE

So far we have derived the basic equations for the cases of special interest. In this
section we will study the general case having several inputs and several outputs. All
the cases which were considered earlier become a special case of this general case.
We consider a discrete memoryless channel with M inputs and N outputs, Let
X, X5, ..., X represent M inputs and Y, Y,, ..., Yy represent N outputs. We
characterise the channel by (X, x X, X ... X X, Oy ¥ae oo Iy [ Xyy Xap e
..o Xxy), Yy X Y, % ... x Yy). The transition probability of receiving y;e ¥;
by the i-th receiver (i = 1,2, ..., N) when X, X,, ..., X are transmitted is repre-
sented by Q(y; | X1, x5, ..., x,/) Where

Qi(yi|xl'x2""’xM):: Z Q(ynyz,..‘,yn xnxza-u,xM)
ARTED JER I JE S FETE YN
(i=1,2..,N).

Then, since the outputs are statistically independent, we have

Q(_Vu -~-s,VN|X1’ ---s'\'M) = Ql(_V1 'xn “"xM) QN(lexl! ~~-,XM)-
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Since there are M inputs and N outputs, so there will be M x N distortions.
We will represent the distortion between the source letter x;e X; (i = 1,2, ..., M)
and the reproduced letter y;€ ¥; (j = 1,2, ..., N) by g,(x;, ;) where as usual

Qij(xia J’j) =0
with equality iff x; = y/Vi, j).

If P(xy, X5, ..., Xp) is taken to denote the input probability of x, € X,, x, €
€X,, ..., X)r € Xy then the average distortion for the j-th output (j = 1,2, ..., N)
may be as usual defined as

Z P(’st See xM) Q(J’u <o VN | Xir ooy xM) Qij(xis yj) -
Xpyeeny XM Y10 YN

Now if we communicate on the channel in such a way that the level of average dis-
tortion between the i-th source and the j-th reproduced letter does not exceed a given
level Dy; (i=1,2,...,M; j=1,2,...,N) then the rate distortion function
Ry, ..x(Di1, ..., D) for this channel may be defined as

(46) Ry, xu(Dirs o Duy) = inf I(X oo Xogs Yoo oo Yo
QW1 ¥NIx1 1 XM)€QD0,.., DU S
where
@7 KXy, u X Y., YY) = y P(X\y ooy Xaps V1o oo es YN -
Xfpeens XM Vi )N

. log Q()’n s ,VNle* s Xp)
Q(Yn sy ,VN)

is the ordinary Shannon’s mutual information and

b1,y = {Q(}’l, Se N I D ITIE XM)i Z P(xl, ce Xy)

X1see s XM V1o JN
SO - yn R X X Qi3 yi) £ Dy
i=1,2...,M; j=1,2...,N.

The I(X,, ..., X3 Yy, ..., Yy) may be shown to be a convex U function of
O(yys -2 ¥x | X1s - Xp). Thus our problem is to minimize I(X,, ..., Xs;
Yy, ..., Yy) subject to the constraints:

(49) Q(yla--vny[Xli“'st)gOs
(50) Z Q(yl*“"yNixl’-H’xM)zl
YiseesIN
and
(s1) ) Plxis o x) Q01 '--’YN[XU coos Xy) Q%0 ;) = Dy
XiseesXM Y1 VN

(i=1,2....,M; j=1,2,..,N).



We will use Lagrange’s method of multipliers to solve this problem. Ignoring the
constraints (49) temporarily we form the augmented function

J(Q) = I(Xl, X Yo, YN) - Z Hayxzyexnn

X1 e X
M N
Z Q(,Vls...,.\’)v\xn~-',XM)_Z Zsij Z P(xls'-'axi\l)'
Pir¥N PS1 =1 Kb XMt N

Oy s YN I Xis oo Xr) Qux ¥5)

where g, o, ooand S (i=1,2,...,M; j=1,2,...,N) are Lagrange multi-
pliers. Taking

M N
(A) Ryx,..., XM(DI IR DMN) =.Zl 'leijDij +

i=1j=

+ z P(an s XM) lOg ;“Xx ----- xm
X1y sXM
and
(B) Dij = Z Qij(xh }’j) P(«‘fh ...,xM) ;l‘xl ..... X Q(}"l, -v-:.VN)-
Xpsees XM Y1 IN

M N
- €Xp [Zl Z,Sff 2ifxi )]
i=1j=
(i=12..,M; j=12..,N).

where

M N
(52) Aapreia = L 2 Qs -5 Yu) exp [‘21 Z}SUQU(% vt
¥t YN i=l =

Expressions (A) and (B) give the required form of the basic equations for this discrete
memoryless channel in the general case.

Particular Cases

1. Wheni=1;j=1,2,...,N,ie wecome to the case when there is one source
and N destinations. Then (A) and (B) reduce to

N
Rx.(Dna ey DIN) = ZISUDU + ZP(Xl) log A‘x;
i= X1
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and

N
D,; = Z Qlj(xhyj)P(xl) Axt Q(ylz ~~~>,VN)'CXP [.leu Qlj(xp)’j)]
N J=

XLS¥1,Y200e0sY

(=12...,N),

which are nothing but the basic equations for Broadcast Channel.

2. When i =j = 1,2 and ¢,,(x;, y,) = 0;1(X2, ;) = 0 i.e. when there are two
sources and two receivers. Then (A) and (B) reduce to

2
RX,,X;(DH’ Dzz) =Z‘,1S11Dii + Z P(Xh xz) log }'xhxz

X1,X2

and

N 2
Dy = Z Qi.(Xi’ yi) P(x, xz) . 0y, yz) exp [len 0ulxs, J’x)]
X1,X2,01,)2 i=
(i=12),

which are the basic equations for Two-User Channel. Thus our general model
reduces to the case of Two-User Channels when i = j = 1,2 and gu(x,, y,) =
= Qu(xz’ )H) = 0.

3. Leti=12,...,M; j=1,ie. let us consider the case when there are M
sources and one receiver. Then in this case (A) and (B) reduce to

M
Rx,,m,xM(Ds 1o veos Dm) = lenDn + Z P(Xu oo Xy log Ay
1= X1son XM
and
) M
D; = Z Qi[(xia }"1) Pxy, ..o, XM) /‘{x,,m,xM Q(.VJ) €Xp [Z Su Qu(xi» )'1)]
X§ e s XM Y1 i=1

which are the basic equations for Multiple Access Channel. Thus our general model
reduces to the case of Multiple Access Channel wheni = 1,2, ...,Mandj = 1.

(Received December 18, 1978.)
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