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TIME-DISCRETIZATION FOR 
CONTROLLED MARKOV PROCESSES 
Par t I: General Approximation Results 

NlCO M . VAN DlJK AND ÁRIE HORDIJK 

% , 

1453/00 

The method of time-discretization is investigated in order to approximate finite horizon 
cost functions for continuous-time stochastic control problems. The approximation method 
is based on approximating time-differential equations by one-step difference methods. In 
this paper general approximation results will be developed. An approximation lemma is 
presented. This lemma enables us to conclude orders of converge, which makes the method 
of computational interest. Also unbounded cost functions are allowed. We concentrate on 
approximations induced by discrete-time controlled Markov processes. The approximation 
can in principle be computed recursively by using discrete-time dynamic programming. In 
a s-bsequent second paper two applications will be studied in detail. 
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1. INTRODUCTION 

This paper is concerned with the approximation of continuous-time controlled Markov 
process by processes with discrete-time parameter {nh \n = 1 ,2 , . . . } , where h de­
notes a step size. As functions of interest we focus on finite horizon cost functions. 

Time discretization methods for controlled stochastic processes are studied ex­
tensively in the literature, cf. Kushner [13], Gihman and Skorohod [5], Haussmann 
[6], Bensoussan and Robin [1], Christopeit [2], Hordijk and Van der Duyn Schouten 
[7,8,9,10], Van der Duyn Schouten [19], Van Dijk [20, 21], Plum [16] and Koole [11]. 
It is basically the recursive structure of discrete-time systems which makes time-
discretization so interesting for computational purposes. The optimal cost functions 
as wef fa i lhe c©rrespbnc?ing optimal controls for discrete-time Markov processes can 
be computed recursively by using dynamic programming, whereas cost functions for 
continuous-time processes are usually given through implicit differential equations. 
The above-mentioned references focus on the convergence of discrete-time schemes 
as the step size h tends to 0, either from a theoretical point of view ([1,5]), or to 
use time-discretization as a computational procedure ([6,13]) or to prove the opti­
m a l l y of a limit control ( [2 ,7 ,8 ,9 ,10, 11,16,19,20,21]). Particularly, Hordijk and 
Van der Duyn Schouten [7,8,9,10] have been able to show the structure of the op­
timal control in several applications by using time-discretization. In these papers 
the controlled Markov process is a jump process with a deterministic drift between 
the jumps and permits both controls affecting jump rates together with jump sizes 
and impulsive control causing immediate transitions. Plum [16] combines the more 
general Markov processes of this paper with the more general controls (including im­
pulsive control) of Hordijk and Van der Duyn Schouten [8,9]. In Koole [11] (Chapter 
5) the methods developed in this paper and in Van Dijk [21] are applied to stochastic 
scheduling models. 

None of the above-mentioned references, however, is concerned with compu­
tational aspects of the approximation method such as: orders of convergence in 
some appropriate norm, the choice of such a norm and the choice of convenient dis­
cretizations. In this and a subsequent paper we a t tempt to make a first step in these 
directions. 

In this paper we develop an approximation lemma for one-step difference methods. 
This lemma extends the Lax-Richtmeyer theorem (cf. [14]), in that it allows time 
inhomogeneous and nonlinear difference methods. The approximation lemma is ap­
plied to one-step difference methods induced by discrete-time controlled Markov 
processes. We derive conditions for the one-step transition probabilities which to­
gether with sufficient smoothness of the continuous-time functions imply the desired 
approximation results. Orders of convergence in the step-size h are given with re­
spect to some appropriate chosen weightd supremum norm. The approximation 
conditions are not restricted to specifically chosen discretizations, but are applicable 
to a range of one-step difference methods, advanced numerical methods included. 
The possibility of choosing norms enables us to deal with unbounded cost rates and, 
in applications, unbounded infinitesimal characteristics. 

In a subsequent paper, Part II, we will illustrate the approximation method and 
its consequences by applying it to a controlled infinite server queue and a controlled 
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investment or cash-balance model. In both applications we will verify the neces­
sary smoothness and approximation conditions, including, as a special result, the 
existence of a sufficiently smooth and bounded solution of the Bellman equation. 
Furthermore, the construction of ^-optimal controls by using time-discretization will 
be analyzed. In this paper we only give the discretizations used for these appli­
cations and some approximation results in order to illustrate the time-discretization 
method. 

This paper is a shortened version of a technical report from 1985, we are grateful 
for this opportunity to publish our results. 

2. CONTINUOUS-TIME CONTROLLED MARKOV PROCESS 

2 . 1 . De f in i t i ons and n o t a t i o n 

In this section we give a formal definition of a continuous-time controlled Markov 
process and we illustrate it by two examples. First, we present a description of 
continuous-time controlled Markov processes by introducing the notion of a control 
object. 

N o t a t i o n 2 . 1 . 1 . For S a separable and complete metric space and measurable 
f2 : S.—*• M such that /J,(x) > 6 > 0, for all x £ S and some 6 > 0, it is easily verified 
tha t the space B^ is a Banach space with norm || • ||^, defined by 

B* = \ f : S -> R | / measurable and sup \f(x)\/u.(x) < oo } , (2.1.1) 

11/11̂  = sup \f(x)\/n(x), feB». (2.1.2) 
xes 

We call fi a bounding function. 

Def in i t ion 2 .1 .2 . A control object is a 7-tuple (S, T, /i, DA, {A5 \6 £ A } , L), 
whe: e: 

(i) S is a separable complete metric space with Borel-field (3. 

(ii) r is a separable complete metric space with Borel-field (3(Y). 

(iii) A is a subset of Borel-measurable functions 6 : S —> F. 

(iv) fj, denotes a bounding function (see Notation 2.1.1 above). 

(v) DA is a nonempty subset of B^ (see Notation 2.1.1 above), 

(vi) A , for any 6 £ A, is a linear operator from DA into Btx. 

(vii) L : S x F —• 1R is a Borel measurable function. 

The characteristics introduced above have the following interpretation: 

(i) S is the state space of the controlled Markov process, 

(ii) T is a set of decisions. At any time point a decision is taken from F. 
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(iii) A is a set of decision rules, i.e. if the current decision rule is 8 G A and the 
actual state is x, then 8 prescribes decision 8(x). 

(iv) /i is a bounding function and determines the class /3M . 

(v) DA is a domain on which the operator A5 is defined for any 8 £ A. 

(vi) A represents the infinitesimal operator of the controlled Markov process when 
using one and the same decision rule 8 at any time / > 0. 

(vii) L represents a cost-rate function; i.e. if during [/, t + At] the state of the 
process is x and the decision is 7, then the costs incurred in that interval are 
AtL(x,j). 

To illustrate the notion of a control object, let us give two examples: 

E x a m p l e 2 .1 .3 . (M|M|oo-queue with a controllable number of servers) 

Customers arrive at a service facility according to a Poisson process with par­
ameter A. The number of servers is controlled continuously. A customer can only 
be served by a single server and the number of servers never exceeds the number of 
customers present. Each customer demands an amount of service according to an 
exponential distribution with parameter v. The cost-rate function is bounded by a 
function polynomial in the number of customers and the number of servers. As will 
be pointed out in the subsequent Part II, the appropriate control object is given by: 

S = N; T = N; A = {6 : N -> N | 8(i) < i, i G N} 

L(i,j) < Co + Cjz 'F 1 + C2[j]P2 for some C0, Cu C2, Pi, P2 

With p = max(pi ,p2) : 

p,(i) = (1 + i)P+2, ieN, 

DA = If • -V -> M I sup | / ( t ) I / ( l + i)P < c o l . 
I iGW J 

A* f(i) = X[f(i + 1) - /(»)] + «(0 *[/(«' - 1) - /ML •" G N-

(2.1.3) 

(2.1.4) 

(2.1.5) 

E x a m p l e 2 .1 .4 . (Controlled investment model) 

An investment of fixed amount is controlled by continuously allocating an invest­
ment opportunity (71,72) with 71 the rate of return and [72P the value of risk given 
by its variance per unit of time. The available opportunities (71,72) belong to a 
finite set B. The state x of the process denotes the current value of the investment. 
A cost-rate function is taken into account which depends on the value of the invest­
ment, the rate of return and the value of risk. This rate is bounded by a polynomial 
in x of order p. As will be pointed out in the subsequent Part II, the appropriate 
control object is given by: 
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S = M; r = B; A = {6 : M —* H | 6 piecewise constant} 

l^(-557l»72) |<C(l + |a:|p) for some constant C, \ (2.1.6) 

/i(x) = (l-f-|.r|P), a? €12. 

f : M—> M —%• f(x) exists and is continuous for k = 1, 2, 3 

-^r / («) < C7(l + |X|P), x ~ M, for Jfe = 0,1, 2, 3} 
• (2.1.7) 

Aбf{x) = Ы^f{x)+-Ы2^f(x) for«5(x) = ( T ь 7 2 ) , xЄІR. (2.1.8) 

Note that in the above examples an appropriate choice of the bounding function // 
enables us to deal with polynomially bounded, hence unbounded, cost-rate functions 
as well as in the queueing model an unbounded infinitesimal characteristic (the jump 
rates 6(i), v). We conclude this section with some notation. 

N o t a t i o n 2.1.5. 

1. Z always represents a fixed but arbitrarily chosen finite time point, t < Z 
stands for: t G [0, Z], and if h > 0 is under consideration: £ denotes the entier 
of Zh~l, i.e. £ = [Zh~1\, where [xj is the largest integer smaller than or 
equal to x. 

2. A family {ft\t < Z) C B^ is called //-bounded if sup t < ^ (|/t||,u < oo. A 
//-bounded family is called integrable if for any x 6 S: ft(x) is Lebesgue-
integrable in t. We write 

Чt 
/

Z pZ 

fsds if qt(x)= I fs(x)ds, x e S. 
Note that {qt\t < Z} is a //-bounded subset of Hp. 

3. For {qs I 6 e A} with qs : S -* M, 6 G A, let i n f ^ A ^ ] denote the function 
q° : S -* MU {-00} given by q°(x) = inf*6A[g*(x)l, x G 5. 

4. For an integral sign J without subscript S is the domain of integration. 

5. For 6 e A: the function Ls : S -> 12 is defined by:.£*(x) = L(x, t5(x)), i G 5 . 

6. The function 0 denotes the function which is identically equal to zero. 

In what follows we consider a fixed control object (S, T, A, //, DA, {A \6 G 
A}, L) and a fixed but arbitrarily chosen finite time Z. The dependence on Z will 
not be mentioned explicitly in definitions and formulas. 
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2 .2 . F i n i t e hor i zon cost funct ion: F i x e d control 

Def in i t ions 2 .2 .1 . A non-randomized Markov control is a function 7r : [0, Z] —> A 
(Notation: TT E II). A Markov control TT £ II is called admissible and fi-bounded 
(Notation ir £ li(AB)) if there exists a unique family of transition probabilities 
{P« . I 0 < s < 0 a n d a constant Mn such that for all t\ < t% < t^ < Z, x £ S and 
B £ > . 

P [ l i t 3 ( x ; B) = j P*3)U(y; B) P ^ x ; dy) (2.2.1) 

and 

Џ(У)PІÁ-^У) <MҠ, 0<s<t<Z. (2.2.2) 

џ 

R e m a r k 2.2.2. In applications, such as controlled j u m p and diffusion processes, 
the existence and uniqueness of the transition probabilities of the corresponding 
Markov processes has to be guaranteed by smoothness conditions on the infinitesimal 
characteristics and the control n. 

Consider a fixed Markov control 7r £ IL(AB). Then, by virtue of (2.2.2), we can 
define for all s, t < Z, an operator T*t : HM -> B» by 

TU(x) = J f(y)Plt(x;dy). (2.2.3) 

Moreover, from (2.2.1) and (2.2.2) it easily follows that for all / £ B": 

-*7,i f = l7 | T(r; i r / ) , s < r < t < Z, (2.2.4) 

I K . / l <H/1U-V*. s<t<Z. (2.2.5) 
ii , ii fj. 

Fin i t e hor izon cos t funct ion . We are now able to define the finite horizon cost 

function {V^"|< < Z}. Herein Ln (s) denotes the function S —* JR defined by 

Lw(s)(x) = L(x, 6(x)) for 6 = TT(S) while Assumption 2.2.5 below guarantees that 

the integral involved is well-defined: 

fz 
V* = TlsL*(s)ds} (t<Z), Vz = 0. (2.2.6) 

The value V*(x) represents the expected total costs from time t up to time Z under 
policy TV, given that the state at time t is x. In order to let V* be well-defined as 
well as for purposes that we need later on, the following assumption is made. 

A s s u m p t i o n 2 .2 .3 . 

(i) {L^s) | s < Z} is / / -bounded, 

(ii) {TJS Z / W | 8 < Z} is integrable. 

(iii) {Vj 11 < Z} is a /^-bounded family C DA-
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Let h > 0. Then by virtue of the semigroup property (2.2.4), the fact that Tjt+h 

is a linear and bounded operator on B^ (see relation (2.2.5)), and condition (i) of 
Assumption 2.2.3, for any t, t + h < Z we can write: 

t + h 
VI 1 = 1 TlsL<sUs + Tlt+h(V*t+h) 

This relation can also be written as: 

VI - V*+h = h [L*W + A*W V*+h] + RJ(V, h), where 

>t+h 

Щ(v,Һ) Tft,L«')d8-hL*M +([Tlt+h-l]-hA^) V*+h. 

(2.2.7) 

(2.2.8) 

2.3. Finite horizon optimal cost function 

Assumption 2.3.1. There exists an operator J : DA —* B^ such that 

Jf(x)=mfA[L6(x) + A6f(; f Є DA, x ь S. (2.3.1) 

Note that this assumption requires that the right-hand side of (2.3.1) exists and 
is //-bounded for any / £ DA. If Assumption 2.3.1 holds we consider 

As umption 2.3.2. There exists a unique family {<Pt 11 < Z] C DA with {J($t) \ 
t <. Z] a /i-bounded and integrable family satisfying the continuous-time optimality 
equation: 

Фt = J(Фs)ds, (t<Z), Ф. 0. (2.3.2) 

Remark 2.3.3. It is well-known that for jump- and diffusion-type applications 
the value 4>t(x) represents the optimal (minimal) expected costs from time t up to 
time Z given that the state at time / is x, and where the minimum is taken over all 
Markov controls (cf. [4]). 

For t, t + h < Z relation (2.3.2) can be written as: 

$t - $t+h = hJ($t+h) + Rt(&,h), where 

Rt($, t) = Jt

t+h J ( # , ) ds - hJ(*t+h). 
(2.3.3) 

3. DISCRETE-TIME CONTROLLED MARKOV PROCESSES 

3.1. Definitions and notation 

This section focuses on controlled Markov processes in which the state and decision 
can only change at discrete-time points {nh | n = 0,1,...} for some h > 0. In analogy 
with the continuous-time controlled Markov processes we will present such a process 
by introducing the notion of an /Vcontrol object. 
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Definition 3.1.1. An h-contwl object is a 7-tuple (S, T, A, u, h, {P5
h \6eA}, L), 

where 

(i) S, T, A and u are defined as in Section 2.1. 

(ii) h > 0 denotes the step size of the time parameter. 

(iii) For any 6 £ A : Ph : S x (3 —• M is a transition probability. 

It has the following interpretation: If at time nh the current decision rule is 6 
and the actual state is x, then Ph{x; B) is the probability that at time nh + h 
the state is contained in B. 

(iv) L : S X r —• M is the measurable function defined in Section 2.1. In this 
section, hL represents the one-step cost function, i.e.: If at time nh the actual 
state and decision are x and j then hL{x,j) are the expected costs incurred 
during [nh, nh + h]. 

Definition 3.1.2. For 6 e A with 

and A5
h : B^ -> B'1 are defined by: 

f u{y) Ph{-; dy)\\ < oo, the operators Th 

T5
hf{x)= ff{y)P6

h{x;dy); x £ S, f £ B» 
J } . (3.1.1) 

K = [T*h - I] h~\ where If = f,f£B». 

3.2. Finite horizon cost function; fixed control 

Definition 3.2.1. A non-randomized /i-Markov control is a function ir : {nh \ n = 
0,1, . . . ,£} -* A (Notation: 7r G Rh). A control 7r G Uh will also be denoted by 
(TT(0), 7r(lft),.. . ,7r(a)). 

Cons t ruc t ion 3.2.2. For any 7r E II'1 one can construct a unique family of tran­
sition probabilities {Pjn | j , n < £} such that for all j < £, x £ S and J5 £ ft: 

Ph
iJ{x;B) = lB{x), | ^ 

Pln+1{x;B) = Jpl{nh){y;B)Ph
hn{x;dy), j < n < £. J ( 3 ' 2 ' 1 

Consequently, in contrast with the continuous-time model given in Section 2.2, any 
/i-Markov control 7r £ Uh can be called admissible. In addition, an /VMarkov control 
7T £ Hh is also called u-bounding, (Notation: TT £ Hh{AB)) if for some constant Mh: 

Jџ{y)Ph

>n{-;dy) < Mh, j <n<£. (3.2.2) 

џ 

Consider a fixed /i-Markov control TT £ Uh{AB) and let { P , n | j , n < £} be given 
by (3.2.1). Then, by virtue of (3.2.2), we can define for all j , n < £ an operator 
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Th
>n : B» -* B" as per (3.2.3) below and the relations (3.2.4) and (3.2.5) follow 

directly from (3.1.1) and (3.2.2) 

Tlnf(x) = J f(y)Ph
>n(x; dy), j < n < £, (3.2.3) 

-*/,» f = r ; ° ' ' M (Th
+1>n f), J<n<£, (3.2.4) 

<ll/ll/.A-Tfc, 3<n<£. (3.2.5) Th f 
3,n J 

Next, in contrast with Assumption 2.2.3 for the continuous-time model, we make 
the following assumption. 

Assumption 3.2.3. {Ln{nh) | n = 0,1, ...,£} is /i-bounded. 

Then, for any j < £, Assumption 3.2.3 together with (3.2.5) justifies the following 
definition of the finite horizon cost function V •: 

t-\ 

V) = J2 T*j,n(LW{nh)) h- (3-2-6) 
n=j 

Further, by virtue of the semigroup-property (3.2.4), the fact that T-j+1 is a linear 
and bounded operator on H^ (see relation (3.2.5)) and Assumption 3.2.5, it is easily 
verified that Vj , j < £, can be solved recursively by: 

V) = h Ln{jh) + Tl(jh) (Vh
+1), j < £, V\ = 0. (3.2.7) 

3.3. Finite horizon optimal cost function 

Assumption 3.3 .1 . 

(i) Relation (3.1.1) is satisfied for all 8 £• A. 

(ii) There exists a subset F C B** with 0 G F and 

M[hL5+T5
hf) G F, for all f E F. (3.3.1) 

S£ A 

If Assumption 3.3.1 is satisfied, then there exists a unique family {#j | j ' < £} 
satisfying the discrete-time optimality equation: 

# J = inf \h L5 + T5
h $

h
+1} , (j < £), # ? = 0. (3.3.2) 

" (5GA L J J 

It is well-known in dynamic programming that the value #,• (x) represents the mini­
mal expected total costs from time jh to £h, given that the state at time jh is x. 
Further, note that (3.3.2) is a recursive system of equations. 
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4. APPROXIMATION LEMMA 

This section contains a general approximation lemma which is the key lemma for our 
approximations results. In view of the time-difference equations (2.2.8) and (2.3.3) 
and the time-recursive equations (3.2.7) and (3.3.2) corresponding to the continuous-
respectively discrete-time cost functions, this lemma is concerned with systems of 
backwards time-evaluation equations of the form 

UJҺ = Cjh (UJҺ+Һ), j < £, and 

UҺ = CҺ(UҺ

+1), j<£, 

where 

{Ujh \j_£} and {Uj \j < £} are families within a Banach space (B, \ 

{Cjh \j < £} and {Cj \j < £} are families of operators from B into B. 

Lemma 4 .1 . Suppose that for constants e, K > 0: 

cj (UJҺ+Һ) - Cjh(Ujh+h) h.-г< 

Ch(Cl)-Ch(c2) < ( l + / » K ) | | C l - C 2 | 

Then for any n < m < £: 

Ut-U rxh 

P r o o f . Write 

< є eK(mh~nh) _ i l Jґ-l I eK(mh-nh) ul-u mh 

*S=V}-UJhl j<£, 

£j=cUUJh+h)-Cjh(Ujh+h), j<£. 

Then from (4.1): 
Sf = Ch(Uh

+1)-C
h(Ujh+h) + eh. 

Consequently, (4.2) and (4.3) yield: 

\\8h\\<(l + hK)\\8h
+1\\+sh. 

So that by iterating (4.7) for j — n,..., m — 1: 

m— 1 

\\6h\\<(l + h A')(™-») \\em|| + e Y_ (1 + hK)U-n^ h. 
j=n 

(4.1) 

j<£ (4.2) 

j < £, c ь c2 Є B. (4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Since (l + h K) < ehk and (ehK)P < e

tK for t G [ph, ph + h), relation (4.8) and some 
simple calculus imply relation (4.4). D 
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Remarks 4 .2 . 

1. Clearly, Lemma 4.1 can be extended by relaxing (4.2) and (4.3) to time de­
pendent bounds, i.e. e and K replaced by Sj and Kj. Since, however, the 
above form appears to be sufficient for our purposes we prefer to avoid further 
notational complexity. 

2. Informally speaking, in numerical analysis a relation of the form (4.2) with e 
converging to 0 and h tends to 0 is known as consistency of the approximation 
scheme, while relation (4.3) as stability of the finite difference method (cf. 
[17]). The standard Lax-Richtmeyer theorem (cf. [15] or [17]) states that a 
consistent and stable difference-method is convergent. 

3. The approximation lemma presented above differs from the standard Lax-
Richtmeyer theorem in numerical analysis in that the one-step difference op­
erators Cj are time inhomogeneous and may be nonlinear. The nonlinearity 
will be essential for dealing with optimality equations. 

5. DISCRETE-TIME APPROXIMATIONS 

5.1. In t roduc t ion 

B> applying the approximation lemma of Section 4, in this section we show that the 
continuous-time finite horizon cost functions defined by (2.2.6) and (2.3.2), can be 
approximated by their discrete-time analogues from (3.2.4) and (3.3.2) respectively. 
Roughly speaking, the discrete-time approximation is guaranteed if the following 
three conditions are satisfied: 

(i) The conti mous-time function is (piecewise) sufficiently smooth with respect 
to the time parameter (smoothness). 

(ii) The discrete-time one-step generators approximate the infinitesimal operators 
(consistency). 

(iii) The discrete-time one-step transition probabilities are sufficiently bounded 
(stability). 

In this section we consider a fixed control object 

(S, T, A, /i, DA, {A I 6 G A}, L) and fixed /.-control objects 

(S, T, A, //, h, {Ph | 6 6 A}, L) for all h < h0 and some h0 > 0. 

Further, we note that we do not make any of the assumptions of the preceding 
section a priori, but that we collect all necessary assumptions for finite horizon cost 
functions under fixed control in Theorem 5.2.1 and for finite horizon optimal cost 
functions in Theorem 5.3.1. The notation of the preceding sections will be adopted, 
where the use of Th and Ah (see Definition 3.1.2) is justified by either (5.2.3) or 
(5.3.3). 
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5.2. Finite horizon cost function; fixed control 

Let 7T £ U(AB) and define 7rh G IIh by: 7rh (nh), n = 0 , 1 , . . . ,£. First, we remark 
that the construction (3.2.1) together with the boundedness relation (5.2.3) given 
below yield for all j < n < £: 

1 / rtv) PJ.„(-; dv)\ < t1 + ̂ n ( n _ i ) < <?K* • 
ii J ii/i 

Hence, relation (5.2.3) implies: 7rft £ I I^AB). Further, recall the expression (2.2.6) 

for V*, (2.2.8) for K*(V,h), (3.2.6) for'Vj and (3.1.1) for Alijh), j < £. 

Theorem 5.2.1 . Suppose that 

(i) Assumptions 2.2.3 and 3.2.3 hold and that 

(ii) For some constants e\, eh and K*, and all j < £: 

\\KUV>h)h~l\\»<cl (5-21) 

\\(Al«h)-A<jh))V*h+h\\ <eh, (5.2.2) 
ii II /i 

L(y)Pfh)(-;dy)\ <(l + hK*). (5.2.3) 
•J II / i 

Then, for some constant C£ and all n < •£: 

| ^ - V ^ | S ^ + ^ l t e ^ - l l / J ^ + ^ e ^ C I . (5.2.4) 
ii II /J 

P r o o f . By virtue of (2.2.8) and (3.2.7) system (4.1) holds with: 

B = B»; Ujh = V*h; Uh = Vh; ^ 

Cjh(f) = hL*«h)+ [l + hA*^h)](f) + R]h(V,h)] [ (5.2.5) 

Ch(f) = hL^jh) + T*h
Uh)(f) = hL<jh) + [j + h A*(j/l)] (/). J 

Consequently, relations (5.2.1) and (5.2.2) imply (4.2) with e = e\+e2. Furthermore, 
relation (4.3) holds for K = Kw since (5.2.3) implies: 

Chj(h) - Ch(f2)\ =\Tl{jh)(f1-f2)\ ^(l + hinWh-hW^. (5.2.6) 
II/j II I/ . 

Finally, with £ = [Zh~1\, we obtain, according to (5.2.5), (2.2.6) and (3.2.7), that 
for some constant C[ (see condition (i) of Assumption 2.2.3): 

\ui-Ulh\ =\\Vlh\\fi<hsup\\m\fl<hCl. (5.2.7) 
II I'M t<Z 

Substituting (5.2.7) in (4.4) with m = £ and applying Lemma 4.1 yields (5.2.4). D 
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Theorem 5.2.2. Under the conditions from Theorem 5.2.1 with eh —* 0 and 
z\ —» 0 as h —• 0, and with n — [th 1J H . 

VÌ - Vҡ 
0 as h —• 0, uniformly in / < Z. (5.2.8) 

P r o o f . A direct result of Theorem 5.2.1 and the inequalities: 

Vh - Vҡ 
< Vh - Vҡ

h 
т n r nh 

_L | | v 7 r , _ v71-!! 
" II v nh v t Wfi 

|v;fc-Vt'||/l</irop||i;?||/l<Í.C£. 
t<z 

(5.2.9) 

(5.2.10) 
D 

Remarks 5.2.3. 

1. Clearly, from Theorem 5.2.1 and inequality (5.2.10) it follows that if eh and eh 

are convergent of order 0(hp) (order of consistency), then also the convergence 
in (5.2.8) is of order 0(hp) for p < 1 and of order 0(h) for p > 1 (order of 
convergence). 

2. Note that Theorem 5.2.1 allows us to deal with controls 7r which are only 
piecewise smooth on intervals [nh, nh + h], (e.g. piecewise constant (step) 
controls). In this respect also the following remark is of interest. 

3. By virtue of the symmetry in system (4.1) it is easily seen that Lemma 4.1 
remains valid if we interchange (Ujh, Cjh) and (TJ •, Cj ). Consequently, The­
orem 5.2.1 remains valid if we replace 

Vҡ 
v jh+h by V i + i 

in (5.2.2), and 

PЖM by P]ҺJҺ+Һ in (5.2.3). 
(5.2.11) 

4. In Theorem 5.2.1 the discrete-time controls nh E Hh are the projections on 
{nh | n = 0,1,...,^} of the continuous-time control TT. Obviously, however, 
Theorems 5.2.1 and 5.2.2 remain valid if we consider any sequence of discrete-
time controls irh E Iih and substitute 

Af^ for 

гh(jh) 
for P 

Mjh) 
lh 

ҡ(jh) 

in (5.2.2), and 

in (5.2.3). 
(5.2.12) 

Of particular interest is the case where the controls ivh are (e-)optimal for the 
/i-discrete-time models. If there exists a continuous-time (limit) control TT such 
that the conditions of the Theorem 5.2.2 are satisfied, then ix is optimal in a 
wide class of controls (cf. [8,9]). 

Since, however, in our applications (see Part II) we focus on either discrete-
time projections of a continuous-time control or a continuous-time embedding 
of a discrete-time control, we prefer to present the approximation results, more 
specifically the conditions (5.2.2) and (5.2.3), in the simpler form. 
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5.3. Finite horizon optimal cost functions 

In this section we derive an approximation theorem for the optimal cost function. 
Recall the defining relations (2.3.2) for &t, (2.3.3) for Rt($,t) and (3.3.2) for # J . 

Theorem 5.3.1. Suppose that 

(i) Assumptions 2.3.1, 2.3.2 and 3.3.1 hold, and that 

(ii) for some constants eh, eh and K& and all j < £: 

sup 
<5GA 

sup 
<5€A 

Then for some constant C$ and all n <£: 

| |#£-#„J < [4 + 4] [eZK*-l]/KA + heZK*C*. (5.3.4) 

^Ф^Һ-^^є Һ 
11 (5.3.1) 

(As

h-As)Фjh 
t 

<ғh 

Ъ є2 > 
i 

(5.3.2) 

Jџ(y)Ps

h(.;dy) < ( l + ЛAд). 
џ 

(5.3.3) 

P r o o f . By virtue of (2.3.2), (2.3.3), (3.1.1) and (3.3.2), system (4.1) holds with: 

B = B»; Ujh = Фjh; U) Ф 

Cjh(f)= inf \hL6 + [I + hA6](f)\ +Rjh($,h) 
<5£A L J 

Ch(f) = inf \h Ls + Ts
h h] = inf \h Ls + [/ + h As

h] (/)] . 
J <5GA L J <5řA L J / 

(5.3.5) 

Hence, 

Cjh(f) - Ch(f) 

<\\Rih(*,h)\l + inf [hLs + h Asf] - inf [h Ls + h A6
hf] 

<5gA <5£A 

< sup 
<5ЄД 

(As

h-As)f\\ h+\\Ríh($,h)\\. 

(5.3.6) 

The relations (5.3.1), (5.3.2) and (5.3.6) imply (4.2) with e = e\ + £§. Furthermore, 
relation (4.3) holds for K = A'A, since (5.3.3) implies: 

Ch(h)-Ch(f2) < SUP 
Џ <5ЄД 

Ts

h(h-h)\\ <(l + ҺKA)\\h-h\\џ. (5.3.7) 

According to Assumption 2.3.2: {J($t)\t < Z) is //-bounded. Hence, from £ = 
[Zh~l\, (5.3.5), (2.3.2) and (3.3.2) we obtain for some constant CV 

U7-U. IҺ = \\*ih\L<hsup\\J(*t)\\li<hC*. 
t<z 

(5.3.8) 

Substituting (5.3.8) in (4.4) with m = £ and applying Lemma 4.1 yields (5.3.4). • 
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T h e o r e m 5.3.2. Suppose that for all h < /i0 the conditions (i), (ii) of Theo­

rem 5.3.1 are satisfied with e^ —+ 0 and e\ —> 0 as h —» 0. Then, with n = [ ^ - 1 J : 

Ф î - Фt 0 as /z —* 0, uniformly in t < Z. (5.3.9) 

P r o o f . Since {J{4>t) \t < Z} is /i-bounded the proof is similar to the proof of 

Theorem 5.2.2. • 

R e m a r k s 5.3.3. 

1. As pointed out in 1 of Remark 5.2.3 an order of convergence in (5.3.9) can be 

obtained if we have an order of consistency, i.e., an order of convergence for 

e\ and e\. 

2. Similarly to 4 of Remark 5.2.3 it can be argued that Theorem 5.3.2 remains 
valid if we allow a finite set of time-points as exclusion set. 

5.4. R e m a r k o n termina l cost funct ions 

It is easily seen that the approximation results of Subsections 5.2 and 5.3 remain 
valid if the cost function V* and $ also take into account a terminal cost depending 
on the actual state at t ime Z, say q 6 HM is the terminal cost function. For including 
a terminal cost we only need to add: 

( Add Tlz q and T))t q to the right-hand side of (2.2.6) resp. (3.2.6). 

\ Replace 0 by q in the relations (2.3.2), (3.2.7), (3.3.1) and (3.3.2). 

By taking L = 0 for any 8 £ A and using only suitably chosen terminal cost func­
tions q, one can & low weak convergence of the discrete-time transition probabilities 
Pi i to Pi z for any fixed control TT. By varying t and z, and applying arguments for 
weak convergence of processes on appropriate sample path spaces (see the Appendix 
of [201) w e c a n a l s o conclude weak convergence of the underlying processes. 

(Received June 7, 1994.) 
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