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K Y B E R N E T I K A — VOLUME 31 ( 1995) , NUMBER 1, P A G E S 31 -44 

CONFIDENCE BAND FOR REGRESSION LINE 
WITH EXPONENTIAL DISTRIBUTION OF ERRORS 

K A R E L ZVARA 

This paper deals with the maximum likelihood estimation of a regression line parameters 
in the model with an exponential distribution of errors. A testing procedure of simple 
hypothesis is used for standard derivation of a confidence band for this regression line. 
Some quality features are given by means of a simulation experiment. 

1. INTRODUCTION 

In some biological applications statisticians should look for a "boundary line" that 
sepa. ates real from non-real situations. For example Natrova and Natr [2], Walworth 
[5] search for the dependence of maximal possible grain yield on the size of a chosen 
growth factor. A model for this situation can be given by 

Pi = 0o+ P\Xi + Oei, 1 < i < n, (1.1) 

where /?o,/?i a n d 9 are unknown parameters. Random errors e i , . . . , e n are inde­
pendent, identically and continuously distributed with P [ei > 0] = 1. Real points 
(xi, yi) lie only in one of the half-planes determined by a true regression line. When 
they he over this line, we suppose tha t 9 > 0. In the opposite case (9 < 0) we can 
use the transformations 

yt = -yi, Xi = Xi, 1 < i < n, 

A> = -/?o, h = -PiJ=-e, 

which convert this case to the first one. Therefore, we will suppose that 9 > 0. More­
over, we will suppose tha t random variable e\ follows the exponential distribution 
with expectation one. 

The last assumption is 

]T(xi-x)2>0. (1.2) 
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2. MAXIMUM LIKELIHOOD ESTIMATE OF PARAMETERS 

Let us denote 

Mn = | r ° J 6 R2 : fa + &*. < yi, 1 < i < n) . 

The joint density of the random vector y = (y\, • • •, yn)'
 c a n be written in the form 

/(„) = ( «-p(-"(l°g + g ~ V / ? ' * ) ) it(g;)€M„,g>0, 
[ 0 otherwise. 

To find the maximum likelihood estimate of (3Q and /?i we try to solve the linear 
programming problem 

maximize (/?o + Pix) (2-1) 

over /?o, /?i satisfying conditions 

Po+P\Xi<yi, 1 < * " < n . (2.2) 

Let us denote by 6^, 6f any solution of the linear programming problem (2.1),(2.2). 
Moi 

and 

Moreover, let us denote . , 4 , 4 
tA=y-bA- bAx 

£(Po,Pi,9) = \nf(y). 

Logarithm of the likelihood function £((3o, Pi, 9) can be written as 

*(A,A,») = ( -" (-»» + - - - -V= i l - ) for P 6 M-9 > »• 
[ —00 otherwise. 

Theorem 1. The estimates 6^, bA ,tA are maximum likelihood estimates of fio, /?i, #• 

P r o o f . We should prove that for all (/?o,/?i)' € Mn ,# > 0 it is true that 
£(/3o,Pi,9) < £(bA,bA,tA), or equivalent^ 

-\n9-^(y-(3o- fax) <-\ntA-l. 

The last inequality is the same as 

_ h ft-*-*»^ _ ! + * - * • - A - ..p. (2.3) 

Because of (bA,bA)' is a solution of linear programming problem (2.1),(2.2) and 
0 > 0 for all (0o, fay G M„, it is true that 

y - f f o - Z M y-bA -bAx 



Confidence Band for Regression Line with Exponential Distribution of Errors 33 

Therefore, the left side of (2.3) can be estimated from below by the term 

ln [ y~bo ~bfž\ _ 1 y-bA - bAx 

This term is nonnegative for every u = (y — bA—bAx)/9>0 (e.g. (8a.5.9) in [3]). • 

It can be seen that the maximal value of i(0Q,0is 6) on Mn x R is equal to 

£(bA,bA,tA) = -n(\ntA + l). (2.4) 

Now we will study some properties of the maximum likelihood estimate (bA, bA ,tA). 
We cannot use standard asymptotic properties of this estimate, because some of as­
sumptions are not fulfilled. Especially, the set 

{y e Rn : f(y) > 0} 

depends on the unknown parameter (/30, Pi)'. The consistency of (bA, bA) was proved 
in [8] under the mild assumptions on asymptotic properties of {xi}: 

• the existence of a finite limit point of {xi}f_1; 

• XL — liminfxi < limsupar.: = XJJ', 

• at least one of XL, XJJ is finite; 

• the existence of lim xn = XQ and £0 G (XL,XU)-
n—t-oo 

3. THE SIMPLE HYPOTHESIS TESTING 

Let us consider testing of the hypothesis 

Ho:(30=/3°o, ft = # , 

where @$,fti are given real numbers. A critical region of the classical likelihood ratio 
test is given by inequality 

-2(e(i3°,fi,t°)-e(bA,bt,tA))>c, 

Common requirement for the first kind error to be bounded by a predetermined 
significance level a determines value of the constant c. After the substitution by 
(2.4) we will come to an equivalent inequality for the critical region 

tл 

ì ̂ Ч-ž)^- ø-ч 
In order to find the constant cA (therefore the constant c, too), we should be able 

to compute the probability of (3.1) in case when the hypothesis HQ is true. May be, 
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it would be sufficient to bound this probability from above. After the substitution 
for tA, t in (3.1) we can sequentially modify the left side: 

tA _ ў-bA 

' i 

(3.2) 

i° y-P°o- # S 

fl>+0°x + Oe-bA-bfx 

0°Q+0o

1x + 8e-0o

o-0°1x 

E t_ - n(bA - j%)/0 - n((bA - 0°1)/d)x 

Ee^ 
Therefore, the inequality (3.1) is equivalent to 

If the hypothesis Ho is true then original inequalities (2.2) are equivalent to 

0o + 01 Xi < yi =0l+ 0\xi + 9ei, l<i<n, 

which are the same as 

0Q-0S , 0i - 01 . ei 
-~~s + ~~^ Xi<——, 1 < 2 < n. 
^2-ev elsev 2 J e " 

Since the function maximized in (2.1) can be rewritten as 

*+^=(te6+7s5i)sE^ + (^+ )̂. 
the maximization of (2.1) over 0o, 0\ is equivalent to 

• ;™ ^ o - ^ o 0 , 01-01-maximize — = \- — = x 
\V_jev 0_jev 

If we define 
. 0Q-0S , 0i~0i 

e2^eu 0_]ev 

we can rewrite the original linear programming problem to a new problem 

maximize (6Q + 8\x) (3-3) 

for <!>o, Si satisfying the conditions 

60 + 6iXi < =?— = Si, 1 < i < n. (3.4) 

These considerations lead to the next theorem. 
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Theorem 2. The expressions 

, ____$ , _____? 
d°-T^7-dl-JE^ 

are solutions of the linear programming problem (3.3), (3.4) if and only if b$, b^ are 
solutions of the linear programming problem (2.1), (2.2). 

The main advantage of the (3.3), (3.4) over (2.1), (2.2) is independence of its 
solution on the concrete values of /3Q, /?j\ Instead of probability of (3.2) it suffices 
to compute probability of the equivalent random event 

dg + dfx > g. (3.5) 

Let us consider the geometric meaning of the modified problem. The inequality 
(3.4) is fulfilled if and only if any of the points (-?»,£»)j 1 < .! < n, lies above the 
line z = So -f S\x. The maximization of (3.3) means to select the line, which value 
So + 6\x is maximal. It is the same situation as in Introduction, but with random 
variables £\,... ,en instead of y\,..., yn. 

Distribution of the random vector £\,... ,£n-\ is investigated in the Appendix. 
This vector has the Dirichlet distribution D ( l , . . . , l ; l ) with a constant density on 
the simplex {z £ Rn~ : z\ > 0 , . . . , zn-\ > 0, Ylzi !_. 1} • Moreover, the next theo­
rem is proved in A5 of the Appendix. 

Theorem 3. Suppose that for given integer p, [1 < p < n) and for given real 
numbers z\ > 0,.. . ,zp > 0 it is true that 

z° = l-£z°>0. 
i= i 

Then for every zp+\ > 0, . . . ,zn > 0 such that __yi=p+\ z% < z° it is true that 

/ j n 
P [ep+1 > zp+1,... ,en > zn\e\ = z[,... ,£p = z°p] = 1 - — J j 

\ z i=P+i 

We can suppose that 

X\ < X2 < • • • < xp < x < xp + \ < ... < xn. 

Now, we will show that probability of inequality (3.5) can be bounded from above 
by probability of a similar inequality with only two distinct values of X{. 

Let us consider conditional probability 

P K + ^x > g\e\ =z°1,...,sp = z°p] , (3.6) 
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where z°,... ,z° fulfil the conditions of Theorem 3. Considered random event occurs 
if and only if any of the points (xp+1,Ep+\),.. .,(xn,en) does not lie under the line 

e = g + j(x - x) = g' + yx, 

which is the closest to the points (x\,£i),.. .,(xp,ep) from below and which is going 
through the point (x, g). Its slope 7 is a function of g,z°,... ,z°,x,x\,. .. ,xp. Con­
sidering that for some of values g' + jXi,p+ 1 < i < n can be negative, probability 
(3.6) is the same as 

P[ep+i > (g' + jxp+i)+,...,£n > (g1 + jxn)
+\e\ = Z°,...,EP = z°], 

where (x)+ = max(0, x). By the Theorem 3 this probability is equal to 

I n \ n~p~l 

l - ^ E ( 9 ' + ^ ) + 

\ i=P+l J 

Symbol z° has the same meaning as in the Theorem 3. When we apply Jensen 
inequality to the convex function (x)+, we get 

— £ ( < 7 ' + 7 ^ ) + > |</ + 7 — X > . | , (3-7) 
n~pi^+i \ n~Pi^+i ) 

therefore 

+ч П-p-1 

P , , .. 1 Po[d0

Ą + dtx>g\є1 = z0

1,...,єp = z°p} < 1 - 4 / + 7 _ - J^ 
zu \ n — p .*-

\ ť I=P+I (3-8) 
The right side of inequality (3. nends on the values xp+i,... ,xn only through 
their average. But average is ti =e when we replace all of values xp+1,... ,xn 

by their average. In this last ca ) is fulfilled as equality and on the right side 
of (3.8) is the maximally possibl ue of this probability. 

This assertion holds for every nstants z°,...,z° which fulfilled the conditions 
of the Theorem 3, therefore it ho unconditionally. The same consideration we can 
do for the values Xi < x, too. 

The probability of (3.5) is maximal, if it is true that 

X1 — . . . = Xp = XL, Xp+1 - " . . . - - . Xn
 = Xu• 

Let us define 
EL = min d, £u = min £;. 

l<i<p p+l<i<n 

Points (XL, £E)> (̂ Ui eu) lie on the line £ = d0 + dfx. For x = x we get on this line 
the value 

f, x - xL \ , x - xL £9 = 1 £L + eu-
\ XU-XL) XU-XL 
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Because of 

we can write 

p n — p 
x = —XL H xu, 

n n 

p n — p 
£q = — £L -\ CU-

n n 
In our special case (only two distinct values of x,-, see Appendix A6) we get 

P [e3 > 9} = P [T > ng], 

where random variable T has beta distribution with parameters 2,n — 2. It follows 

that 

cA = l - B ( 2 , n - 2 ; l - a ) , 

where B ( / i , / - ; q) is a g-quantile of beta distribution with parameters / i , / 2 - We are 

able to formulate our main assertion: 

T h e o r e m 4. The maximal level of significance of the critical region defined by the 

inequality 

*° >tA(l-B(2,n-2;l-a))~1 

is a. 

The s tandard asymptotic value of the constant c is the quantile x 2 ( 2 , 1 — a). We 
mentioned tha t the s tandard properties of the ML-estimate are not fulfilled in our 
case. Let us compare for a = 0.05 our value of cA with analogous value 

c * * - . — , | - , £ , ( a ' 1 - в ) 

2n 

of the s tandard asymptotic test. 

Table 1. Comparison of critical values cA and c A c I a s 

(3.9) 

n 5 10 20 50 100 
c
Лclass. 0.54928 0.74113 0.86089 0.94184 0.97049 

cA 
0.24860 0.57086 0.77363 0.90681 0.95298 

In Table 1 it can be seen t h a t an erroneous application of c^013-88- in (3.1) gives a 
critical region with a first kind error probability greater than a. For n —» oo both of 
the critical values cA and c ^ 1 3 ^ - tend to 1. Asymptotic behavior of c

A c l a s s - can be 
found from (3.9). Asymptotic behavior of cA follows from the fact that the mean of 
the random variable T with beta distribution with parameters 2, n - 2 tends to 0 
and its variance tends to 0. 
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4. A CONFIDENCE BAND FOR THE REGRESSION LINE 

Inequality (3.1) introduces a confidence set for /?o,/?i- The hypothesis Ho is not 
rejected in case when 

t0 = y-(3°0-P°1x<tA/cA. 

Let us denote 

УA = ӯ-tA/cA 

ӯ - ť л / ( l - B(2, n - 2 ; 1-<*)). 

The set 
K ={(Po,0i)f:l3o + 0ix>yA}nMn (4.1) 

constitutes a (1 — a)-confidence set for (ftof0i)'. 
A classical method of derivation confidence band for regression line from the 

confidence set K consists in maximization and minimization of fto + P\x for given x 
over the (f3o,/3\)' 6 K (e.g. Chapter 11 of [7]). It can be proved [6]) that when with 
probability 1 the set K is convex, closed and bounded, then the confidence band has 
the same confidence coefficient as original confidence set K. Set K is an intersection 
of n + 1 half-planes 

Po + /3\Xi <yi, 1 < i < n, 

Po + Pix>y-tA/cA. 

This fact induces convexity and closeness of A'. Now we prove its boundedness, too. 

The p r o o f will be done by contradiction. Let us suppose that the set K is not 
bounded. It follows from linear programming theory that in this case there exist 

o + ci real numbers bo,b\,co,c\ such that cl + c? > 0 and 

for every A > 0. Especially it means that 

(bQ + b\Xi) + A(c0 + c\Xi) <yi, 1 < i < n, A > 0, 

which is possible only when 

c0 +c\Xi < 0, 1 <i <n. (4.2) 

The last inequality implies that 

co + c i : r < 0 . (4.3) 

On the other hand it must be true that 

(60 + M ) + A(c0 + cix) > yA 
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for every A > 0, which implies 
co + c\x > 0. (4.4) 

Inequalities (4.3) and (4.4) together give C,Q + c\x = 0. The last equation together 
with (4.2) gives 

Co + c\Xi = 0, 1 < i < n. 

With exception x\ = .. . = xn, which was excluded by (1.2), it follows CQ = c\ = 0. 
This is contradiction with CQ + c\ > 0, therefore set K is bounded. 

Now we will derive the confidence band. Let us define two functions 

L(x) = mf ( A ) + / ? ! * ) , 

U(x) = sup (fa+Pix). 

Because of properties of K the confidence band defined by the inequalities 

L(x) < y < U(x), x G R 

has the same confidence coefficient as the set K. 
For a chosen x the lower bound L(x) is given by the solution of linear programming 

problem 
minimize (/?o + (3\x) 

ovej.' the solutions of 

fa + f3\Xi <yi, 1 < i < n, 

Po + P\x>yA. 

From linear programming theory it follows that any solution lies in some of the finite 
number of extreme points of K. It follows that L(x) is piecewise linear function. 

Similarly, the function U(x) is piecewise linear function, which is in a surrounding 
of x equal to the estimated regression function b0 + b\x. 

5. SIMULATION E X P E R I M E N T 

To verify properties of the proposed test and the proposed confidence intervals a 
simulation experiment similar to the experiment in [8] was made. We used the 
regression line with parameters (3Q = 0, [3\ = 1. To compare behavior of the statistics 
in different situations we used eight designs: seven of them was similar to those in 
cited paper, the last one (signed by "II") was given by random selection of n points 
in interval (—2, 2). For simulation of error term we used the exponential distribution 
with expectation 1. Table 2 gives list of these designs. For each design the table 
gives estimated confidence level of confidence set K given by (4.1). The designs are 
sorted by their variances. It can be seen that the estimated confidence levels are very 
close to the nominal levels. The designs with a greater number of distinct points 
(with a greater variability) have its estimated confidence levels a little bit greater 
than their nominal counterparts. 
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Table 2. The estimated confidence levels for n = 20 estimated by 5000 simulations. 

Design 90.0% 95.0% 
A -1.0(10x),1.0(10x) 90.6% 95.1% 
F -1.0(10x),0.5(3x),1.0(4x),1.5(3x) 89.8% 94.6% 
E -1.0(10x),0.5(5x),1.5(5x) 90.0 % 95.2% 
D -1.5(3x) ,-1 .0(4x) ,-0 .5(3x) ,0 .5(3x) ,1 .0(4x) ,1 .5(3x) 90.6 % 95.3% 
C -1.0(10x),0.1,0.3, . . . ,1.9 91.2% 95.5% 
G -1 .5(5x) ,-0 .5(5x) ,0 .5(5x) , l .5 (5x) 91.9% 96.1% 
B -1 .9 ,-1 .7 , . . . , -0 .1 ,0 .1 ,0 .3 , . . . ,1.9 92.3% 96.4% 
R гandomly selected on ( — 2.0,2.0) 91.4% 95.9% 

6. E X A M P L E 

Natrova and Natr [2] among others studied dependency of kernel dry weight on the 

phloem cross-sectional area. They used 51 measurements which are given in the 

Table 3. The best limiting line was found to be given by 

y = 0 .401+ 0.0390x 

with the est imate tA = 0.214 of parameter 9. This line with a 95 % confidence region 

can be seen in Figure 1. A simple graphical test of the exponential distribution of 

errors is done by a probability plot for exponential distribution in Figure 2. It can be 

seen t h a t the assumption of exponential distribution is a quite realistic. All figures 

and computat ions are given by the FamStat programs [1]. 

Table 3. Kernel dry weight and total phloem cross-sectional area of wheat. 

Aгea 26.96 33.87 28.97 31.21 28.45 36.18 32.35 37.26 31.56 
Weight 1.45 1.67 1.45 1.46 1.47 1.41 1.52 1.67 1.58 
Aгea 45.17 28.66 27.20 35.60 36.23 34.31 37.71 38.05 34.11 
Weight 2.10 1.48 1.30 1.54 1.66 1.58 1.77 1.55 1.46 
Aгea 28.99 39.11 31.30 34.15 29.14 41.32 20.34 35.90 37.09 
Weight 1.53 1.80 1.50 1.70 1.45 1.41 1.19 1.19 1.44 
Aгea 26.21 35.33 32.23 34.51 36.40 47.35 36.89 43.55 32.16 
Weight 1.27 1.60 1.56 1.32 1.58 1.73 1.36 1.69 1.32 
Aгea 26.76 39.02 36.51 48.31 35.41 41.95 39.19 35.15 38.98 
Weight 1.41 1.55 1.64 1.71 1.75 1.56 1.86 1.77 1.71 
Aгea 32.33 34.58 28.63 32.93 45.92 25.05 
Weight 1.61 1.57 1.48 1.37 1.46 1.11 

A P P E N D I X . D I R I C H L E T DISTRIBUTION 

A l . Let X\,. .. ,Xn be independent random variables with gamma distribution 

Xi ~ G a m m a ( / ; ) , 1 < i < n. Let us introduce new random variables 

ZІ = 
XІ 

Ľ*i 
1 < ť < n. 
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W i n t e r w h e a t 

J I L 
2 0 ЗО 

А г е а 
4 0 

Fig. 1. Dependence of kernel weight on phloem area. 

Fig . 2. Probability plot of residuals for exponential distribution. 

It can be seen t h a t YA=I Zx\ — 1. By a s tandard calculus (see 7.7.1 of [4]) we get 

t h a t the random vector (Z\}... ,Zn-\)' has the Dirichlet distribution D ( / i , . . . , fn-\,fn) 
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with density function (we denote zn = 1 — Y^!i=i Zi) 

h{zг,...,zn-\)= < 

ЧĽfi) n 
-^— п *І tbc *i > o,...,zn.\ > o, 2 *, < i, 
П г(/,) *=1 

І = I 

0 otherwise. 

Exponential distribution Ex(l) is gamma distribution Gamma(l), therefore the ran­
dom variables £\,.. .,£n-\ defined in (3.4) have the Dirichlet distribution D(l , . . . , 1; 1). 
We can see that in this case the density of the random vector {£\,.. .,en-\)' is equal 
to the constant (n— 1)! on the simplex {z£ Rn _ 1 : z\ >0 , . . . , zn-\ >0,53T-7i xi <. 1}-

A2. Let 1 < p < n. By 7.7.2 of [4] the marginal distribution of the random 
variables Z\,... ,Zp is the Dirichlet distribution D ( / i , . . . , fp\ fp+\ + . . . + f n ) . 

A3. Let us have real numbers zf > 0 , . . . , z% > 0, let z° = 1 - Yfi=i zi > 0. From 
Al and A2 it follows that the conditional density of 

Zp+\,...,Zn-\\Z\ = Z\,... ,Zp = zp 

for zp+1 >0,...,zn-\>0,zn = z°- Y^=p+i zi > 0 is given by 

r( t /«)) f; /t-i 
h{zp+\,...,zn-\\z\=z°\,...,zp=z°p)=^^—4?r}..zt-i(*0ym>+i , 

n nfi) 
«=P+I 

otherwise the conditional density is equal to zero. It follows that the conditional 
distribution 

Zp+i/z , • • •, Zn-\/z \Z\ = Z\,.. .,Zp = zp 

is the Dirichlet distribution D{fp+\,..., fn-\\ / . .)• 

A4. Suppose that / , = 1, 1 < i < n. Let us have real numbers z\ > 0 , . . . , zn > 0, 
so that ^Zr=i zi < 1- To compute the probability P[£\ > z\,... ,£n > zn] we have to 
integrate the constant density of D ( l , . . . , 1; 1) distribution over the simplex 

<t\> Z\,...,tn-\ > zn-\,^2u < 1 - zn > . 

The volume of this {n — l)-dimensional simplex is equal to 

(^M1-!* 
n - l 
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therefore 

[ei>z1,...,en>zn]= Í 1 - ] V zA 
V «=i / 

n - l 

A5. If follows from A3 that the conditional distribution of (l/z°)-multiple of the 
random variables £p+\,... ,£n-i can be identify with the D ( l , . . . , 1; 1) distribution. 
Therefore, 

P[ep+i>zp+1,...,£n>zn\e1 = z°l,...,ep = z°]=ll- £ ( J ) )' 
\ «=p+i z J 

A6. Let us have an integer p (2 < p < n — 1), let n > 3. Let us denote 

£_, = min Si, £u = min £,-. 
i<»"<P p + i < i < « 

To find the density of the random vector (£_,,£[/) we will compute for zj_ > 0, zu > 0, 
pzL + (n — p)zu < 1 probability 

P [ZL > zL,eu > zu] = P [ei > zL,.-.,ep > zL,£P+i > zu,...,en > zv] 

= (1 ~ PZL ~ (n - p)zu)
n~1, 

where we used A4. The joint density of (eL,£u) is given for p£L + (n — p)zu < 1, 
ZL > 0, zu > 0 by 

d2 

h,u(zL,zu) = -r- ^ P [£L < zL,£u __ -gU] 

a2 

= ^—^—P [CL> zL,£u > zv] 
dzLozu 

= (n - l)(n - 2)p(n - p) (1 - pzL - (n - p)zu)n~3 . 

Otherwise fL,u(zL,zv) = 0. 
Let us define a new random vector (T, S) by 

T = p£L + (n- p)£V, 

S = -(n-p)£L+p£u-

Standard calculus gives the joint density of (T, S) 

*«(«•-> = / + " ~- \?(""1)(""2)(1 ~ < r " 3 

for — n~zE-t < s < £̂— t, 0 < t < 1, otherwise the density is equal to zero. By 
integration we get the marginal density of the random variable T for 0 < t < 1 as 

1 *(i - <)""3, B ( 2 , n - 2 ) 
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/ T ( f ) = 0 otherwise. Therefore, the variable T has B distribution with 2 and n — 2 

degrees of freedom. 
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