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K Y B E R N E T I K A — V O L U M E 3 0 ( 1 9 9 4 ) , N U M B E R 3 , P A G E S 3 0 7 - 3 1 8 

A G E N E R A L BOUNDED CONTINUOUS M O M E N T 
P R O B L E M AND ITS SETS OF UNIQUENESS 

JOSEF STEFAN 

Consider a compact metrizable space A' and a countable set B C G(X). Write P = 
Q[modf?] for a pair of Borel probability measures P and Q defined on X if P(f) = Q(f) 
for each f £ B. A moment (countable bounded continuous) problem promoted as the 
decomposition of P(X) (the set of all Radon probability measures on X) by the above 
equivalence will be treated here. A representation of such a decomposition by a compact 
convex set is to be constructed with the aim to establish a mathematical setting which 
would be operational when trying to identify a pair of moment problems, to construct 
"a big moment problem" as an inverse limit of "small moment problems" and finally to 
characterize its compact sets of uniqueness. 

Some of the ideas employed here come back to [5,1, 2]. 

The results we present here are available also for the "bounded countable" moment 
problems defined in a similar way by a countable set B of Borel measurable functions 
defined on a Souslin space X. These results will be published elsewhere as the proofs 
require a space consuming effort. 

1. CONVEX C O M P A C T REPRESENTATIONS 

Having X a topological space we shall denote by P(X) and C(X) the set of all 
Radon probability measures and the set of all continuous real functions defined on 
X, respectively. A triple (X,T,E) will be called a generator of a. moment problem 
if 

X is a nonempty compact metrizable topological space, 

E is a complete locally convex space 

and 
T : X —• E is a continuous map. (2) 

Denote by (bT) : P(X) -> E the map which assignes to each P £ P(X) the 
barycentrum b(TP) £ E of the image measure TP £ P(TX). Moreover let 

S(X, T, E) =- (bT)(P(X)) = {s£E:s = (bT) (P) for some P £ P(X)} 
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for a generator (X, T, E). 
Having X a compact metrizable space, a decomposition M of P(X) will be called 

a (bounded continuous) moment problem if 

M = {(bT)~l(s), seS(X,T,E)} 

for some generator (X,T, E). In such a case we shall write M = M(X,T, E) and 
call the set S(X, T, E) a compact convex representation of the moment problem M. 
Finally, we denote by M the class of all bounded continuous moment problems and 
by M(X) the moment problems in M that are supported by a compact metrizable 
set X. (We will present an identification of moment problems in M with those 
defined in our abstract at the end of this Section. All concepts are illustrated in 
Section 3 of the present paper). 

Recall that a point bP £ E is called the barycenter of a measure P £ P(E) if 

E' C Lx(P) and x'(bP) = í x'áP 
JE 

for all x' G E', where E' denotes the topological dual to E. Now, the correctness 
of our definition of the map (bT) : P(X) —*• E will follow easily by the following 
arguments: 

TX is a compact metrizable subset of E. (3) 

(Proposition 7.6.3, p. 126 in [3].) 

T : P(X) —* P(TX) is a continuous surjection w.r.t. 
. (4) 

the corresponding weak topologies in P(X) and P(TX), respectively 

(Theorem 12, p. 39 in [4]), if we agree to keep further on the symbol T to denote also 
the image measure map P —*• TP from P(X) into the set of all Borel probability 
measures defined on X. 

b : P(TX) —• E is a correctly defined continuous affine map (5) 

(Proposition 1.1.3, p. 16 in [7]), thus 

(bT) = b o T is a continuous affine surjection of P(X) 

onto S(X, T, E) for each generator (X, T, E). 

Theorem 1. Let M(X,T,E) 6 M. Then S = S(X,T,E) is a compact convex 
metrizable set in E such that S s co(Tx) and exS C TX. 

P r o o f . The set S is a continuous affine image of the compact metrizable convex 
set P(X) by (6), hence a compact convex metrizable set by Proposition 7.6.3, p. 126 
in [3]. A standard argument using the theorem on the separation of a pair of compact 
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convex sets by a hyperplane shows that S C co(TX). The rest of Theorem 1 follows 
easily by Krein-Milman theorem. D 

Compact convex representations of moment problems in M(X) (X a fixed space) 
may serve when trying to establish relations as 

M\ = M2 or M\ > M2, i.e. M\ is a finer decomposition than M2, M\, M2 ~ M(X). 

Theorem 2. Let M\ = M(X,T\,E\) and M2 = M(X,T2, E2) are moment prob­
lems in M(X). Then the following statements are equivalent: 

(a) M\ >M2. 

(b) There exists a continuous affine surjection a : S(X,T\,E\) —• .S(x,T2, 7~2) 
such that a o (bT\) = (6T2) on P(X). 

(c) There exists a continuous map a : S(X,T\,E\) —> S(X,T2,E2) such that 
a o T\ = T2 on X and 

6(aP) = a(bP) holds for each measure P 6 P(T\X). (7) 

Remark that the requirement a o Ti = T2 in (c) is exactly as to say that the 
decomposition of X into the stalks {T - 1(s) , s £ E\} is finer than the decomposition 
{T2

_1(s),.s £ £/2}. The condition (7) is a legitimate one by Corrolary 1.2.3 in [7], 
p. 23, which implies that both barycentra exist and are contained in S2(X,T2,E2) 
and S(X,T\, E\), respectively. 

P r o o f . Denote S{ = S(X, Ti,E{) for i = 1, 2. 

(a) => (b): As M\ > M2, there exists a uniquelly determined map a : ;5'i —• S2 

such that a o (bT\) = (bT2) holds on P(X). The map is obviously both surjective 
and affine because the maps (6T,-) enjoy the properties according to (6). Further, 
(6T1) is a quotient map as a continuous surjection of the compact set P(X) onto the 
compact set ,S'i by (6) and 7.5.1 in [3], p. 122. Thus a is continuous by the definition 
of the quotient map, again by (6) applied to the map (bT2). 

(b) =>(c): Consider a map a : S\ —> ,S'2 satisfying (b). As (bTi)(ex) = T(x) holds 
for each x £ X (where ex denotes the point measure supported by x) the equation 
rioTi = T2 follows easily. To verify (7) for a P £ P(T\X) we have to establish that 

/ . 
(x' o a)(s)P(âs) = (x' o a) (ЬP) 

holds for all x' ~ E[. But, this follows immediately by Proposition 23.1.6 in [3], 
p. 402, as 3? © a is a continuous affine real function defined on the compact convex 
set S\. 
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(c) =>(a): Consider a map a ; S\ —+ S2 satisfying the requirements of (c). Take 
P,Q E P{X) such that (6T0(P) = {bT\){Q). As the image measures T\P and TjQ 
are in F(T]X) it follows from (7) that 

(6T2) (P) = 6((« o T\){P)) = a{b{T\P)) = a{b{T\Q)) = b{{a o T\){Q)) = (6T2) (Q). 

Hence M\ > M2 and the proof is completed. • 

Corollary 1. Generators {X,T\,E\) and {X,T2,E2) provide the same moment 
problem M = M{X,T\,E\) = M{X,T2, E2) in M{X) if and only if 

(a) {Tf l{s),s € E\) = {T2~\s), s € E2} {T\ and T2 define the same decompo­
sition of X) and 

(b) the map a : T\ X —• T2X uniquelly defined by a o T\ = T2 can be extended to 
a continuous affine bijection between S{X,T\, E\) and S{X,T2, E2). 

Thus all compact convex representations of a given moment problem are isomor­
phic in the category of compact convex metrizable sets. 

A compact set D C X will be called a set of uniqueness for a moment problem 
M 6 M{X) if each member of the decomposition M contains at most one measure 
P G P{X) supported by the set D (i.e. P G P{D)). 

Choquet theory provides a completely algebraic characterization of sets of unique­
ness. Recall that a compact metrizable convex set S in a locally convex space E is 
called a simplex, or Choquet simplex, if the cone C = R+{S x {1}) C E x R is a 
lattice w.r.t. the ordering >- defined on C by 

?i >Z c2 iff c\ - c2 G C, 

(see [7], p. 47 or [3], p. 417). 

Theorem 3. Consider M = M{X,T,E) <E M{X) and D C X a compact set. 
Then D is a set of uniqueness for the moment problem M if and only if 

(a) The map T restricted to D is an injection X into E 

and 

(b) S{D) = S{D, T\D, E) = co{TD) is a simplex with exS{D) = TD. 

P r o o f . Note that 

D is a set of uniqueness, iff (6T) : P{D) —> S{D) is a bijective map (8) 

and since S{D) is a compact convex metrizable set by Theorem 1, we get using 
Choquet uniqueness theorem (23.6.5 in [3], p. 420) that 

6 : P{exS{D)) -> S{D) is a bijection iff S{D) is a simplex. (9) 
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Since (bT) | P(D) = bo(T\ D) we verify that (a), (b) imply D to be a set of uniqueness 
simply using (8), (9). On the other hand, if D is such a set we get the validity of (a) as 
a consequence of (8) [(bT)(ex) = T(x), x 6 D\. Using (8) once more we can see that 
(bT) : P(D) -> S(D) is an afinne bijection, hence exS(D) = (bT)(P(D)) = TD. 
Now, a simple combination of (8), (a) and (9) may be used to prove the rest of (b). 

D 

Corollary 2 . Let M be a moment problem generated by (X, T, E) where the 
locally convex space E has a finite dimension n. Then D C X is a set of uniqueness 
for M iff T restricted to D is an injection and TD is a set of affinelly independent 
points in E. Hence if D is a set of uniqueness then card/3 < n + 1. 

To derive our Corollary from Theorem 3 note that the algebraic definition of a 
Choquet simplex we have referred before to generalizes that of a finite dimensional 
simplex (the convex hull of a set of affinely independent points in E, (see [7], p. 52-
3)). 

An obvious way how to construct a moment problem in M(X) is suggested by 
our abstract: 

Consider a subset B C C(X) (not necessarily countable) and define a generator 

(X,TB,RB) by TB(x) = (g(x),g G B) for x € X, (10) 

where E = RB is topologized by its (locally convex) product topology. It is easy to 
see that 

M(X,TB, RB) is a moment problem in JM(X) for each B C C(X). (11) 

It follows from the definition of the barycenter observing that the topological dual 
of RB is linearly generated by the projections of RB onto R that 

the decomposition M(X,TB, RB) is defined by the equivalence relation 
(12) 

P = C}[modB] (iff P(g) = Q(g) for each g e B, P,Q £ P(X)). 

On the other hand we have 

Theorem 4 . For any M 6 M(X) there is a countable B C C(X) such that 
M = M(X,TB,RB). 

Hence, our proclamation made in abstract that we will treat countable bounded 
continuous moment problems is thus justified. 

P r o o f . Choose an arbitrary generator of M, say M = M(X, T, E). As S(X, T, E) 
is a compact metrizable convex set (by Theorem 1) it follows from Propositions 3 
and 4 in [4], p. 104-5, that there is a sequence {x(} C E' which separates points in 
S(X,T,E). Hence P = Q[modH] iff TP(x'{) = TQ(.r|), i G N, iff x\(b(TP)) = 
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*i(b(TQ)), i G IV, iff (bT)(P) = (bT)(Q) holds for all P, Q G P(X), where 
H = {x'i(T),i E N) C C(X). Thus M = M(X,TB,RB) by (12) and the proof 
is finished. --

In this setting, Theorem 3 may be complemented as follows: 

Corollary 3. Let B C C(X) and D C x is a compact set. Then 
(a) D is a set of uniqueness for M(X, TB, RB), 

(b) C(D) = {a[(<7,</ G #)],a : co(TBD) —> H a continuous affine real function}, 

(c) £((fl | D) U {1}) is a dense set in C(D), • 

are equivalent statements. (C denotes the linear hull operator). 

P r o o f . (The equivalence of (a) and (b) was proved in [5].) 
Put T\ = T^D\ T2 = Tc(°\ E\ = RW°\ E2 = RpV>\ denote S = co(TBD) 

and observe that S = S(D,T\,E\) by Theorem 1. Now, if D is a set of unique­
ness for M(X,TB,RB) then both M(D,T\,E\) and M(D,T2, E2) are identical de­
compositions of P(D) (into the singletons). Hence, by Theorem 2 (b), there exists 
an affine continuous map A : S —• E2 that maps T\(D) = {(<t(.c),# G H), a? G D) 
onto T2(D) = {(/(*), / G C(D)), x G D). Thus, given an / G C(D), a = pry o ,4 is 
the real continuous affine function defined on S such that a[(g,g G B)] = / . Hence 
(a) =*> (b). 

The implication (b) => (c) follows easily as C(E[ U {1}) is a uniformly dense set 
in the set of all affine continuous functions defined on S (Proposition 23.1.6 in [3], 
p. 402), and E[ = C(\>rg,g G B). The implication (c) => (a) is obvious. D 

2. INVERSE LIMITS OF MOMENT PROBLEMS 

Let us consider the class JM of moment problems defined by (1) and (2) as a category 
where q is a morphism from M\ G JM(X\) to M2 G JM(X2) iff 

q : X\ —• X2 is a continuous surjection and q~x M2 < M\. 

(the symbol q denotes both the map from X\ onto X2 and the image measure map 
P —• qP from P(X\) onto P ( x 2 ) , thus q~lM2 is a decomposition of P(X\)). 

We write q : M\ —> M2 if ^ is a morphism from Mi to M2 and observe that 
gi : M\ —• M2, q2 : M2 —> M3 => q2 o q\ : M\ —* M3, hence the usual composition 
of maps defines the composition law for the category JM, (see [3], p. 160). It is easy 
to see that 

a continuous surjection q : X\ —> X2 is a morphism 

from M\ = M(X\,T\, E\) to M2 = M(X2,T2, E2) 

if!M(X\,T\,E\)>M(X\,T2oq,E2), 

i.e. iff (bT\) (P) = (bT\) (Q) =* (bT2)(qP) = (6T2)(9Q) for P,Qe P(X\). 
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Also observe that 

a map q : X\ —• X2 is an isomorphism of Mi G M(X\) and 

M2 G M(A'2) iff q is a homeomorphic bijection such that qM\ = M2, 

the last identity being equivalent to M ( x i , T\, E\) = M ( x i ,T2oq, E2) 

if (Xi, Ti, Ei) is a generator of Mi for i — 1,2. 

(14) 

Recall that [Mi,i G /, qij,i > j,i,j G /] is called an inverse system in M if 
(Mi)i£/ C M is a net and g,j : Mi —* Mj, i > j , i,j G / are morphisms such that 

Qik = qjk o qij if i > j > k, i, j , k € I. (15) 

Also recall that [Moo,Pi, - € /] is an inverse limit of an inverse system [Mi, qij] 
if 

Mog G M (i. e. M G M(X) for some nonempty compact metrizable X), (16) 

Pi are morphisms consistent with the family (qij), (17) 

i.e. pi = qij o pt- holds for i > j and 

M0 G M, u,- : Mo —> M,, u,- consistent with (qij) =̂> (18) 

=> there exists a unique morphism u : M$ —* MM 

such that p,- o « = t/, for i > j . 

It is a well known fact (Theorem 11.6.2 in [3], p. 204) that if an inverse limit 
exists, it is unique up to a unique commuting isomorphism (see (14)). We write 
[Moo,p.] G \im^[Mi,qij] if (16),(17),(18) hold. 

Theorem 4 yields a very helpful functor from the category M to the category C 
of compact metrizable convex sets with continuous affine maps as morphisms having 
made before a particular choice of generators (X,T, E) for each M G M: If this is 
the case then the functor 

maps M(X,T,E) G M to S(X,T,E) G C (we write M(X,T,E) ~> S(X,T,E)) 
and 

maps q : M(X\,T\,E\) - M(X2,T2,E2) to a : S(X\,T\,E\) - S(X2,T2,E2) 
(we write q —*• a), where the map a is uniquelly determined by 

ao (6T , ) (P ) = (6(T2og))(P)> PeP(X). (19) 

This perhaps needs some explanation: because M ( x i , T \ , E\) > M(X2,T2oq, E2) 
and S(X\ ,T2 o q, E2) = S(X2,T2, E2) (q is a surjection X\ onto X2\) we may use 
the equivalent definition (b) in Theorem 2 to construct a map a satisfying (19). The 
uniqueness is due to the fact that both (bT\) and (b(T2 o q)) are surjections. It is 
easy to see that 

qi —> « i , 92 —*• a2 => q2 o qx —> a\ o a2 
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if the morphism q\ o q2 is defined. Thus each inverse system [M(Xi,Ti, Ei),qij] in 
M promotes an inverse system [S(Xi,Ti, Ei),ctij] in C such that the morphisms are 
in correspondence gy —> atJ- established by (19). 

An obvious candidate for an inverse limit to an inverse system [ M ( x t , T t, Ei), qy] 
is [M(xoo,Too, Eoo),Pi], where E^ = f] Ei (the product topology), p t : JJXj -> xt 

is the ith coordinate projection, 

xoo = {(xi)i€l E Y\Xi : qij(xi) = x,j, i > j} 

(the set of all ( ^ - t h r eads ) and Too : *oo -* #oo (20) 

is the map defined by Too [(£»)»•€/] = (Ti(xi))ieI for (a:,)/ G -Poo-

Observe that [Xoo,Pi] is the topological inverse limit of the inverse system [A't, qy] 
in the category of compact sets, hence xoo is a nonempty compact set and each 
Pi '• V̂oo —+ Xi is a surjection by Proposition 11.8.5 in [3], p. 212. Assuming moreover 
that the net I is countably generated (i.e. there is a countable cofinal subset J C I) 
we get xoo to be a meirizable compact set as a continuous image of X'^ = {(XJ)J € 
\[j Xj : (Hk(xi) — Xk,i > k, i,k 6 J}, which is a compact subset in RN. To see 
that [M(Xoo, Too, Eoo),Pi] is a legitimate candidate for an inverse limit it remains 
to show that M[xoo,T t op t , Ei) •< M(X00,T00, E^) for each i G I. But it presents 
no problem as it is easy to verify directly from the definition of barycenter in Eoo 
that 

*i[(bT(Xi)(P)] = (b(TiOPl))(P) (21) 

holds for each i £ I, P € P(X„o) and 7Tt : Eoo —* Ei is the ith coordinate projection. 

Theorem 5. Let [M(Xi,Ti, Ei), gtJ] be an inverse system in M such that the net 
I is countably generated. Then (Xoo,Too, Eoo) defined by (20) generates a moment 
problem in M such that 

(a) [M(Xoo,T00,Eoo),Pi]e\im^[M(Xi,Ti,Ei),qij] 

and 

(b) if [M(X,T,E),qi] € \im^[M(Xi,Ti,Ei),qij], 
then [S(X,T,E),cn] t= lim^[S(xt)7;-, £ t), a tJ], 

where gtJ- —> a tJ, gt —> at in the sense of (19). 

P r o o f . First, we shall prove that 

S(Xoo,Too, Eoo) - {(*»)»€/ G Y[Si : ciij(si) = 8j, i > jj 

which implies that 

[S(Xoo, ^ , £;«,), #i] E lim.^[S(X{, Ti, E{), « t j], 
(22) 

where 7rt : JT Sj —> Si is the ith coordinate projection. 
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If s = (si) G S(Xoo,Too, #oo) then s = (bToo) (P) for some P in F ( x T O ) . Because 
7rt o Too = Ti o pi it follows by (21) that st = (6Tt) (PiP) for i £ / . Hence, 

aij(si) = (b(Tjoqij))(piP) = (bTj)(PjP) = Sj 

for i > j according to (19). If s = («,) is a thread in JjSi, i.e. atJ-(.st) = Sj 
for i > j , we have to exhibit a measure P in F(xoo) such that s = (bToo)(P) to 
show that 8 G .S'(xoo,Too, E^o): Denote by Lt : F(xoo) —* 8* the map defined by 
Li(P) = (6(Tt op t ) ) (P ) for P G F(xoo) and put /A't = L7 l(si) . Considering that 
L t 's are continuous surjections defined on the compact set F(xoo) it follows easily 
from the fact that s = (£«){£/ is a thread that {A't} is a centered system of nonempty 
compact sets. Choosing a P in nA't we get a measure with (6T00) (P) = s and (22) 
is proved. 

To prove (a) we must only verify (18) with Moo = M(x 0 0 ,T 0 0 , £00) and M0 = 
M(No, T0, E0). As [xpo, Pi] is an inverse limit of [X,-, qtj] in the category of compact 
metrizable sets there is a unique continuous map u : X0 —> xco such that p t ou = u,\ 
The map u is a surjection because the morphisms'w;, qtj are surjective and XQ is a 
compact set. Thus, it remains to verify that M(X0,T0,E0) > M(Ar

0,Too ou,Eoo) 
to show that u : M0 —• M w is a unique morphism satisfying p,- o u = wt for i G 7 
and thus to complete the proof of the implication (18): 

Letting </tj —• atJ- and wt —> at in the correspondence (19) we get an inverse 
system [,S'(A't, Ti, E1.), a tJ] in the category C and morphisms at : .S'(x0, T0, E;0) —• 
S'(xoo,Too, L'oo) that are consistent with the family (a,j), such that (see (19)) 

ai[(bT0) (P)] = (b(Ti o Ui)) (P) for each i <E / and P G F ( X 0 ) . (23) 

On the other hand it follows from (22) that there exists a unique continuous affine 
map a : S(X0,T0, E0) —* S(Xoo,Too, L'oo) such that 7rt o a = at for t G /• It follows 
from (23) that a[(bT0) (P)] = (b^ou)) (P) for P G P(X0). As S(X00,T00, Eoo) = 
S(X0, Too°w, £"00) and a is also a surjection we get M(X0,T0,E0) > M(X0,Too°u, E^) 
by Theorem 2 (b). 

Finally, the assertion (b) easily follows from (a) and (22) as inverse limits both 
in JM and C are determined uniquelly up to a commuting isomorphisms. • 

The following statement is an obvious consequence of Theorem 5(a): 

Corollary 4. Let X be a compact metrizable space and B = UHt for some count-
ably generated nondecreasing net P, C C(X). Then 

M(X,TB,EB)e\im^M(X,TB',EB>) 

where all missing morphisms are equal to the identity map on X. 

The following very simple statement suggests a possibility how to use Theorem 5 
for "a limit construction" of sets of uniqueness. 
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Remark . Consider a countably generated net I and suppose that 

(a) [M(X,T,E),qi] € lML*[M(Xi,Ti,Et)titj]. 
(b) Ki C Xi are sets of uniqueness for M(Xi, Ti, £",). 
(c) [Ki,qij] is an inverse system in the category of compact metrizable sets. 

Then K = n ^ f 1 Ki is a set of uniqueness for M(X,T, E). 
Remark that [K, qi] £ iim+l[Ki, </t-j]. The statement follows directly from the fact 

that each measure P £ P(K) is determined by its projections (qiP) E P(Xi). 

3. MARGINAL AND TRANSSHIPMENT PROBLEM 

Having X = Y2, assuming Y to be a compact metrizable space recall that M £ 
M(X) is called a marginal problem if a pair of equivalent measures P,Q is defined 
by P\ = Q\, P2 = Q2 where P[s(Q\s) are the marginals to P (Q). Also recall that 
M £ M(X) is called a transshipment problem, see [1], if P\ — P2 = Q\ — Q2 defines 
the classes of equivalence in M. 

Assume first that V = {1, 2 , . . . , n) is a finite set and observe that 

M = M(X,T,R2n), wheTeT(i,j) = (6i\,...,6in,6j\,...6jn) 

6tk = /[*=*], because (bT)(P) = (P\(l),..., P\(7i), P2(\),..., P2(n)) completely 
defines the marginals Pi and P2 of each measure P in P(X). As T is an injection it 
follows from Corollary 2 that D C X is a set of uniqueness for the marginal problem 
M iff TD is a set of affinely independent points in R2n (i.e. card(D) < 2n -f 1). 
Similarily jV = M(X, U, Rn), where the map U is defined by U(i, j) = (6\i~6\j, 62i — 
62j,...,6ni-6nj), because (bU)(P) = (P\(\) - P2(i), P\(2) - P2(2),..., P\(n)-
EMn)) f° r ea ,di P 6 P(X). Hence D C X must avoid the diagonal in X to have 
a chance to be a set of uniqueness for Af (Corollary 2) and in this case D is a set 
of uniqueness if and only if U(D) is a set of affinely independent points in Rn (i.e. 
card(D) < n + 1). 

Consider now both problems in a continuous version with Y = [0,1]. Then 

M = M(X,T,E), where E = (C[0, l])2 and T : (x, y) — (eix, esy) 

and 

jV = M(X, U, E), where E = C[0,1] and U : (x, y) -> etar - eiy. 

Both T and U are continuous when the space C[0,1] is considered with topology 
of uniform convergence and generate properly M and jV, respectively, as each finite 
measure on [0,1] is uniquelly determined by its Laplace transform restricted to the 
interval [0,1] and 

(bT)(P)(t,s)= Qf ^ ( d x ) , J esyP2(dy)y 

(bU)(P)(t)= f eix(P\ - P2)(dx) 
Jo 
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hold for t,se [0,1] and P <E P(X). Thus, for a compact D C X we have 

S(D,U,C2[0,l]) = { ( L ( P 1 ) , L ( P 2 ) ) , P t € F [ 0 A ] 

such that Pt's are marginals of some P £ P(D)} and 

S(D, U, C[0,1]) = {L(Pl - P2), Pi € P[0,1] 

such that Pt-'s are the marginals of some P £ P(D)}, 

where L(P)(t) = / J e
txP(dt), t 6 [0, 1]. 

Hence, Corrolary 2 could be used to get necessary and sufficient conditions for D 
to be a set of marginal uniqueness either for M and J\f. (See also [1] and [6] for a 
more detailed study of these sets.) 

Obviously, M < M holds and therefore Theorem 2 ensures the existence of affine 
continuous surjection a : S(X, T, C2) -+ S(X, U, C) such that a o (bT) = (bU). The 
map is defined explicitly by 

a(f, g) (t) = f(t) - g(t) for t <= [0, 1] and (/, g) G S(X, T, C2) 

Finally, putting 

\Jk=0 fc=0 / 

for (x,y) G X and (t,s) € X, we get a continuous map Tn : X —> G2[0, 1] and 
hence a finite dimensional moment problem M(X,Tn,C

2), (P,Q € ~P(x) belong to 
the same class of equivalence iff Pi(xk) = Qi(xk) for 1 < k < n and t = 1,2). If 
qij : X -^ X are homeomorphisms such that M(X,Tj o^tJ-, C

2) < M(X,Ti,C2) hold 
for i > j and the condition (15) is satisfied, then [M(X, Ti, C2), qij] is an inverse 
system in M(X). It follows directly from Theorem 5 (a) that there are uniquelly 
determined homeomorphisms g< : X —• X consistent with the family (qij) such that 

[M(X,T, C2),Qi] e hm^[M(Xi,Ti,C2), qij] 

Thus, the marginal problem is an inverse limit of an inverse system of standard 

finite moment problems. 

(Received March 3, 1994.) 
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