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LOCALLY HARMONIZABLE COVARIANCE: 
SPECTRAL ANALYSIS 

DOMINIQUE DEHAY AND ABDELAZIZ LOUGHANI 

In this paper we introduce the notion of locally harmonizable covariance. The motiva­
tion is to define a large class of nonstationary processes containing locally stationary and 
harmonizable cases, for which the covariance admits spectral components. 

1. INTRODUCTION 

The notion of a locally stationary covariance function is due to Silverman [11]. A 
covariance K defined on M. is called locally stationary if there are a positive function 
A'l and a continuous stationary covariance K2 such that, 

K(t,s) = Kl{i±^K2(t-s). (1) 

In this work, the stationarity of the covariance K2, is replaced by a less restricting 
notion: the harmonizability in the sense of Loeve [4] (strong harmonizability accord­
ing to Rao [9]). Then we present the spectral analysis of such covariances which are 
not necessarily bounded. 

Remind that a covariance K defined on M.2 is harmonizable when there exists a 
complex valued measure M on K2 such that for ali i , s in K, 

K(t,s) = II é^~s^M(dx,dy). 

A zero mean second order process X = {X(t), t G M} is harmonizable if and only 
if its covariance K(t,s) = co\(X(t),X(s)) is harmonizable. Then there exists a 
stochastic measure /i in M. such that 

X(t) = I>*/.(<**)• 

A continuous stationary covariance is harmonizable. 
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2. NOTION OF LOCALLY HARMONIZABLE COVARIANCE 

Definition 1. A nonzero covariance K is called locally harmonizable when there 
exist a positive function K\ and a harmonizable covariance A'2 such that for allf, s 

K(t,s) = ^ ( ^ T 1 ) *-(*•«)• (2) 

A second order process is called locally harmonizable when its covariance is locally 
harmonizable. 

For a locally stationary process, decomposition (1) is known to be unique up to a 
constant factor, the problem of the uniqueness of decomposition (2) of the covariance 
of a locally harmonizable process is still open to debate. 

Every locally stationary covariance as well as every harmonizable covariance is 
locally harmonizable. We know that the product of two covariances is a covariance 
and here we can state the following result. 

Theorem 1. The product of two locally harmonizable covariances is locally har­
monizable. 

P r o o f . Indeed, this result is a direct consequence of the fact that the product 
of two harmonizable covariances is a harmonizable covariance: if 

K(t,s) = II ei(-tx-sy)M(dx,dy) and 

K'(t,s) = If e*tx-5y)M'(dx,dy), 

according to Fubini theorem, we deduce that 

K(t,s)K'(t,s) = ft ^tx-'y)G(dx,dy), 

where G is the measure defined on E2 by 

G(A,B) = If M(A-x,B~y)M'(dx,dy). • D 

Consequently the product of two locally harmonizable processes which are stoch­
astically independent, is locally harmonizable. 

In the following, we produce examples of non locally stationary but locally har­
monizable processes obtained by linear transformations of locally stationary pro­
cesses. 
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Examples . 1. Let Z be a nonzero, locally stationary process such that 

I {E{[Z{x)f))^dx < oo. 
Jm 

Then the harmonizable process X defined by 

X{t) = J eitx Z{x)dx, 
jm 

is locally stationary. Furthermore, the process Y\ defined by Y\{t) = h * X{t), with 
h{x) = l[_ii](ar), is harmonizable: 

Yi(i) = I X{t-s)ds= I eitxQ{x)Z{x)dx, 

where Q{x) = 2sin_/x. As, there are no functions / , g such that, 

Q{t + 5) <-(--§•)) = /(*)_-(«). 

Theorem 1 in [8] implies that Yi is not locally stationary. 

2. If y2(.) = eatX{t) with a e K - { 0 } , then the process Y2 is locally harmonizable 
but not harmonizable, as it is not bounded in quadratic mean. If in addition, we 
assume that 

j i 
|~ |(£([z(_)]2))1 / 2d_ < 00, 

then the process y2 , derivative in the mean-square sense of Y2, 

y2'(.) = eat f eitxQ{x)Z{x)dx, 

j _ 
with Q{x) = a + ix, is not locally stationary but locally harmonizable. 

From the previous discussions we deduce the following inclusions of classes, the 
inclusions being strict. 

{ Harmonizable} 
{Stationary } C 7̂  C { Locally harmonizable } 

{ Locally stationary } 

3. ASYMPTOTIC SPECTRAL STUDY 

Every harmonizable process admits an associated spectrum (see [10]). Michalek [7] 
proved that a locally stationary function K admits an associated spectrum if and 
only if limj_oo j fQ Ki{s)ds exists and is finite. More generally in the case of a 
locally harmonizable process, we have the following asymptotic spectral result. 
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T h e o r e m 1. Let K(t,s) = Kx (*fc») K ,. , , „ . . . 
. ,. , „ . . n . 1 i i « ' 2V'i s) be a locally harmomzable covanance 

such that K\ is locally integrable and that 

lim - / Kl{ 
ť - ~ t jo («)e-""d« = jr(ti) (3) 

exists and is finite for every u in E. Then 

1 /< 
.!™ 77Q

 A ' ( s + M e ~ i s u d s = 6(u,A) (4) 

exists and is finite for every u and ft in E. Morever 

b(u,h) = I] ^-hi5J:;^g(x-y-u)M(dx,dy), (5) 

where M is the measure in E 2 associated with the harmonizable covariance A'2. 
P r o o f . First we note that the function g defined by (3) is 5(l.)-measurable 

and bounded. Indeed g, limit of a sequence of Z?(R)-measurable functions, is 
measurable, and since for every t > 0, 

\l í Ki(s)e-Uuds\ < ł ľ Ki(s)ds, 
| t Jo t Jo 

it satisfies \g(u)\ < g(0), for u G 1 . 
Let h be fixed in E. From Fubini theorem we obtain that, for t > 0, 

i / /C(s + / i , s )e- i s u ds 
' jo 

After the change of the variable S = s + ft/2, by hypothesis on A'i, we can deduce 
that 

lim - f Ki(s+-} eu^-y-u)ds = e " ^ " ' ^ g(x - y - u). 
t-*oo t J0 \ 2/ 

Then Lebesgue dominated convergence theorem can be applied and the theorem 
follows. • 

Consequently a locally harmonizable process whose covariance has a decompo­
sition which satisfies the hypothesis of Theorem 1, admits an associated spectrum. 
The limit b(u, h) in (5) can be interpreted as the cyclic component at the frequency 
u of the function s —• K(s + h,s) with the fixed time delay h, and we have the 
Fourier decomposition 

K(s + h,s)~J2b(u,h)eiUS-
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Whenever the process is harmonizable, the set A = {u, b(u, h) •£ 0 for some h ~ ffi} 
is countable, and the series converges absolutely and uniformly with respect to h 
and u in K, towards a covariance A'* (see [1]). This covariance K* coincides with 
K if and only if for every h, the function s —• K(s + h, s) is almost periodic in the 
sense of Bohr. See [1] and references therein for more details on the related theory 
of the almost periodically correlated processes. 

Under the hypotheses of Theorem 1, thanks to the Bochner theorem and [1], there 
exists a unique family {mu,u ~ E} of complex measures on ffi which are absolutely 
continuous with respect to mo, and such that b(u,.) is the Fourier transform of mu. 
For every u, the measure mu can be expressed with M and g. Indeed, consider 
the transformation defined on M2 by Tu(x, y) = ((x + y + u)/2, x — y — u) and the 
complex valued measure on R2, GU(A x B) = M(T~X(A x B)). Then mu satisfies 
the equalities 

iu(A) = / / g(y)Gu(dx,dy) 
J JAX% 

= í g(y)Gu(A,dy). 
J-

When the covariance K is locally stationary, b(u, •) can be expressed in a simpler 
manner. 

Corollary 1. Let K(t,s) = Kx (^) K2(t — s), be a nonzero locally stationary 
covariance where K\ is locally integrable. The following two conditions are equiv­
alent: 
1. limit (4) exists and is finite for all u and h, 
2. limit (4) exists and is finite for every u, and h = 0. 
Moreover, when these conditions are satisfied, we have 

b(u,h) = I^b(u,0)e-P=K2(h)e-?g(-u). (6) 

P r o o f . For all h, u in M., and every t > 0, we have 

/ K(s + h, s) e~isuds = K2(h) f Kx (s + | J e~isu ds. 

The change of the variable S = s + | implies that 

f Ki(s+^) e~isuds = e~^ j Kx(s) e~isuds. 

As K(s,s) = Ki(s) K2(Q) is not identically null , we can conclude the equivalence 
between the two conditions. When these conditions are satisfied, we can readily 
prove (6). • 
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Under the hypotheses of Corollary 1, the function Ki is the Fourier transform­
ation of a nonnegative bounded measure m defined in E and 

b(u,h) = g(~u) I e*'C-+f)hm(dx) 
j i 

= g(-u)jj*hm(dx-l), 

thus mu(A) = g(—u) m(A — u/2). When the covariance K is harmonizable, K = K?, 
(3) is satisfied with g(u) = l^(u). Thus for all u, h in E, we get 

b(u,h) = If eixhM(dx,dy) 

mu(A) = M((AxM)nDu) 

where Du = {(x, y),x — y = u}. More generally, we can state 

Corollary 2. Suppose that K(t,s) = A'i (L^-) /?-({,.?) is a locally harmonizable 
covariance such that 

K\(s) = [ e"F(dz) 
Jv 

where F is a scalar measure on the set of complex numbers C, with support included 
in the left half-plane. Thus for all u, h in E, 

b(u,h) = lim - [ K(s + h,s)e-isuds 
t ^°° t j 0 

= II e 2 F(i(x — y — u))M(dx,dy), 

mu(A) = {J F(iy)Gu(dx,dy), 
J J A x l 

where Gu has been defined above. 

P r o o f . Let u in E, Fubini theorem implies that 

- I J^(s)e i s uds = I Or I e,(r+,'C«+!'))ds>) F(dz), 

where z = x + iy. Since for every x > 0 and every y in E, we have 

sup I - f e°(x+i(-u+y»ds\ < 1, 
<>0 \t jo 

and 

lim - / e'(*+, '("+y»ds = 0 if x + i(u + y) -i 0, 
i -oo t JQ 

= 1 if x + i(u + y) = 0. 
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Then Lebesgue dominated convergence theorem can be applied, and we obtain that 

1 / ' 
lim - / Ki(s)e~isuds = F(iu). 

t — oo t JQ 

From Theorem 1, we can deduce the expressions of b(u, h) and mu(A). • 

Let X — X\ X2 be the product of two stochastically independent processes, 

such that X\ is a symmetric process, that is, its covariance function K\(t + s) is a 

continually exponentially convex (see Michalek [5], Getoor [3] and Loeve [4]), and 

such that X2 is a harmonizable process. Thus there exists a probability measure F 

on E such that for all i, s in R , 

E(Xl(t)X1(s)) = / e(*+')" F(du). 
JM 

contained in (—00, 0], then the covariar 

y 1, it admits an associated spectrum, i 

b(u,h) = F(0) ff eixhM(dx,dy). 

If the support of F is contained in (—00, 0], then the covariance K of X verifies the 

conditions of Corollary 1, it admits an associated spectrum, and for all u, h in 
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