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KYBERNETIKA — VOLUME 24 (1988), NUMBER 2

SIEGEL’S TEST FOR PERIODIC COMPONENTS
IN MULTIPLE TIME SERIES AND
ITS APPLICATION IN ENGINEERING PRACTICE

DANIELA JARUSKOVA

Tests of periodicity in multivariate time series are studied. The distribution of multivariate
version of Siegel’s test statistic is found and the tables of critical values for some parameters are
given. The multivariate process arising as the vibrations of building structure is investigated
with the help of these tests.

LINTRODUCTION

In several different positions the vibration of the building structure is measured
so that we obtain several signals in the corresponding points. The goal of this measure-
ment is to describe the behaviour of the structure as well as to reveal the changes
caused by damage. We observe the multivariate process X(f) = (*X(1), ..., "X(1))’
which consists of the periodic component m(t) = (*m(r), ...."m(t))’ and of the
random noise e(t) arising as a result of the errors of measurement as well as a result
of the effects of another “inherent” random noise, i.e.

X(1) = m(1) + (1) .

In digitizing a continuous record we are converting the original continuous multi-
variate process into a multiple time series X(1) = (*X(1), ..., "X(1)), ..., X(N) =
= (*X(N), ...,"X(N))'. The aim of the statistical inference is to estimate the periodic
component m(1) given N observations X(1), ..., X(N).

2. MATHEMATICAL FORMULATION OF THE PROBLEM

We consider real, r-vector, time series
X(1) = m(1) + e(1).

We suppose that {e(f)} is a set of independent r-vector variables each distributed
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normally with zero mean and covariance matrix ¢2I,. Further we suppose that every
coordinate of the periodic component can be expressed as a sum of cosine functions
with the frequencies 8y, ..., O,

R
Im(f) = ¥ Jo, cos (16, + i) (j=1,...,r).
=
We note that the system of the amplitudes {/g,} and the phases {/¢,} corresponding

to the different coordinates may be different.

If we want to estimate m(t) we have to solve two problems. First, we are to find

— the set of the frequencies describing the behaviour of m(t), it means to find
their number and values. Second, we are to find the amplitudes /g, and the phases
¢, corresponding to the different coordinates. For the latter problem the method
of least squares can be used (see [1] and [5]). The first problem which is more
complicated can be solved with the he]p of Fourier analysis.

If we denote by v™(2) = 1//(2nN) Z X, ¢~ ** the Fourier transform of the sequence

X(1), ..., X(N) then the matrix I"(J) = v*(2) (v*(4))* (the asterisk denoting complex
conjugate transform) is called the periodogram matrix. If we consider the periodo-
gram matrix of a non-random periodic component then it can be shown that all
elements {I7,(2)} are of order N if 2 € © and they are bounded if 1 ¢ ©.

We note that the Euclidean norm of the periodogram matrix |[*(1)|| is equivalent

to the trace of I"(1) = Z I5,(%) since

@0 = Z Z 0,(4) 0 (2) 07 (2) 0ul2) = ( Zjvj(l)v}‘(i))z-

Further
B[ = E(r PO = ECS IR + 315,00 150)

and for N —» oo and /le(() rc)

E(15(2) — :z Uimt) + (1) e~ %) (,ifj'”('/) + o)) )
(Z(’l;z(s) 4+ Jefs)) e (Z(‘m(s o)) ) = (IR + 4;{[ ) + 2

ag
s

B(1,(0) 1i(2) =

2Nz Z(’m(l )+ Je(r)) e
N

(IZ(’m(t + Je(1')) '”‘)(\

1z

() + Hefs)) e (3 (anls) + Rels') €)=
s'=1

o2 ot
~ 1"'(; IO T ) RG) + 4—
T
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and therefore
2 4 2
@ = Y ) T () + (e ().
4n* 2n
We conclude that the Euclidean norm of the periodogram matrix [[I*(1)| is a good
indicator of periodicities.

3. MULTIDIMENSIONAL FISHER’S TEST

For finding the set @ we can use the multidimensional Fisher’s test. The null
hypothesis is that there is no periodic activity. For testing the null hypothesis Mac Neil
[4] found a multiple time series analogue of Fisher’s test for periodicities. The test
is based upon max (2x]|I*(1,)|/s% p =1, ...,n = [(N — 1)j2]} where |I*(4,)] is
the Buclidean norm of the periodogram matrix computed at 4, = 2np/N. The statistics
{2nf*(2)l/e?, p = 1,...,n} are independent identically distributed according to
the gamma law with the density function f(x) = ¢™"x""![I'(r). If 6 is unknown then

the statistics 2n[I(4,)]/o? are replaced by ¥, = |[I*(,)|/ i [1(4,)[| The statistics
v=1

{Y,,, p=1,...,n— 1} have the Dirichlet distribution with the density function

(m. —_ 1)! n—1 - n-1 .
1 1oy Yumt) = o———= A — .
M 1y ) = )T pEL (= T )

(v, 20, Yy, £ 1) and the distribution of the test statistics max Y, is the following

2 P( max Y, >a) =Y (-1)"" (n) (i, a),
p=1,..,n i=1 i
where
3) n(i,a) = P(Yy > a,...,Y;>a) =
7'i1 'S (= D a1 — a)y R
150 5= [t (e = Y — 1)
((#)+ denotes max (t, 0)).

In one dimensional case (r = 1} is known that if there is an activity at several
frequencies in the alternative hypothesis, the over-estimation of ¢ in Fisher’s test
will occur reducing the power of the test (see [2] and [7]) In order to remedy this
situation Siegel suggested to use a test statistic based on all large Y, instead of only
on their maximum, i.e. to use the statsitic T, = Y (Y, — Au,)., where u, is the
corresponding critical value of Fisher’s test and 1 is a parameter chosen between 0
and 1. In one dimensional case Siegel [6] found the distribution of the statistic Tj.
Because the situation concerning multiple time series (r > 1) is similar it can be

useful in the case of compound periodicities to apply the same procedure using
the analogous statistics.
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4. DISTRIBUTION OF SIEGEL’S TEST STATISTIC FOR MULTIPLE

TIME SERIES
Theorem. The statistic S = Y (Y, — a), is a mixture of a degenerate and continu-
p=1

ous random variable:
A p
S = /\ with probability
B (t-p
where A = (1 — na), is degenerate and B is continuous with the density
1 "o(n rob ol girete
@) Ay =—— % (k> (=Y o
1 —pi=t im0 ge=o [T
[u—j.—“.—j,—%(] — ka — t).i:—rr-j,»r.»»jh—i
—Je = 1)

‘min(h,n— 1 <k> (4 1)“’ )
! (r—jy— o= = DV (r = Ir = ooy — .o

I=1
=1 +Z(—1)i<?)n(i,a). na>1,
i=1

The mixing probability is
®)
p=nlna), na<1.

The distribution function of S is
rol givtetie

n r—1
(6) F(t):P(S§1)=1+Z(")(nr-])!z.“ EA——
K=1\k im0 qe=o [T
R T T t"(l _ ka — ,)n:-j;— —jk—v—1

k k) . ir
) )it
% (l (-1 v;(] ol(nr —j; — ... —ji—v—1)!

1=

The proof of the theorem will follow from the following lemmas.

Lemma 1. The variable S has probability mass at least p at (1 — na),.

Proof. We consider three cases. If ¢ > 1/:1, then (I - an)+ = 0 and in this case

in virtue of 2)p=P(Y, <a,....Y, <a)=1—-PlmaxY;>a) =1+ (=1).
i=1

(Dnli,a).1f a < 1nthen (1 — na), =1 — naandp=P(Y, >a,...Y, > a)=

=n(n,a).Ifa = I[nthen p = 0. 0

Lemma 2. The moments of S are given by

-1 -1 1+ .+ )
r r alt Jie

ES" = ¥ (Z) (=)%Y 1o

4l
k=1
: k R N i K+ 1
) (l (1 = kay! (1
(Ir—jy— .. —jy+m=—1)
R

=y =g+ m =D =y -



Proof. The moment of S can be expressed as the sum of the mixed moments
n—1

which have Dirichlet distribution (Y, =1-13Y7,,
=1

of {Y,.p = L.,n—1}
=1=3 y,)
<1

ES™ = E[(Y, — @), + (Y2 —a), +

:éi (Z) Y OEY, o)t (Y —a)i

L+ (Y,, - a)+]'" =

m!

(®)

(¥ - a)

Lt le=m
[P W =31

Further
(nr — 1)t

R ™ W— D

Syt —

i

Ve — a)lk i
i=1

jf(}’x —“)!4:

(7‘;'; kr(i’ 1_ Il:)('l ) o fOOs e vy + 2yt
(nr — l)’

(U= ka = Yyp)rb-tdy, ... dy, = .
( a ZJf A Y1 Vi (nr k- l)’ [(r _ J)"Ik

[Snk S et [(r7 1)] o aj,+,.4+j,‘j‘”_J‘vq—l~jx+11'__

jAZO ',kzo 1:[7171_[(1‘ -1 —J )!
r~1 =1
T kg = Y )R = e~ UYL Y

L0

y'_)nr kr=1 dy,...dy, =

(yk + a)r*l .

J1=0  jx=0
ittt ( ka)'zfj‘ = jrFm—1 (7 —1—j, +1) (r—l it lk)‘
T TIG — 1 - ) (nr — jy — -—Jk+m—1)!
Substituting this expression into (8) we get
P

ES" = Y,

k=1

n m!
(i — Y LY
ke So=m 1. 1) J1=0  jx=0
izt .zt

I IHTJ(: —H; T
S (e -0g s w0

(nr —j, — ...

(Ir —jy = ..

(1 = kayir=is==crm= R TR R Gl bt P L L
—je+m—=1)

— i+ m= 1)
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Lemma 3. The density function of Bis f(t).
Proof. Let us denote

FIGR A jl,---,jk) =

0 =y = = ORI (1 g g
(lr——]1 e — 1= 1) (nr—lr—]H,,—.“— ,—1).
form=0,1,...

I:)—ka t'"f(t; kLjg, ]’\) dt = (1 — ka)ﬂ;‘j(—'.'.-—lld-mfl .

(nr =y = =i = D(Ir = jy = . =iy m =)
(nr—ji—.o—jy+m=D(r —j, —...—j = 1)
and therefore form = 0, 1, ...

o1 -1 Jit et
1 m - .
ot f(t)dt = Z < )('” 1)'“ A szo L (ar = 3= 1)

minlar=1) 7 Ar— i == ftm—1 k1
DY </>([4ka)+ P (=1

=1
. (r = Yji—W(r—jy— ... —ji+m—= 1)
(nr —jy— oo — e+ m = D(r —j; — .. —j, = D)

Forna 2 1 ,,,,7§<k>( 1}t a(k, a) =

=" n Kot wr a* ‘(1—ka)’"' Ei=1
D L R (i

and (1 — na), =0,
for na <1 Z(_])k ‘()n(k a)=1
and 1 — p=1— n(n, a),

therefore Frde =

From the decomposition we have EB™ = (1/(1 — p)) ES™ — (p/(1 — p)) (1 — na)%.
In all cases the moments EB™ can be expressed in the following way

n r—1 r=1 _ji+..+jk
EB'":——I—Z(Z>(nr—1)!2...Za .

1 — pist =0 =0 [l

minkn=1) /) : .
Y (1>(1 — ka)r I (et

I=1

(r—ji— = +m=-101

4(""—]'1—‘ —Je+m=1)! (I’—']l . —Jz—])'
and so EB” = {r" f(z) dt.
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Similarly as in Siegel’s paper (6) f() is bounded from below and because the
probability distribution on (0, 1) is uniquely characterized by its moments it follows
that f(1) is the density function of the variable B. We remark that p is given by (5)
because for another value of mixing probability EB™ are not the moments of an
absolutely continuous distribution.

Lemma 4. The cumulative distribution of S is F(z) given by

~-1 -1 it tik
r r aJ\ Ik

F() =1 +i ( >(ﬂr BRI i

ko /) . Ir—j1=w—Jji=1 t"(l — ka — t)r:—h—m»jk—v—l
(e : : ,

v=0 ol(nr —jy — ... — e — v — 1)t

Proof. Since the function

X . Ir=ji—..—j1—1 I"(l — ka — z)?:'*j;*.,‘“jk—u—l
Fk Liy i) = = % Y A —TT
nr =y = e == 1)

is the primitive function of f(t; k, I, jy, ‘..,jk) then the function

Folt) = —— 5 (" ur = 1)

1) = nr —

’ 1~pk 1<) = J:DHJ.(”V"ZJ.‘I)
mink,n=1) 7} . . ) )

.y (‘)(~1)”’“b(t;k, Lijt, i)

=1 !
is the primitive function of f(¢). Therefore the distribution function of B is Fg(f) =
=1 + F,(f). From the decomposition of S it follows that F(f) = pigs(1-nay,) +
+ (1 = p) Fy(t) If t 2 (1 — na), then (1 — na — 1), = 0 and

o1l gl

w0 -p+ (-t S (e -0y x
R (k) (g TG0 = e g ) _©

= 1 v=0 ol(nr —jy — o — jy — v — 1)}

If na < 1and ¢t < (1 — na), then p = n(n, a)

-1 -1 _j1+..+])
r a’t +Jk

F() = 1 = n(n, a) +k§( )W - 1)'“20 o T

—je—v—1

min(k,n—1) Ir=ji=.—J1=1 (] — ka — )i
) Zl (k>(_1)k+l+1 ZU ( a o : =(6)
1= v=

I ol(nr —jy — ... —j—v— 1)
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5. CRITICAL VALUES FOR T* = (¥, — Au,).

Critical values are computed for r = 2, 3, n = 20, 25, 30, ..., 50 and significance
" levels o = 0-01, 0-05. The threshold values are chosen 0-5 u, and 0-7u,, where u, is
the corresponding critical value of Fisher’s test. The critical values were obtained
from the approximation
r—1 r—t ai1+,..+j,‘

9) P(T; > 1) _eé:l (Z) (nr — 1)!j,éo".j;§0 W 5. —

ko rk Ll . .
DN ETEE R L)
=1

Table 1.
r=2 o= 1001 r=2 a==003

n Uy .5 1.7 n u, L lo.7

20 0-2288 0-1297 0-0696 20 0-1921 0-1288 0-0613
25 0-1904 01116 0-0583 25 0-1600 0-1132 0-0518
30 0-1635 0-0985 0-0502 30 0-1376 0-1016 0-0451
35 0-1435 0-0886 0:0443 35 0-1209 0-0929 0-0401
40 0-1281 0-0810 0-0397 40 0-1081 0-0859 0-0361
45 0-1158 0-0745 0-0359 45 0-0978 0-0802 0-0329
50 0-1057 0-0695 0-0330 50 0-0894 00755 0-0303

r==3 o= 001 r=3 o= 005

n Uy fo.s fo.7 # Uy fo.s o7

20 0-1877 0-1157 0-0577 20 0-1601 0-1218 0-0528
25 0-1552 0-1001 0-0482 25 01326 01077 0-0446
30 0-1327 0-0890 0-0414 30 0-1136 0-0973 0-0387
35 0-1161 0-0804 0-0364 35 0-0995 0-0892 0-0343
40 0-1033 0-0736 0-0326 40 0-0886 0-0830 0-0311
45 0-0931 0-0683 0:0296 45 0-0800 0-0778 0-0283
50 0-0849 00635 0-0270 50 0-0730 0-0735 0-0261

6. EXAMPLE

In three points of a concrete fundament the vibrations were measured. The record
was digitized so that we obtained 512 observations and the frequency interval Aw =
= 4-883 Hz. For every point we calculated the periodogram using FFT. As we
looked for the frequencies within the interval (0, Aw 40) we considered the values
of periodogram for A, = 2np/N (p = 1, ..., 40) only. The results are given in Table 2.

Using Siegel’s multidimensional test with 4 = 0-7 we get that two values Y,, =
= 0-6485 (corresponding to frequency 48-83 Hz) and Y,, = 0-174 (corresponding
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Table 2.

o MG o MG PR VW] )
1 0-0135 11 0-0012 21 0-0016 31 0-0015
2 0-0398 12 0-0010 22 0-0040 32 0-0008
3 0-0450 13 0-0790 23 0-0015 33 0-0009
4 0-0040 14 0-0042 24 0-0006 34 0-0004
5 0-0036 15 0-0193 25 0-0016 35 0-0015
6 0-0012 16 0-0024 26 0-0261 36 0-0015
7 0-0020 17 0-0015 27 0-0014 37 0-0147
8 0-0024 18 0-0014 28 0-0034 38 0-0132
9 0-0044 19 0-0038 29 0-0098 39 0-0249

10 1-9862 20 0-1973 30 0-0041 40 0-5356

to frequency 19531 Hz) are greater than 0-7 u, = 0-0723 and (Y, — 0:0723) +
+ (Yo — 0:0723) = 0-679 > 0-0326. Using the Siegel’s test with A = 0-5 we get
that three values Y, Y, and Y,, = 0:0644 are greater than 0-5u, = 0-0516 and

Y (Y; = 0:0516) = 0-733 > 0-0736. Further we omit the frequencies 48-83

i=10,20,40
Hz, 9766 Hz, 14649 Hz, 195:31 Hz corresponding to the frequency of the electric
current and its harmonics as well as the frequency 190-44 Hz. After normalizing
the new inference shows that the values Y, (977 Hz), Y; (14:65 Hz), Y, ; (63-48 Hz),
Y,5(73:24 Hz), Y,4(126-96 Hz) > 0-5 u, = 0-0581 and Y (Y; — 0:0581) =
i=2,3,13,15,26
= 0:375 > 0-0804 or the values Y,,Y;, Y;;, Yo > 0-7u, = 0-0813 and
(Y; — 0-0813) = 0-279 > 0-0364.

i=2,3,13,26

If we reject the null hypothesis because of some frequencies, we include these
frequencies into the set ©. We conclude that if we omit the frequencies corresponding
to the electric current and its harmonics the vibration frequencies are 9-77 Hz and
14-65 Hz (it might be only one between them), 63-48 Hz, 73-24 Hz and 12696 Hz.

{Received October 9, 1987.)
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