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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 3 

Discrete Stochastic Regulation and Tracking 

VLADIMÍR KUČERA 

The problem of following a random trajectory in the presence of disturbances is solved in the 
minimum variance sense for discrete-time linear single-input-output plants. The plant is described 
by an input-output relation, namely a controlled autoregressive moving average (ARMA) 
model. The random inputs are zero-mean covariance-stationary sequences modeled as ARMA 
processes. 

This tracking problem is solved by reformulating it as a regulator problem for an augmented 
system. The optimal control law is shown to contain both feedback and feedforward terms and 
it is obtained by applying polynomial techniques. The design procedure consists in spectral fac­
torization and the solution of linear polynomial equations. 

1. INTRODUCTION 

The problem of signal tracking in the face of disturbances, known also as a sto­
chastic servo problem, has found various industrial applications. In practice, it is 
often required that the output of a given plant be optimally reset to a new reference 
level or trajectory. This must be accomplished despite the presence of random di­
sturbances and measurement noise. 

This problem has not been satisfactorily solved within the classical control theory. 
This is perhaps due to the prevalent philosophy that the control law must operate 
on the tracking error, see Newton, Gould, and Kaiser [5] or Youla, Bongiorno, 
and Jabr [6]. As noted by Gawthrop [1], the resultant control law is s-uboptimal 
unless known set points and unknown disturbances are properly distinguished. 

Modern control theory has overcome this tradition by introducing a state-variable 
feedback. When augmenting the plant and reference dynamics into a single composite 
system, the stochastic servo problem can be reformulated as a standard LQG problem, 
see Kwakernaak and Sivan [4]. The resultant feedback control law can then be 
interpreted as a combination of feedback and feedforward terms relative to the origi-



nal plant. However, this technique requires the identification of state-variable models 
and the solution of coupled algebraic Riccati equations. 

The aim of this paper is to solve the stochastic servo problem by applying the 
polynomial methods developed by Kucera [2; 3]. We start with the input-output 
description of the plant and reference as ARMA processes and proceed to determine 
the optimal control law by manipulating polynomials only. The design procedure 
consists in solving linear polynomial equations whose polynomial coefficients are 
obtained by spectral factorization. The computational feasibility of this approach is 
discussed elsewhere [3]. 

2. PROBLEM FORMULATION 

Consider a discrete-time stochastic plant modeled by the controlled ARMA process 

(1) A(d) y = B(d) u + C(d) w 

where y is the output sequence, u is the input sequence, and w is a zero-mean covari-
ance-stationary white random sequence with variance ij/. The observed output z 
is assumed in the form 

(2) z = y + v 

where v is another zero-mean covariance-stationary white random sequence, with 
variance cp. The A, B, and C are coprime polynomials in the delay operator d, with 
arbitrary relative degrees, and such that A(0) =t= 0 and B(0) = 0. The cp and \jt are 
nonnegative but not both zero. 

Further consider a reference sequence r modeled by the ARMA process 

(3) 1(d) r = C(d) w 

where w is a zero-mean covariance-stationary white random sequence with variance 
\j/. Let s, the available version of the reference, be of the form 

(4) s = r + v 

where v is another zero-mean covariance-stationary white random sequence, with 
variance cp. The A and C are coprime polynomials in d, with arbitrary relative degrees, 
and such that A(0) =t= 0. The cp and ip are again nonnegative but not simultaneously 
zero. 

Let us suppose that all four random sources v, w and v, w are pairwise uncorrelated. 
Moreover, it is natural to assume that the plant is free of unstable hidden modes and 
that the reference is covariance stationary. In particular, these assumptions entail 
stability of the greatest common divisor of A and B as well as of the polynomial A. 

For a given plant and reference, the design of the optimal control law 



(5) P(d) u = - Q(d) z + R(d) s 

with polynomial P, Q, and R and P(0) + 0 evolves from minimization of the cost 

(6) J = XJU + nJe 

where Ju and Je are respectively the steady-state variances of the plant input and 
of the tracking error, defined as e = y — r. The X and /i are constants weighting the 
relative importance of the two components; they are nonnegative but not simultane­
ously zero. 

Thus the objective of our design is to minimize (6) subject to the constraint that 
the control system defined by (1) through (5) be (asymptotically, internally) stable. 
The resulting control system is shown in Fig. 1. 
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Fig. 1. Stochastic Servo System. 

This problem of simultaneous regulation and tracking will be referred to as the 
stochastic servo problem; if there is no reference (s = 0)we speak of the associated 
regulator problem. 

3. THE REGULATOR PROBLEM 

It will be seen in the next section that any servo problem can be reformulated as 
a regulator problem for an appropriately defined system. The purpose of this section, 
therefore, is to summarize the statement and solution of the regulator problem for 
multivariate processes as developed by Kucera [2; 3]. 

Let the process be modeled by 

(7) A(d) y = B(d) u + C(d) w 

where y is the /-vector output sequence, u is the m-vector input sequence, and w is 



266 a zero-mean covariance-stationary white n-vector sequence with covariance matrix 
W. The observed output z is assumed in the form 

(8) z = y + v 

where v is another zero-mean covariance-stationary white random /-vector sequence, 
uncorrelated with vv and having covariance matrix $. The A, B, and € are left coprime 
polynomial matrices, of compatible dimensions, in the delay operator d. We assume 
that A~(0) is invertible, B~(0) = 0, and that the process model is devoid of unstable 
hidden modes. 

The optimal control law 

(9) P(d)u=-Q(d)Z 

with P(0) invertible is obtained by minimizing the cost 

(10) J = tr (AJu + MJy) 

subject to stability of the closed-loop system (7)-(9). The J„ and Jy are covariance 
matrices of the plant input and output, respectively, in steady state while A and M 
are nonnegative definite weighting matrices. 

For any polynomial matrix H, define H*(d) = HT(d_1). The design procedure 
then consists of the following steps: 

1° Calculate right coprime polynomial matrices At and S^ satisfying 

A~XB = S^;1 

2° Calculate polynomial matrices F and G with stable determinants, called spectra] 
factors, defined by 

A^AA, + B^MBi = F*F 

A&A* + CwC* = GG* 

3° Determine polynomial matrices G,, G2 and B2, A2 satisfying 

G~1B = B2G1
1, G-1A = A2G2

i 

4° Solve the equations 

F*X - 2J2 = A^AG, 

F*? + 2*A2 = Bt*MG2 

for polynomial matrices %, Y and Z such that 

Z(0) = 0. 



5° Determine polynomial matrices G0 and X0, Y0 such that 

[XG;1 ?GV] = G0
1[X0 y0]. 

6° The optimal control law is then given by 

P = X0 , Q=Y0 

and must be realized without unstable hidden modes. 

The above optimal solution exists whenever step 2° can be performed and if it does 
exist, it is unique. 

4. THE SERVO PROBLEM 

The stochastic servo problem can be reformulated as a regulator problem by 
augmenting the plant and reference into a single system (7) as follows: 

* - [ { . ] . « = «• *-
hence inducing 

- & ] • - & ] 
in (8). The system matrices then become 

'-B-3- '-G3- c-[«3 
-[:<.• *- [:& 

The definition of the tracking error implies the weighting matrices 

--ra. - [ _ ; - ; ] 
in the measure of performance (10) and, finally, the matrices in the control law (9) 
can be identified as follows: 

p = [p], e = [e - * ] . 
Now, following the steps of the design procedure given in the preceding section, 

we first determine the matrices 

and 

*l-[î]. -Îl-M 
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'-M. c-[iï] 
where F, G, and G are stable polynomials satisfying 

(11) A*AA + B*nB = F*F 

Aq>A% + Ol/C* = GG* 

AyA* + C^C* = GG* 

Further determine the matrices 

and 

«•-[;]. «.-м 

and obtain the polynomial equations 

(12) E*X - Z*B = A+XG 

F*Y + Z*A = B^G 

FJ + Z*A = B*/xG 

Among all solutions 

! = [*], Y=[Y-Y] z = [_|] 

choose the one satisfying 

(13) Z(0) = 0 , Z(0) = 0 

and the optimal control law is obtained in the form 

(14) P = XG, Q= YG, R=YG 

Let us now summarize: 

(15) Design Procedure for the Servo Problem 

1° Perform the spectral factorizations (11) to obtain stable polynomials F, G, 
and G. 

2° Solve the equations (12) for polynomials X, Y, Z and Y Z such that relations 

(13) are satisfied. 
3° The optimal control law (5) is then given by (14). 



This optimal control law exists whenever step 1° can be executed and if it does exist, 
it is unique. Needless to say, it must be realized without unstable hidden modes. 
Moreover, it can be shown that the minimized value J of (6) equals 

(16) J = Jo + jo 

where 

IZ*Z\ / GG* 

j0 = /M\ + , / A ^ ^ l _ ^ 
V W \ F*E AA 

using the notation <ff > = H(0) for any H. 
For the associated regulator problem, we have G = 0 by convention. It follows 

that Y = 0, Z = 0 and the resulting optimal control law is a purely feedback one: 

P = X , Q= Y, R = 0 

Several remarks are now in order. First of all, the optimal control law for the servo 
problem consists, in general, of the feedback part Q and the feedforward part R. 
It does not operate on the tracking error e = y — r but rather it operates on y and r 
in different ways. Therefore, every control configuration using only error feedback 
to regulate and track must be suboptimal. 

A close examination of the design procedure (15) reveals that the last equation (12) 
is independent of the preceding two. These two equations, however, yield a solution 
to the associated regulator problem. This means that the feedback part of the control 
law is independent of the reference sequence. 

5. EXAMPLE 

To illustrate the design procedure, consider a stochastic plant modeled by the 
controlled ARMA process (1) with 

A = 2 - d, B = 2d - d2 , C = 1 

and a random reference modeled by (3) with 

1 = 3- d, C = 3 

The random sources have the following variances: 

cp = 2, if/ = 7 

and 



<p = 0, ip = 1 

The purpose of the control is to make the output of the plant follow the given re­
ference in the minimum variance sense. Thus we take the weighting coefficients 

X = 0 , n = 1 

in the measure of performance (6). 
Following the design procedure (15), we first calculate the spectral factors F, G, 

and G defined in (11): 

(2d'1 -d~2)(2d-d2) =F*F 

(2 - d~1)2(2 - d) + 7 = GG* 

3 . 3 = GG* 
We obtain quite easily 

F = 2 - d, G = 4- d, G = 3 

Now we form the equations (12): 

( 2 - d~')X -Z*(2d- d2) = 0 

(2 - d'1) Y + Z*(2 - d) = (2d-1 - d-2) (4 - d) 

(2 - d-1) Y + Z*(3 - d) = (2d'1 - d~2) 3 

The general solution of the first two equations reads 

X = 4 - d2 - (2d - d2) T 

Y = - 1 + d + ( 2 - d)x 

Z = 2 + 3d - 2d2 - (2 - d) T 

and that of the third equation becomes 

y = 4 - d + ( 3 - d ) f 

Z = - 2 + 3 d - d2 - ( 2 - d)f 

for any reals T and f. The solution satisfying (13) is obtained on putting 
T = l , f = - 1 : 

X = 4 - 2d, Y = 1 , Z = 4d - 2d2 

and 

Y = 1 , Z = 2d- d2 

Thus the optimal control law (5) is given by (14): 

P = 1 2 - 6 d , Q = 3 , R = 4 - d 



and it must be realized without unstable hidden modes. A possible realization is 
shown in Fig. 2. The resultant steady-state variance of the tracking error is given 
by (16): 

J = 2 + 1 = 3 

6. CONCLUSION 

A simple optimal solution to the stochastic servo problem has been presented for 
discrete-time linear single-input-output plants and covariance-stationary random 
inputs, the optimality being taken in the minimum variance sense. The problem was 
solved by reformulating it as a regulator problem for multivariate processes and then 
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Fig. 2. A Realization of the Control Law. 

applying the polynomial equation approach. The design procedure consists in solving 
linear polynomial equations whose polynomial coefficients are obtained by spectral 
factorization. The resultant control law was shown to contain both feedback and 
feedforward terms, the feedback one being independent of the reference to be fol­
lowed. Thus any control law based upon the error feedback must be suboptimal. 

(Received August 20, 1979.) 



REFERENCES  

[1] P. J. Gawthrop: Developments in optimal and self-tuning control theory. OUEL Report 
1239/78, Oxford University, Oxford 1978. 

[2] V. Kucera: Steady-state minimum-variance discrete control. Problems of Control and 
Information Theory 8 (1979), 2, 123-135. 

[3] V. Kucera: Discrete Linear Control — The Polynomial Equation Approach. Wiley, Chiches­
ter 1979. 

[4] H. Kwakernaak, R. Sivan: Linear Optimal Control Systems. Wiley, New York 1972. 
[5] G. C. Newton, L. A. Gould, J. F. Kaiser: Analytical Design of Linear Feedback Controls. 

Wiley, New York 1957. 
[6] D. C. Youla, J. J. Bongiorno, H. A. Jabr: Modern Wiener-Hopf design of optimal controllers 

-Part I: The single-input-output case. IEEE Transactions Autom. Control AC-21 (1976), 
1 , 3 - 1 3 . 

Ing. Vladimir Kucera, DrSc, tlstav teorie informace a automatizace CSAV (Institute of Informa­
tion Theory and Automation—Czechoslovak Academy of Sciences), Pod voddrenskou vezi 4, 
182 08 Praha 8. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-05T07:58:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




