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KYBERNETIKA — VOLUME 16 (1980), NUMBER 3

Locally Best Unbiased Estimates
of Functionals of Covariance Functions
of a Gaussian Stochastic Process

FRANTISEK §TULAJ TER

Using the RKHS (Reproducing Kernel Hilbert Space) methods the characterization of the
locally best unbiased estimable functionals of unknown covariance function of a Gaussian sto-
chastic is given.

1. INTRODUCTION

The theory of locally best unbiased estimates was founded by Barankin [2].
Parzen [9] investigated the connection between this theory and the theory of RKHS.
Parzen [9], Kailath-Duttweiler [3] and the autor [12] utilised the theory to the
problem of unbiased estimation of functionals of unknown mean value function of
a Gaussian random process. The aim of this paper is to characterize the locally best
unbiased estimable functionals of an unknown covariance function of a Gaussian
stochastic process X = {X(t); ¢ € [0, T]} having its mean value function identically
equal to zero. The unknown covariance function of the process X is assumed to be

of the type R(s, t) = ¥, 4, ei(s) et), where the {A};~, are unknown real numbers
=1

such that 4, > 0; k = 1,2,... Y 4, < o0, and {e,};=; is a known complete ortho-
=1
normal system in I*([0, T7).

2. GENERAL THEORY OF LOCALLY BEST UNBIASED ESTIMATES

Now we shall give a brief review of the general theory of locally best unbiased
estimates following [9]. Let {P,, 6 € ©} be a parametric set of probability measures
and let 8, € O be fixed. It is assumed that, for every 0 € ©, the measure P, is absolute-




ly continuous with respect to Py, and the function dPs/dP,, belongs to the I?(Py,)
space for every 0 € @. Denote by L the subspace of I*(P,,) generated by the set of
functions {dP,[dP,,; 0 € @}. Then for the function f : @ — E* there exists an unbiased
estimate having finite variance at 0, if and only if f e H(K,,), Where

dP, d},’?:] :
dPy, " dP,, ]’

Koi(0,0) = E,,u[

0,¢ € O is a reproducing kernel of the RKHS H(K,,). The spaces H(K,,) and L},
are isomorphic. For every function f e H(K,,) there exists a random variable Ve
e L% — the isomorphic image of f, such that

dP,

E[V] = E, [V.@ﬂ - 1(0)

for every 6 € @ and
I/ [gon = EalV?] S Eo[U*]

for every U e I?[ Py,] having the property E[U] = f(6) for all 0 € ©.

3. LOCALLY BEST UNBIASED ESTIMATES OF DISPERSION

Now we shall study the simplest case of estimation of functions of dispersion.
Let X be a N(0, o) distributed random variable. Then for any a5, 6> > 0 the measure
P, given on the Borel sets of real line by

1 -x2 2
P, A) = ——— | el=*/2e) 4
@ J(Zn)o_L

is absolutely continuous with respect to P,, and dP,[dP,, belongs to I’[P, ] if and
only if 0 < ¢ < 202. Accordingly, we have

2 0
KW(G', O") - an dP,, . dP{,I _ Og 1 e[_le/z(l/‘,z+ 1/a'2=1/a0?)} dx =
dp,, dP,, o

" 60’0, /(27)
~ ot 2 . o =gl ¢ = GZ]
(c'00)* + (000)* — (00")? oz | ’
where 0 < 6%, 0’2 < 20%. We shall now characterize the space H(K,,). To do this

we need the following lemma.
Lemma 1. Let H be a Hilbert space of functions which are analytic in the unit

circle E = {z = x +iy:|z[ < 1} and such that ffg|f(z)|? dx dy < 0. Then the

system
{(pn(z) = (n/n)l/Z val}:ozl
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is a complete orthonormal system in H endowed by the‘inner product (f, g)ﬂ =
= [{zf.d dx dy. Moreover, H = H(K,) with

Kofz, 1) = ) ¢ A1) = T T
of2 %) ,21 iz 0:lE) n; T (1 — zit)?
Proof. Meschkowski [7].
Now let &,, = {w: |w — 6| < 0§} be the circlc centred at ¢; and of the radius a3
and let h:&,, — E be a transformation given by h(w) = (w — 03)[og. Then the
following lemma is true.

z,ueE.

Lemma 2. Let H, be the Hilbert space of functions that are analytic in the circle
&,, and such that [f, ]f(w)|2 dx dy < oo. Then the system

_(n 172 1 dh = (/n 12 1 W — g2\~ 1) ®
{ll’n(W)—<7;> h(W) ‘dw}n:1~{<;‘7> V(/'g'(“’g ) }n:l

H,, = H(K}), where

ao.

is a complete orthonormal system in H,

G0?

7(w) i (v) 1 1 i
K::ﬂ (W, L’) = e R e ———————— = Z I/I,,(W) lll,,(l’) -
Tl — h(w) Q@) oom 1 (w=03) v—a3 P =t
% 9
Proof. Meschkowski [7].
Now let

2

2 TTTTam-12

w— o2 v— 0g

K{w, u)=[1 - g ] ; W, 0E 8, .
0 0

Then we have:

2 2 2 T 2
‘YV—GOU_UQ_1+1’“'_UOU“0'0
2 o ap

K(w, v) = f— arc sin z

o
Q
on

13 (w—of v— o2\? il W~ g2y — g2\l ®
+ 2,4( [ 777,;?) +...= Z:lc"( To? r@) = ;dn YWY )

2
0o o

n 0o o
where

2n — 3! 2n — 3)...3.

e =1; c,,=(*2E M _ @0 = 3).. 3L for nz2

(2n—=2)1! (21 —2)...42

and
00
d,l:*f; n=12,....
n

From the expression K(w, v) = ¥ d, y,(w) ¢,(v) we have the following characteriza-
n=1

tion (sec Aronszajn [1]) of H(K):



R = (e, £ 0l

Using the fact that f e H, is analytic in &,, we get

YL PP A )
JO) =L e =B T

()" 90 = 50 v

n

s

we get for

H(K): H(K) = {f< H, :nilf‘?é%Ef;;]l:(:g)]z 1l < )

According to the uniqueness extension theorem (Saks [10]) and the restriction
theorem (see [1]) in RKHS, the following theorem giving the characterization of
H(K,,) can be proved.

Theorem 1. A function f:(0,203) - E' has an unbiased estimate with finite
dispersion at ¢ if and only if it can be extended to an analytic function in &,, such
that

1 Y )
Wl = 2700~ e, ’

~n=1
where
_(2n - 3)1t

=1; ¢, =
o = (2n - 2)n

3
1\
[

It is easy to see that every polynomial f, given by
fule?) =Y ac®; 0 <o? <203
k=0
belongs to the space H(K,,)- Especially, let k(o) = (c%)". Then we have
(2))2(1:—1) h;‘n—l) (Ug) h}:l—l) (a_é) _

[~ )P
(E)GE)

mingk+ 1,141} (G2\e+ TN o _

= ¥ @ \n = \n =) o012,

n=1 Cn

& (o
s B ko = ;(

For k = 1 we have:

1\ 1

[lh1”121(1{,n) = ng .= =30} = Euo[X4]
1 [
n

n=1\1N —



252

so that the random variable X2 is the locally best unbiased estimate of h, at o
for h, defined by h;(0%) = 6%; 0 < 6* < 207. Because this estimate does not depend
on o3 and it is unbiased estimate for the function f(¢%) = 6%, 6% > 0 we get the known
result that X* is the uniformly best unbiased estimate for f.

Now we shall prove that the random variable U, = (X?)¥/(2k ~ 1)!! is the uni-
formly best unbiased estimate for i,(¢?) = (¢%)%; 6® > 0. Because

E[U] = E,[U,.dP,[dP, ] = h(c?) for 0<o® <205;

o2 > 0, it is enough to prove that U, belongs to the space LZ, for every a5 > 0.

Lemma 3. Let Uy, = (X*; k = 0,1,2,.... Then U, € LZ, for every o, > 0.

Proof. For k = 0,1,2 it is easy to prove that |Uy|}ap.e = | Pel|fick.o) and the
lemma is proved. For k = 3 we can proceed by induction. Because Lﬁo is a subspace
of I?[P,.], Uy L}, iff U, e (L2, that is iff (Uy, V)pap,o) = O for all Ve IX(P,,)
such that

(V, dP") =0 forall 0< ¢® < 202.
dPan L2(Pgo)

Because
(U V)tzpooy = (Ui-1, Ui V)iaeey

it is enough to prove according to the induction assumption that U,Ve(L2)" if
Ve (L), so that

u,v dp, .dP,, =0 forall 0 < ¢® <20,
P,,
if Ve (L2)". This will be done for o5 = 1. In this case the system of Hermite poly-
nomials {H,{x)}, is known to be a complete orthonormal system in I*(P,,) and
we can write:

dpP 2 dp ®
¥, < =Y wn). (L, 1))=Y (V,4,). E[H].
(%455),.p, =01 (G2 1) = E 01 B ]

a0

For n=2k+1; k=0,1,... we have

r_oszm(x)

¥ 2N qx = 0,

J@r)e

because Hy;+1(x) is a polynomial in x containing only odd powers of x. We shall
prove now by induction

- X U -xpe _ w 1/2 -
Ep [Hal J‘_szk()\/(zn)aé / >dx—( YAl > ( 1)k,



The relation is true for k = 1, because 253

0 2
flﬁ L (2 — 1)e2n g = &=L
J@rnye ) -, V2! V2!
Let the relation be true for k = n — 1. Then, because
1
H, ,(x) = ————— (xH,+(x) — H,,(x
0 = () = )

and H,(x) = \/(n) H,_(x) (see Jarnik [5]), we get

@ 1 —-x2 2 @ 1
Hy(x) ———— 2D dx = ——— [x H,,_y(x) = H,\o .
.f e Jede i J RVEr L ]

1 oo I U
L dx = —o0 — o Hy (%) [ ——— &2 ) dx —
NEEE BV Cr R AW
@ 2 _
T IR e Pl e
NI NE Jan)
o N 2
J‘ Hy,_y (x) b e(m¥ 2N gy = l:(———zn 1)] (0% — 1),
e J@r)e (2mn

According to this we have Ve (L2 )" iff

0= (V, ;}f) =Y.V, Hsy) [Lz"‘—””]m (o2 — 1y

o/ L2(Poo)  1=0 (2n)1t

forall 0 < ¢ < 2. Hence (V, Hy,) = Ofor n =0, 1,... and V(x) = Y. (V, Hypyy) -
« Hyy31(%). For U (dP,[dP, ) we get: =0

(U1 __:11:” , H2"+1> =J x* Hppet(x)dP,(x) = 0 for n=1,2,...

and using this we obtain:

dP, hed
(VUD dP“) - (V, U, > =S (V1) <U, ar, Hn) -0
dpP,, 12(Pyo) dP,O L2(Pooy n=0 dpP,,

for all 0 < ¢® < 2, and the proof of the lemma for ¢3 = 1 is finished. If ¢2 + 1,
then we use fact that {G,(x) = 1/oq H,(xo,)}7-, is a complete orthonormal system
in I}(P,,) and the proof is analogous to that given.

Corollary 1. For any nonnegative integers k, I the following combinatorial identity
is true:
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mm<k+i-l+ﬂ k ) D\ oo (k20— 1 .
=1 n—1/\n-1 (2k — YN @I~ 1!

— 1
o=1: c"=(2n 3\
(2n — 21t

where

for nz22.

Proof. The left-hand side of the identity is equal to  1/(oo)? (hy B uk.op
the right-hand side equals to:

_]_. E _,U"’ U = 1 E Ui
(2" Lk — D121 — f (e3)rt T 2k — D2l — 1Y

and these expressions equal each other, according to the Lemma 3.

Corollary 2. If f € H(KUO), then its locally best unbiased estimate U, at o, is given by
© 2y n
f(n) o . X?.j B
U, = 5 08 (M) oy X o,
n=0 n! j=0

n
j (25 — D)t

where the series converges in I*(P,,).
Proof. If fe H(K,,), then

f(o‘z) _ ifm(gtl)) (0_2 _

w=0 n! n=0  nl s

where
2 _2\my®
{x,,,, 1(‘72) = \r/(dml) Yuer(o®) = \/(Cn-H) (LTEE> }
[ n=0

is a complete orthonormal system in H(K,,). According to the isomorphism between
H(K,,) and L2, we get the desired result, because the system of random variables

n 2j 0
o3 e GO ey

(oa) =o\j/ (2 — Y1 n=0
is a complete orthonormal system in Lio for every o3 > 0.

Example 1. Let f(¢?) = (¢*)'/2. The function f(z) = z'/* is analytic in every
circle &,, o, > 0 and
‘ 2 < f(")(ﬂg) 2 2 _ v Gng 2 2yn
@)=Y ——"(" -0y =% (o - g
n=0 n! n=0 n!

where



— 1"
Ao = 0p, dy = }Z (0'0)“”2’ a, = (*1)”1 gzi’zni)" (Ug)—an—n/z

for n = 2,3,.... The series

S

converges, because for n = 2 we have

gﬁ(o‘é)z" o2 ((ﬂ — 3)!!)2(2@!} _ 2 7(2n —"717)!! (211)!! _
(1 ey 2212 (20 — DI 2l (20 — 12

» (2n =112 ) (2n — 3)1 < g2 iZn — 21

T 22%(n1)? (2n — 1)

C2nl(@n —1) " 2! (2n — 1)

2 2
[ 1 < %

2202 —n " 2m?

and the function f(.) has the locally best unbiases estimate at ¢3.

Remark. The theory just derived can be used in the case of a random sample, too.
If X4, ..., X, are independent, identically N(0, ¢%) distributed random variables,

then
2 2 2 2\ ~n/2
, g° — 05 0'° — 0 .
Ko, 0)=(1 -2 —5—
o o

The Hilbert space H(K,) can be characterized in this case utilizing the fact that

a 2k
Kopaqlz) = (1 — z)7 @402 = '(2’]; —W K¥(z),

from which we have

@
Kopr 1(‘7’ ’7) = Zlag)(z Lt
m=

with
G 2
afn)=cm+k(2k_v””(m +hk—1)...m.
Because
1
Koeo(z) = = = KP(z) . 1/k!

we can proceed by analogy and get:
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] o
K 2,0) = ——— =Y ¥z Gy,
ZHZ( ) (1 - zﬁ)k+1 mZ::1 ( )
Where b{1) = 1,

w _{m+ k- 1) om
" k!

b for k=1

and
Koz, it) = 1 i (z.a)y"t.

T (L-zE) W
Using Lemma 1 and Lemma 2 we get:

© (G_g)l(nz—l)[f(m—i)(0,(2))]2
H(K,) = {feéz,:) — et
(o) = {fede, mZ'L [fm — D)1
where N
2D o Lcm“(m +k—1)..m if k=1,2,..
@k — 1)1
and
0 = [’”i,kfﬁl_)__"? if k=1,2,...

and it is possible to prove again that the random variables (Y X7)¢e L2, for k =
=0,1,2,..., where Lﬁﬁ is now generated by the system

dP " 4P,
Xy, n X)) = [[—2(X); 0<0®<20)
{dP *s ) il;[lquu( ) °}

a0

of random variables.

4. LOCALLY BEST UNBIASED ESTIMATES OF FUNCTIONALS
OF COVARIANCE FUNCTIONS OF A GAUSSIAN
STOCHASTIC PROCESS

Let us assume that we observe a Gaussian measurable stochastic process X =
= {X(); t € [0, T]} with zero mean value function and with an unknown covariance
function of the type

R(s, 1) =k§1,lk efs)eft); s, tel0,T],

where {e:}ix, is a known given complete orthonormal system in I*([0, T]) and



0

{4}i~ are unknown positive real numbers such that ) 4, < co. The last condition 27
k=1

is sufficient to ensure the existence of a Gaussian probability measure Py in I*([0, TT)

which is completely determined by the integral operator in I*([0, T]) with the kernel

R(s, 1); s, te[0, T].

In order to be .able to utilize the general theory of estimation as given in part 2
to the problem of estimation of functionals of a covariance function we need to know
the conditions under the measures P and Py, are equivalent and dPy/dPp, belongs
to the space L*(Pg,). These problems were solved by many authors; the approach
of Skorochod [11] is convenient for us.

Lemma 4. Let R and R, be positive definite covariance operators in I%[0, T).
The Gaussian measures Py and Pg, are either orthogonal or equivalent. The necessary
and sufficient condition for equivalence of P and P is the following one: there
exist a symmetric, Hilbert-Schmidt operator U such that I + U is invertible and
R = RY/*(I + U) Ry/>. If Py is equivalent with Pg, then

() = e g O+ 0 e[S 5] 4 )
dPp, i 2928

where

149

n=i % [ et w]s G0 i
are proper values and proper vectors of the operator Ry, and {y,}i%; are proper
values of the operator U. dPp/dPy, belongs to the I2[Pg Jiff 3] < 1,k = 1,2,....
Because U is Hilbert-Schmidt, §7§< 0.
Proof. Skorochod [11]. Let :?"1: R§?(I + U’) RY'? and let {y;};2, be the proper
values ofmthe operator U', |5] < 1, k;iyf < oo and let R'(s, f) :ki}.; els) elt),
X, >0, k;l,’( < .

Then

, dPp dPg
KRD(R: R) = Epg —R . =
dPg, dPy

’ 2
Epg|exp {2t B Tl el T
2% L+ 1+ A
, 1/2 1/2
exp1 B n) 1 1
2\l +y, 14+ 1479, 1+ 9y .

“exp{l B 7,2/‘1_ N vi/”z
‘ 21+ 9 14y Tty 1+

s
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© e © 1 — 2 }.—lo“”z
= 1t - ) ”’=H(1 kﬁoﬁk-’ﬁr—)

K £
where 0 < 4, 4 < 24f for k=1,2,.... This follows from the facts, that y, =
=23 ~land [p| <1 k=12 and

© 0\ 2
Tow = Z(’l" ’1) <.
k=1 k=1

k

As we see, the kernel Kg,(- —) is defined on the set %, x %, where

Ry = {R 1R(s, 1) =D:;/Ik a(s) et) ;

k=1

0 = 2 (= R\
O<A <2k, Yh<ow, Y T)<OO s
k=1 K

and the RKHS H(KRD) consisting of the functions defined on %, have to be con-
sidered in connection with unbiased estimation of functionals of covariance function.

The following theorem describes the structure of H(Kkg,).

Theorem 2. The space of estimable functionals of covariance functions H(Kpg,)

o<
is isomorphic to the infinite tensor product ® H(K,) of RKHS H(K;), where
i=1

, e A AN
Ki(li, ﬂi) = (1 - _—ld_ . I > s
i i

0<i,Aj<20i=1,2,...

Proof. The notion of infinite tensor product of Hilbert spaces is given in Guichar-
det [4]. Because the elements {Kg,(-, R); R € %,} generates H(Kx,), the isomorphism

between H(Ky,) and ® H(K;) is a consequence of the fact that
i=1
(Kol R), Kio(e» R uxrey = KofR, R') = ]_—_IIK:'(;LB i) =
= Bl Ko 1)y Kiles M rxy = (® K- A1) i@xK‘(" A;))_@l H(K)).

Elementary decomposable vectors ([4]) — generating elements of ® H(K,) — are

of the type h = ® h;, where h; = f; € H(K,) for every ie J, J bemg a finite subset
of I =1{1,2,. } aud h; =1 for iel — J. The function

!I(R) = g({ii}iﬂ) = gfi(/li) ; Redl,



is an isomorphic image of such vector h. Now let x; = ® h;, where h; = 1 for
j*iand hy=f,eHK,) for j =i; i =1,2,.. Then the function g(R)
@ @0
= g({A}2,) = Y f{A); Re R, belongs to H(KRn) if and only if the series Y, x;
=1 =1

@
converges in ® H(K,-). The necessary and sufficient condition for this is that the
i=1

@
series 2 {Xp XD @k, converges, where
ij=

o Xpomuy = fillhay i i=]
and

(X, xj>®,H(Ki) = <1’fi>I{(K.-) . <]:fj>H(K,)
for i # j.

Example 2. Let f;(1;) = 1, e(s) ¢#); s, t fixed points in [0, T]. Then
L, Coxp = (B e el + 25 () 9 ) < oo

and from the preceding results we can conclude that U = ZX 7 ei(s) eft), where
X; = [§ X(s) efs) ds is the locally best unbiased estimate of the functlonal fodR) =
= R(s, t); R€ R,.

Example 3. Let X(f) = X, sint + X, cost; 0 £ t < 2, where X ;, are independent
N(0, 4;); i = 1,2, distributed random variables. Let U= X1 sins sint + X3 coss cost
and let ¥ = X(s) X(#). Then E[U] = Ef[V] = R(s, t) for all R € &, but it can be
easily computed that Eg[V?] — Eg{U%] = A,A,[sin (s + )J* = 0 for all ReR,.

5. ESTIMATION OF COMPONENTS OF COVARIANCE FUNCTION

Let us assume that an unknown cowariance function of a Gaussian stochastic
process X is of the form R,(s, 1) = Za Rys, t), where a; >0 i =1,2,...,n are
unknown parameters and Rs, t) are known lmearly independent covariance
functions of the form Rs,t) = Z}'k.i el(s) ) with 4, ;>0 k=1,2,... and

K1
0 «©
¥ A< o for i =1,2,...,n Under these conditions R,(s, 1) =¥ 4, ei(s) &(1),
k=1 k=1

n
where we have denoted 4, = Z Aatis k= 1,2,.... According to results of preceding
=1

259
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chapters Pg, is equivalent to Pp,, for fixed vector af = (a5, ..., %) if and only if
[(4 = A)/A2| < 1 for all k and

o (= N 0_ v, 0.
3 s <o, where A=) A e k=1,2,....
k=1 A i1

If these conditions are fulfiled, then

) p X £ A o— 20 4 = a0\-1/2
Kras(RoRy) = Eppo | S50 P 7 (1 - e fa Zi = 20\
dPgye dPpy | x=1 A Ay
The following examples illustrate the situations that may occur.

Example 4. Let J,; = 1/k* and A, = 1)(k* + k); k=1,2,... and let «° =
= (1, 1). Because the series

& ((ay — D]K? + (2, — DJ(K* + k)\?
L < 1k? + 1)(k* + k) )

k=1
diverges for all &’ = («;, @,) # a® the measures Pg, and Pg,o are orthogonal for

@+ ol

Example 5. For 4, ; = 1/k%; 4, , = 1/k*, k =1,2,...and «® = (1, 1), « = (L, b)
where 0 < b < 2, the series

e R

converges and Pg, is equivalent to Pgyo. If @ = (c, 1) with 0 < ¢ < 2, then the series

(e -1k & [kHc - 1)\?
§(LNEY g (Keo
=1 \1/k* + 1]k =1\ K2+ 1

diverges for ¢ #= 1 and for such a’s that Pg, and Pg,o are orthogonal.

For a discrete stochastic process Y = {X7}2,, where X, = 3 X(s)e(s) ds;
k =1,2,... are independent random variables we have the following model:

ER«:[XE] = izl)“ki“i = ‘Zlaiai s

©
where @; = (A;; A2;, ...) are such that @;el*, that is ) A; < 00; i=1,2,...,n
k=1

But at least one of the vectors a;; i = 1,2,...,n does not belong to the space
H(RL), where RX(i, j); i,j = 1,2, ... is a covariance function of the process Y by
given a®. Actually, letall a;; i = 1,2, ..., n belong to H(RL), then



© /'in had Ari
la:lZurrasy =k; D2, EXﬂ = %2 i <

0
_Z o
i=
fori=1,2,...,n, from which we have:
. i ;
lim — k-0 for i=1,..,n,
k-0 0
2 %A
=1
and this implies
n
0
_Zlailki
lim = =0, a contradiction .

XY
i=1

Because of this fact we cannot use the methods of linear regression analysis given
by Parzen [9] to estimate the vector a.
An unbiased estimate of vector &' = («;, ..., a,) can be found by the method of

least squares. The series Y [X7 — Y A,;]* converges with probability one for
k=1 i=1

0 n
2Y (3 Ao)* < oo.
k=1 i=1

© n
every @; > 0; i = 1,2,...,n because Y E|X7 — Y Jo|*
Next k=1 =1

8

|

i

4 2 . 2
o (Xk - Zl/lkidi)

0 n
L2V (Xihy + Y Aidejor) < o0
1| O i= k=1 =1

k
©

with probability one for every a; > 0; i =1,2,...,n, because Y E|Xik| =
st

«©
=Y Ady; < o0, so that we can write
k=1

PR " @ n
o Z(th - Z}'kiai)z = E(Xf - Z Aki“i) Ay =0
Oy k=1 i=1 k=1 i=1

for j = 1,2,...,n and unbiased estimate &, found by the method of least squares,
is a solution of a system of normal equations

(a5, Y)i
An = :

>

(an, Y)

where the matrix 4 = ||(a;, ;)|

@
i,j=1,2,...n with (@ a;)p =k21/1kii,”- and

261
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(aj, Y)i = ¥, A;Xz. For the matrix A4 we have
k=1

Y (@ a)icic; = 3 (Y Auc)* 2 0
ij=1 k=1 i=1
and from the assumption of linear independence of covariance functions R;; i =
n
=1,2,..,nweget ) Ac; =O0forallk = 1,2,...if and only if ¢; = 0; from which
i=1
can be deduced that A4 is nonsingular and
(a1, Y)ie
1 :

(am ‘Y)lz

&=d"

(Received February 2, 1979.)
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