
Kybernetika

Valentin Chamrád
A fast floating-point square-rooting routine for the 8080/8085 microprocessors

Kybernetika, Vol. 19 (1983), No. 4, 335--344

Persistent URL: http://dml.cz/dmlcz/125096

Terms of use:
© Institute of Information Theory and Automation AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125096
http://project.dml.cz

KYBERNETIKA-VOLUME 19 (1983), NUMBER 4

A FAST FLOATING-POINT SQUARE-ROOTING ROUTINE
FOR THE 8080/8085 MICROPROCESSORS

VALENTIN CHAMRÂD

A speed-oriented implementation of the Newton-Raphson algorithm is described, reducing
the worst-case execution time to the level of standard floating-point multiplication and thus
supporting a wider use of square-root filters in microprocessor-based self-tuning controllers.

1. INTRODUCTION

Square-root is a function for which numerous numerical methods have been
developed. In most math packages for microprocessors, simple iterative methods
have been used, as no special demands for speed — nor even for accuracy in some
cases - are expected: e.g. in [l] and [2] the execution time of square-rooting is
approx. 2-5 times longer than that of multiplication, and in [3] a quintuple error
limit compared with other operations is accepted. Some floating-point packages
do not support this function at all leaving its evaluation to user defined programs

(e.g. W).
In the floating-point subroutine package for the Intel 8080/8085 microprocessors

[6] developed in the Institute of Information Theory and Automation in Prague,
the speed of operation has been strongly emphasized; and as a fiequent use in soft­
ware for self-tuning controllers with square-root filters has been expected, there was
a special demand for a fast square-rooting subroutine with the same accuracy
(+ 1 LSB1) as with all the other operations. It took a considerable effort to match
this condition, and every promising method of accelerating the calculation was
tested — even empirical or intuitive; special testing programs were developed for
this purpose, checking the real deviation of the square-root returned by the sub­
routine under test for all the 32 k significantly different input values and printing
those values yielding results with an error exceeding a preset limit of 0-5, 0-75 or
1 LSB only.

1 The abbreviations MS and LS will be used for most significant and least significant respec­
tively in this paper; in connection with them, B will be reserved for bit, while byte will not be
abbreviated.

335

2. NUMBER FORMAT

The first important step to improve the performance of a floating-point subroutine
is to realize some special properties of the number format used; in our case, this is
defined for every representable number as

(1) x = a.2b, 0-5 < \a\ < 1 > .

where a (mantissa) is a 16 bit FRACTION number in two's complement form,
and b (exponent) is a 7 bit INTEGER in the "excess-64" code, i.e. with an added
offset of 64 to avoid negative values, so that the real value stored in the exponent
byte is

(la) b' = b + 64, 0 g V <. 127

which enables us to use the MSB for overflow/underflow detection. As explained in
[6], the precision of 0003% and the range of representable numbers approx.
+ 3 . 10" 1 9 to + 10 + 1 9 proved to be quite sufficient for most engineering applications;
on the other hand, the achievable execution speed of arithmetic subroutines is much
higher compared to longer formats due to the possibility of using register instructions
only for most operations.

With respect to square-rooting, the first important thing to realize is that we deal
with a product of two numbers, the second of them being a power of two; the opera­
tion thus can be simplified by a conversion — may be fictive only — to an unnorma-
lized format with the next higher even exponent, which can be square-rooted by an
integer division by 2. If we denote the input operand x and the result y, then

(2) b, = I N T [i (6 , + l)]

where INT denotes integer part of the expression in square brackets. In the format
used, the result exponent will be computed as

(2a) b'y = INT \}{b'x + 65)]

Division by the shift right (RAR) instruction yields the Carry bit (LSB of the sum
in parentheses) representing the directive for denormalizing the mantissa; we shall
see later that a different treatment of mantissa instead of real denormalization will
be more useful. A simple analysis of the limit values of b'y shows that neither overflow
nor underflow can occur; no final testing of exponent will therefore be needed.

3. THE ALGORITHM AND ITS CODING

The square-rooting algorithm proper will then operate on numbers in the range

(3) 0-25 <. ax < 1

336

only; the results shall lie within the range of

(4) 0-5 _ ay < 1

and that means that they will be automatically normalized; consequently, no final
normalization will be needed.

Halving of the result range, together with the same resolution of 15 bits for both
the input and result values and with the nonlinearity of the function, causes that we
shall get the same results for two or even three adjacent input values, which should
not be considered erroneous.

For square-rooting of mantissa, we have adopted the Newton-Raphson iteration
formula, used in [2] and [3] as well, which in the ith iteration computes the new
approximation yi+l as

(5) yi+i = l(yi + j

i.e. as the mean value of the old approximation y, and the quotient of the input
value and the old approximation. For the known deviation of the ith approximation

(6) Ay, = y - yt

where y is the correct value of the square root, the deviation of the next step can be
estimated as

W *,,„ = =&*-.
2(y - Ayi)

As a rule, in conventional computers the iteration cycle starts for simplicity with
y0 = x, and the iteration process is stopped when the difference between two succes­
sive values of y, is lower than the accuracy required. A similar method — used in our
testing programs — determines the accuracy of the estimate using the difference
between yt and the quotient computed when evaluating formula (5); using (6), this
difference d{ equals

(8) d-, = yt- - = y + Ayt -I— - + Aqt

yt \y + Ayt

where Aqt is the truncation error of the quotient. For Ayt < v, we can approximate

(8a) di - _ _ _ _ _ + A y ,) - A g . (y + A y ,) ^ 2 ^ _ ^

y + Ayt

and if we assume Aq, to be small enough (which is satisfied by extended precision
in our test programs), we can take

(8b) Ayt m id,

337

Note that the last but one approximation is tested here, so that an accuracy exceeding
the precision of the format used can theoretically be achieved with the final result.

The possibilities of reducing the overall execution time of this iterative process
comprise both reducing the execution time of a single iteration cycle and reducing
the total number of iterations. For the latter way, the only means of reduction is
a better original estimate, which could be constructed simply enough. Practically
the choice is limited to a linear function, as any more complicated function (e.g.
polynomial) would consume more time than another iteration cycle. Let us remind
that this estimate should be constructed using a still normalized mantissa and the
Carry bit representing an even or odd exponent; in other words, the Carry bit tells
us whether the mantissa belongs to the "lower octave" of operands described by

(9) Carry = 0 , 0-25 ^ xL < 0-5, xL = 0-5aL

or to the "higher octave" with

(10) Carry = 1 , 0-5 ^ xH < 1 , xH = aH

We found advantageous to choose different estimates for each octave: in fact, we
used the results of the first iteration, taking the known correct values in the end
points of interval (3) as primitive estimates, but we used a direct method to construct
them.

For the upper octave, we used y0H = xH (correct for x = 1), and from (5) and (10)
we obtained

(11) yia = i (xB + -5£\ = 0-5a„ + 0-5

Similarly, we used y0L = 2xL (correct for x = 0-25) for the lower octave and obtained
from (5) and (9)

(12) y1L = i (lxL + -—) = 0-5aL + 0-25

Equations (11) and (12) can be interpreted geometrically as equations of tangents
touching the square root curve in the end points of the interval (3). Thus we get an
approximation by a broken line (Fig. 1) with a maximum deviation in the breaking
point between both octaves

Almax = 0-75 - 7(0-5) = 0-0428

i.e. approx. 6 1 % of the correct value.

The construction of the estimate is extremely simple, as the additive constant only
depends on the value of the Carry bit after the calculation of result exponent;
a simple logic function has been adopted for the realisation (see the listing at the end,
lines 27 through 35).

338

An advantageous side effect of this estimate is that it always holds

(13) ylL ^ aL and yiH > aH

so that the information on the real exponent (or "octave affiliation") of the input
operand need not be stored for the calculation of the iteration formula (see later).

0.3 0.4 0.5 0.6 0.7 0.8

Lower octave Upper octave
Fig. 1. Square root and its approximations.

For this approximation, we can estimate the maximum error after first iteration
cycle using (7) as

A2max = 0-0014 « 0-2%

and after the second cycle

A3max = 0-0000013 tts 0-0002%

which exceeds already the precision of our floating-point format; a constant number
of two iteration cycles is fully acceptable and helps to reduce the execution time of
each cycle by omitting the test for the accuracy of the result. From this point of view,
the choice of a better first estimate can be considered useless, as even the best linear
approximation — by an intersecting line with symmetrical deviations - might
reduce the max. error At to appr. 1-5% only, which would yield an accuracy of
0-012% after the first iteration cycle, and consequently would not enable any further
reduction of the number of iterations; the construction of any nonlinear approxima­
tion would evidently consume more time than one iteration cycle saved.

By this important modification we entered the second group of methods, i.e.
reducing the execution time of a single iteration cycle, with our next attention concen­
trated on the division in (5) as the most time-consuming operation. However queer it

339

may sound, the most important decision was not to handle the iterations as a loop and
not to use standard division subroutines, and to reduce instead the precision of com­
puting according to the expected accuracy in the respective iteration cycle. In the first
cycle, 10 bits are sufficient for the accuracy calculated above, and — on conditions given
later — even 8 bits (with the precision of 0-4%) will maintain the accuracy of 0-0016%
in the next iteration, which still exceeds almost twice the accuracy needed for the
final result. A special division routine was therefore adopted for the first division:
the MS bytes only enter the operation, the LS byte of dividend being replaced by
its MSB followed by the mean of all possible values of the remainder (i.e. 07FH);
in the program, this is realized by shifting in trailing ones into the remainder instead
of zeros except of the fiist cycle. Full 8 bits are calculated and shifted right before
addition of the first estimate.

For both divisions, due to (13) the end-of-loop is tested for the normalized format
of result only, i.e. one left shift of dividend is added if the starting value of divisor
is greater; as explained before, this can — and always will — occur with the upper
octave operands only. This simplification requires an added precaution for the first
iteration: as the difference may not appear in the MS bytes, a test for zero result
of the first subtraction is unavoidable, causing a skip of the whole first iteration if
true. In this case, the argument lies very close to 0-25 or 1 (within 2"6), and the
corresponding error of the first estimate is less than 0-05%, so that one iteration is
fully sufficient.

For the second iteration, the kernel of the standard division subroutine only was
adopted, thus enabling to omit all the unnecessary parts (such as testing of signs and
zero values of operands, exponent operations etc.); two calls to the internal division
loop FTDSR of the FTAR.LIB package (appended to the program listing for
reference) reduce the extra memory requirement to an acceptable extent. This enabled
us a different testing of operands to be incorporated; with the second division, the
equivalence of operands means that the estimate is correct, and even the second
iteration is skipped.

The final result of the second iteration is rounded using the shifted-out bit of the
final division by two. This is important not only to maintain the accuracy (the limits
of ± 1 LSB would be met even with mere truncation), but to ensure the stability
of a test loop invoking square root and square in turn: due to the not unique assign­
ment of values mentioned above, the loop will reach a stable pair of values not later
than in the second repetition, while with the final truncation it would produce a se­
quence of continuously decreasing values. An analysis of this type of numerical
instability exceeds the scope of this paper.

The flow diagram of the subroutine described here is given in Fig. 2 and the
complete listing of the program in Fig. 3.

340

4. COMPARISON WITH OTHER METHODS

The effect of matching the algorithm, its coding and the instruction set of the given
microprocessor can be demonstrated by comparison of the worst-case execution
times and memory requirements of four types of programs:

a) A user program created by mechanical coding of the Newton-Raphson formula,
using standard floating-point arithmetic subroutines, the primitive initial estimate
y0 = x and the condition yi + 1 = yt for end of iteration, would need 42 bytes
of memory and execute in 1-8 ms per iteration2, i.e. in 6 to 650 ms approx. de­
pending on the size of input numbers.

Г RET)

У l=0.5a+Ooг5
=0 s ' (b x + 6 5) ^

v MÒD г ^
4 = 1

У l =0.5a+0.5
' (b x + 6 5) ^
v MÒD г ^

4 = 1

ROUNDING УЗ = У2

SET FLAGS

(RET ")

Fig. 2. Flow diagram for square root.

2 MHz clock frequency assumed in all compared cases.

341

ISIS-II 8080/8085 MACRO ASSEMBLER» V3.0

SOURCE STATEMENT

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

0000 47 17
0001 EB 18
0002 ftF 19
0003 B2 20
0004 Fft7200 C 21
0007 C8 22
0008 78 23
0009 C641 24
OOOB 1F 25
0000 F5 26
OOOD 9F 27
OOOE EE40 28
0010 E6C0 29
001? 82 30
0013 1F 31
0014 47 32
0015 7B 33
0016 1F 34
0017 4F 35
0018 7A 36
0019 90 37
OOIЛ FA2300 C 38
001D CftЗEOO C 39
0020 C32800 C 40
0023 7B 41
0024 17 42
0025 7A 43
0026 17 44
0027 90 45
0028 2Ю2F8 46
002B 17 47
002C B8 48
002D FA3200 l : 49
0030 23 50
0031 90 51
0032 29 52
0033 DA2B00 C 53
0036 7D 54
0037 OF 55
0038 80 56
0039 1F 57
OÓЗA 47 58
003B 79 59
OOЗC 1F 60

THIS SUBROUTINE ACCEPTS THREE-BYTE F-P INPUT OPERANDS
IN D-E-B (ENTRY FTSRX) OR H-L-A (ENTRY FTSRY) REGISTERS,
RETURNS SQUARE ROOT IN D-E-B REGISTERS? MAX.ERROR < 1 LSB,
MAXIMUM (WORST CASE) EXECUTING TIME 1479 CLOCK PERIODS.

VftLENTIN CHAMRftD, MICROELECTRONIC SYSTEMS DEFT..
INSTITUTE OF INFORMATION AND AUTOMATION THEORY,
CZECHOSLOVAK ACADEMY OF SCIENCE, PRAGUE, CZECHOSLOVAKIA

NAME FTSRT
CSEG
PUBLIC FTSRX»FTSRY
EXTRN FTECH

MOV
XCHG
XRA
ORA
JM
RZ
HOV
ADI
RAR
PUSH
SBB
XRI
ANI
ABB
RAR
MOV
MOV
RAR
MOV
MOV
SUB
JM
JZ
JMP
MOV
RAL
MOV
RAL
SUB
LXI
RAL
CMP
JM
INX
SUB
DAD
JC
MOV
RRC
ADD
RAR
MOV
MOV
RftR

гft

D
FTSNH

ń»B
41H

4 OH
OCOH
D

B»A
ArE

C,A
A,D
U
:«+9
FTSR2

ENTRY FOR INPUT OP IN H-L-A REGS

ENTRY FOR INPUT OP IN D-E-B REGS
SET FLAGS ACCORDING TO INPUT OP
BRANCH FOR NEGATIVE OPERANDS
EXIT FOR ZERO OPERAND

ATUi BIAS TO EXPONENT
DIVIDE BY 2, LSB TO CARRY
STORE RESULT EXPONENT ON STACK
REPEAT CARRY IN ALL ACCU BITS
INVERT 6-TH BIT
CLEAR ALL LOWER BITS
ADD HI BYTE OF INPUT OPERAND
DIVIDE BY 2 AND
MOVE FIRS! ESTIMATE TO B-C. REGS

SUBTRACT HI BYTES OF
INPUT OPERAND AND ESTIMATE
SKIP 2 LINES IF RESULT NEGATIVE
SKIP FIRST ITERATION IF ZERO
GO TO FIRST ITERATION IF POSITIVE
SHIFT INPUT OPERAND LEFT

ftiD

B ! AND REPEAT SUBTRACTION OF HI BYTES
H,OF802H; INITIALIZE RESULT REGISTERS

; FIRST DIVISION LOOPrSHIFT REMAINDER
h ! TRY IF SUBTRACTION POSSIBLE
S+5 J SKIP NEXT 2 INSTRUCTIONS IF NOT
H ! SET RESULT BIT
B J SUBTRACT ESTIMATE
H i SHIFT RESULT, TEST BIT TO CARRY

TEST FOR END OF LOOP
RESULT TO A
SHIFT BACK
ADD FIRST ESTIMATE
SHIFT TO DIVIDE BY 2 AND
REPLACE FIRST ESTIMATE BY THE
RESULT OF FIRST ITERATION

FTSR1
ft,L

B,ň
A»Ľ

Fig. 3a. Program listing for square root.

ISIS-II 8080/8085 MACRO ASSEMBLERr V3.0 FTSRT PAGE

LOC OBJ SOURCE STATEMENT

003D 4F
003E EB
003F AF
0040 91
0041 5F
0042 9F
0043 90
0044 57
0045 19
0046 D25300
0049 7C
004A B5
004B C25600
004E 09
004F EB
0050 C36C00
0053 09
0054 29
0055 19
0056 3E05
0058 CB7E00
005B F5
005C 3E01
005E CD7E00
0061 E1
006? 6F
0063 09
0064 7C
0065 1F
0066 57
0067 7D
0068 1F
0069 CEOO
006B 5F
006C 3E00
006E 8A
006F 57
0070 (J1
0071 C9

0072 3E42
0074 cnoooo
0077 AF
0078 47
0079 57
007A 5F
007B C9

007C 17
007D D8
007E 29
007F 19
0080 DA7C00
0083 09
0084 87
0085 D27E00
0088 C9

61 мov CrA
62 FTSR2: XCHG
63 XRA ft 64 SUB C
65 MOV ErA
66 SBB A
67 SUB B
68 MOV DrA
69 DAП n
70 JNC FTSRЗ
71 мov ArH
72 ORA l.
73 JNZ FTSR4
74 ПAП B
75 XCHB
76 JMP FTSR5
77 FTSRЗ: ПAD B
78 ПAП H
79 ПAП n
80 FTSR4: MVI ArOSH
81 CЛLl. FTПSR
82 PUSH PSU
83 MVI ftrOlH
84 CALL FTDSR
85 POP H
86 MOУ Lrft
87 ПAD B
88 MÜV ArH
89 RAR
90 MOУ DrA
91 MOУ ArL
92 RAR
93 ACI 0
94 MOV ErA
95 FTSR5: MVI ArO
96 AПC n
97 MOУ ПrA
98 PÛP B
99 RET

100
101 FTSNH: MVI ftr42H
102 CALL FTECH
103 FTSUR: XRA A
104 MOУ BrA
105 MOV П,A
106 MOУ ErA
107 RET
108
109 ПHTERNftL ШVISIÜN
110
111 FTПl: RAL
112 RC
113 FTDSR: ПAD H
114 ПAD D
115 JC FTПl
116 ПAП B
117 AПD A
118 JNC FTDSR
119 RET

MOVE INPUT OP TO H-L

PREPARE I.DE3 := -CBCI

SUBTRACT 2-ND ESTIMATE FROM IN.OP
BRANCH IF RESULT NEGATIVE

GO TO SECOND DIVISION IF POSITIVE
RESTORE ESTIMATF IF CORRECTr
MOVE TO [i-E
AND GO TO FINAL FLA6 SETTING
RESTORE INPUT OPERAND
SHIFT LEFT
REPEAT SUBTRACTION OF ESTIMATE
INITIALIZE RESULT REGISTER
FIRST PART OF SECOND DIVISION
PUSH FIRST BYTE OF RESULT ON STACK
INITIALIZE RESULT REGISTER
SECOND PART OF SECOND IHVISION
POP FIRST BYTE OF RESULT
APPEND SECOND BYTE FROM ACCUMULATOR
ABU SECONH ESTIMATE

SHIFT RIGHT TO DIVIDE BY 2 AND
MOVE THIRH ESTIMATE TO D-E

Aim SHIFTEH OUT BIT TO ROUND

ADD CftRRY FROM LO BYTE AND SET
FLAGS ACCORDING TO FINAL RESULT
POP RESULT EXPONENT FROM STACK

ERROR CODE FOR NEC.INPUT OPERANDS
INVOKE USER DEFINED ERROR HANDLER
SET DEFAULT RESULT ZERO AND
CORRESPONDING FLAGS

OF FTDIV SUBROUTINE INVOKED ABOVE !

r SHIFT IN RESULT BIT FROM CARRY
i TEST FOR END OF DIVISION LOOP
r SHIFT DIVIDEND (REMAINDER) LEFT
r SUBTRACT DIVISOR
r BRANCH IF RESULT POSITIVE OR ZERO
r RESTORE DIVIDEND IF RESULT NEGATIVE
r SHIFT RESULT LEFT ADDING ZERO LSD
i TEST FOR END OF DIVISION LOOP

Fig. Зb. Program listinp for square root (conťd)

b) The same program, but with a better initial estimate (halving the exponent) and
testing the difference (8) for end of loop would need appr. 60 bytes and execute
in appr. 5 ms.

c) A BASIC-oriented subroutine published in [2], using separate treatment of ex­
ponent and mantissa, with the same initial estimate and fixed number of iterations
as described above, but standard arithmetic subroutines for mantissa operations,
needs 68 bytes and executes in 4099 clock periods, i.e. slightly more than 2 ms.

d) The subroutine described here needs 117 bytes (FTDSR not included) and executes
in 1479 clock periods, i.e. 0-74 ms, which is 8-5% only more than needed for the
speed-oriented multiplication subroutine described in [6], and even 14% less than
for a standard multiplication (such as that described in [2] with a maximum
of 0-861 ms).

5. CONCLUSION

This subroutine seems to be attractive for use in self-tuning controllers with
square-root filters, because its execution time lies near the geometric average and
thus fills the gap between that of the standard software solution and of a peripheral
hardware unit (such as iSBC 310 with 0-205 ms), the price of which is much higher
than that of the necessary extension of memory and seems to be unaffordable for
usual controller applications.

(Received September 27, 1982.)

R E F E R E N C E S '

[1] S. N. Cope: Floating-point arithmetic routines and macros for an Intel 8080 microprocessor.
Oxford University Engineering Laboratory Report No. 1123/75.

[2] D. W. Clarke, S. N. Cope and P. J. Gawthrop: Feasibility study of the application of micro­
processors to self-tuning controllers. O.U.E.L. Report No. 1137/75.

[3] KIMath Subroutines Programming Manual (KIM Mathematics Subroutines). MCDS
Microcomputer Datensysteme GmbH, Darmstadt 1977.

[4] C. B. Falconer: Falconer floating point arithmetic. Dr. Dobb's Journal of Computer Calisthe­
nics & Orthodontia, Vol. 4, No. 33, 4—14 and No. 34, 16—25.

[5] D. E. Knuth: The Art of Computer Programming II — Seminumerical Algorithms. Addison-
Wesley, Reading, Mass. 1971.

[6] V. Chamrad: A speed-oriented floating-point subroutine package for the Intel 8080 micro­
processors. In": Preprints SOCOCO '79, The 2nd IFAC/IFIP Symposium on Software for
Computer Control, Vol. I., Prague 1979.

Ing. Valentin Chamrad, CSc, Ustav teorie informace a automatizace CSAV {Institute of Informa­
tion Theory and Automation — Czechoslovak Academy of Sciences), Pod voddrenskou v&zi 4,
182 08 Praha 8. Czechoslovakia.

344

		webmaster@dml.cz
	2012-06-05T11:15:50+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

