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K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 6 

Continuous Stochastic Approximation 
Procedure for Evaluating the Point 
at which the Regression Function 
Stops to Be Non-Positive 

EL SAYED SOROUR 

A continuous version of the stochastic approximation algorithm proposed in [2] is considered. 
A function r(x) is observed continuously with Gaussian white noise. We want to estimate the 
point 0 such that r(x) <, 0 for x <, 9 while r(x) > 0 for x > 0. The proving methods developed 
in the book by Nevelson and Hasminskij [4] are utilized to prove the convergence with probability 
one and in the mean square and the asymptotic normality of the procedure. 

1. INTRODUCTION 

Consider the following stochastic differential equation 

(1.1) dX(t) =-a(t) (r(X(t)) dt + a(t, X(t)) d{(t)), X(t0) = x , 

where £(t) is the standard Wiener process. 
Nevelson and Hasminskij [4] have proved the convergence of the procedure (1.1) 

with probability one to the set of roots of r(x) under general conditions. 
They have also proved that the procedure can converge to a narrower set. Namely, 

let 0 be the set of roots of r(x), define B c 0 such that 9 e B if in some of its ^-neigh­
bourhood U^(9) there exists a continuously differentiable function V(x) such that 

V(d) = 0 , V(x) > 0 for x * 0 , r(x) — g 0 for x e U„(0) . 
dx 

Then, they have proved that the procedure (1.1) cannot converge with positive pro­
bability to a point 6 e B. Our goal is to estimate the point 9 such that r(x) ^ 0 for 
x gj 9 while r(x) > 0 for x > 9, when r(x) is observed continuously with Gaussian 
white noise. If the procedure (11) is used, the only thing we can deduce is that the 
procedure converges with probability one to the set of roots of r(x), which does not 
help in our case (because B = 0 (empty set)). 



The problem was attacked before in the discrete time case by Guttman [3] and 
Friedman [2], to estimate the point 6 at which the regression function stops to be 
a constant. 

Using the continuous analogy of the procedure proposed in [2] and exploiting 
the proving methods in [4], we obtain results concerning the convergence of the pro­
cedure with probability one, in the mean square and the asymptotic normality of the 
procedure. 

2. BASIC ASSUMPTIONS AND NOTATIONS 

All random variables are supposed to be defined on a complete probability space 
(Q, g, P). Relations between random variables are meant with probability one. E de­
notes the expectation. The real line is denoted by R and the indicator function of 
a set A by IA. 

The following assumptions will be assumed to hold in the sequel, 

(i) The function r(x) is real-valued and continuous; 

(2.1) r(x) £ 0 for x^O, while if x>9 then r(x) > 0 , x e R . 

(ii) The function a(t, x) is real-valued and continuous function of its arguments for 
t e [f0, oo), x e R. 

(iii) For each N, there exists LN for which 

(2-2) \r(x) - r(y)\ + \a(t, x) - a(t, y)\ ^ LN\x - y\ 

for |x| ^ N, \y\ ^ N; t0 g t g N. 

(iv) C(t) is independent (standard) Wiener process, consistent with a non-decreasing 
family [g„ t ^ t0~] of c-fields of events. 

(v) Xs'\t) is the regular solution, which is continuous with probability one, of the 
stochastic differential equation of the form 

(2.3) dX(t) = b(t, X(t)) At + a(t, X(t)) d£(.) 

with X(s) = Z, £ is gs-measurable. 

(vi) The differential operator 

— + b(t, x) — + - a2(t, x) —-
dt V ' dx 2 V dx2 

of (2.3) is denoted by L. 



452 3. CONDITIONS AND PRELIMINARIES 

The following conditions will be needed as referred to. 

Conditions on the regression function r(x) 

Rl : For some Kl > 0, r(x) ^ Ky(x - 9) for x > 9. 

R2: For some positive constants K2 and K3, there exist positive constants Q and 
h > Q such that 

r(x) < K2(x - 0) for xe[9 - Q, 0] , 

r(x) < K3(x - 9) for x e (- oo, -h + 9). 

R3: For some constant KA > 0, (x - 9) r(x) > KA(x - 9)2, x e R. 

R4: There exists B > 0, such that 

r(x) = B(x - 0) + f(x, 9), xeR, 

where 

\f(x,9)\=o(\x-9\) as x-*0. 

Conditions on the functions a(t) and d(t) 

Al: | a(t) 5(t) df = oo ; f a2(f) df < oo ; lim a(t) = Oj 
J to J to '"* t0 

a(f) ^2(r) d? < oo and lim 8(t) = 0 . 
J to ,_>a> 

A2: o(f) = - ; a > 0 ; - < a < - ; f > ?0 . 
«a 2 3 

A3: i5(?) = - ; <5 > 0 ; ~ < y < 1 - a ; f > / " 0 . 

Conditions on a(t, x) 

CI: |<r(f, x)|2 < K2(l + x2) for all t £ f0 , x e 2? . 

C2: lim <r(f, x) = cr0 . 

We shall also need the following theorem due to M. B. Nevelson, R. Z. Hasminskij 

[4]. 



Theorem 3.1. Let us have a nonnegative real-valued function V(t, x), which is 453 
continuously differentiate with respect to (, and twice continuously differentiable 
with respect to x, and a set A for which 

(3.1) inf V(t, x) -> oo for |x| -+ oo ; 
( S ( o 

let us assume that 

(3.2) LV = -a( ( ) cp(t, x) + g(t) (l + V) , 

where 

(3.3) fl(() > 0 ; j g(t) dt < oo ; a(t) > 0 ; j a(t) dt = oo ; 
J (o J (o 

(3.4) <p(t, x) ^ 0 for all t > t0 ; x e R 

and for all M > Q > 0 

inf <p((, x) > 0 , 
t^T(e),XEVp,M(A) 

where Ue_M(A) = ua(A) n {x : |x| < M}, t>e(A) is the complement of the g-neigh-
bourhood of the set A; Lis the differential operator of (2.3). Further let the con­
ditions 

(3.5) inf V(t, x) > 0 for x <£ A ; V(t, x) = 0 for x e A 
rg(o 

and 

(3.6) lim sup V(t, x) = 0 
X - X (g(0 

be valid. Moreover let b(t, x) satisfy (2.2) (r(x) is replaced by b(t, x)). Then the solu­
tion of (2.3) converges with probability one to the set A for all x e * . 

(This is one-dimensional version of the Theorem 3.8.1 of M. B. Nevelson and R. 
Z. Hasminskij [4].) 

4. CONVERGENCE THEOREMS 

Let a(t) and 8(t) be positive real-valued continuous functions. Let Xx(t) be the 
regular solution of the stochastic differential equation 

(4.1) dX(t) = -a(t) [(r(X(t)) - 5(t)) dt + a(t, X(t)) dC(t)] , 

with X(t0) = x; x e R, t ;> (0. 



•154 It is evident that the differential operator Lof (4+) is 

(4.2) L = | - a(t) (r(x) - 8(t)) A + \ a2(t, x) a2(t) £- . 
dt dx 2 dx2 

Theorem 4.1. If Rl , Al and CI hold, then Xx(t) -*• 0 for t -> oo with probability 
one. 

Proof. Without loss of generality we can take 0 = 0. Defining 

(4.3) V(t, x) = x2 , 

it is evident that V(t, x) fulfils the conditions (3.1), (3.5) and (3.6) of Theorem 3+ with 
the set A = {0}. 

From (4.1), (4.2) and (4.3) we have 

(4.4) LV < -2x a(t) (r(x) - d(t)) + K2a2(t) (1 + V) . 

For x > (2/X,) 5(t), we have by using R l r(x) > 2 5(f). Thus from (4.4) we get 

(4.5) LV < - 2 a(t) 8(t) x + K2a2(t) (1 + V) . 

For 0 < x < (2/Kj) <5(f) the inequality (4.4) can be written as 

(4.6) LV < - 2 a(t) x r(x) + — a(t) 82(t) + K2a2(t) (1 + V). 

For x < 0 the inequality (4.4) can be written as 

LV <. - 2 a(r) x r(x) + 2 a(t) 8(t) x + K2a2(t) (1 + V). 

Using (2+) we get 

(4.7) LV < -2 a(t) 8(t) \x\ + K2 a2(t) (1 + V). 

Ixr(x) for 0 < x < — 5(i); 
<p(t, x) - \ K. 

Defining 

otherwise ; 

a(0 = 2a( f)<5(t), 

^) = ^ 4 ) n O + ^ 2 ( t ) , 

the inequalities (4.5), (4.6) and (4.7) can be written as 

(4.8) LV < -a(t) <p(t, x) + g(t) (l + V) , for t ^ T, . 



From (2.1) and Al it is easy to see that cp(t, x) satisfies (3.4) and from Al it is evident 455 
that g(t) satisfies (3.3), thus by (4.8) the condition (3.2) is also satisfied completing 
the proof of the theorem. 

Remark 4.2. The condition Rl can be somehow weakened to extend the class of 
the regression functions for which Theorem 4.1 is still valid. Let Al and Rl in 
Theorem 4.1 be replaced by Al ' and Rl ' . 

Al ' : J a(t) (5(f) df = oo , j a2(t) df < oo , lim <5(f) = 0 and lim a(t) = 0 . 
J<0 J<0 

Define T(f) > 0, T(f) -> 0 for t -» oo such that inf r(x 
virtue of Al'). x>m 

Rl ' : | a(t) 8(t) x(t) df < oo . 
J <0 

Define T(r) > 0, T(f) -» 0 for t -» oo such that inf r(x) > 2 8(t) (this is possible by 
virtue of Al'). x>m 

Still we can conclude that Theorem 4.1 is valid. 

The p roof can be carried out in steps as in the proof of Theorem 4.L 
In fact for x > z(t) the inequality (4.4) can be written as (4.5). For 0 ^ x ^ T(f) 

we have 

(4.6') LV < - 2 a(t) x r(x) + 2 a(t) 8(t) r(t) + K2a2(t) (1 + V) . 

For x < 0 as in Theorem 4.1, we have (4.7). 

Defining 

_ fx r(x), 0 g x S T(?) , 

Ixl otherwise ; *'M-{j 
a(f) - 2 <»(.)*(.); 

g'(t) = 2 a(t) 5(f) x(t) + K~a2(t) 

then (4.5), (4.6'), (4.7) can be written as 

(4.8') L V g -fx(t)cp'(t,x) + g'(t) for f ^ T, 

and the proof can be completed so as in Theorem 4.1. 

To show that Remark 4.1 extends the class of the regression functions, the fol­
lowing example is used. 

Example 4.1. Put 

r(x) = 0 , - oo < x ^ 0 ; 

= x2 , 0 < x g 1 ; 

= 1, x > 1. 



456 Take a(t) = \\t213 and 8(t) = l / i1 / 3 ; then from the definition of %(t), we deduce that 

<*-(£)• 
It is evident that r(x) does not satisfy R l while Al ' and Rl ' are satisfied. 

Theorem 4.2. If Rl , R2, Al and CI hold, then 

lim E\X'(t) - e\2 = 0 . 
t->-<» 

Proof. As before we can take 6 = 0. Let V(t, x) be chosen as in proving Theorem 
4.1. Then (4.4) can be written as 

(4.9) LV = - 2 a(t) x r(x) + 2 a(t) 3(t) x + K2 a2(t) (1 + x2) . 

For x > 0 and by using the inequality [x| = 1 + x2, we can write (4.9) as 

LV = - 2 a(t) x r(x) + 2 a(t) 5(t) + 2 a(t) o(t) x2 + K2 a2(t) (l + x2) . 

Using R l we get 

LV S ~2K, a(t) x2 +2 a(t) 8(t) + K2 a2(t) + x2(2 a(t) 8(t) + K2 a2(t)) = 

= -Kt a(t) x2 (2 - i - 8(t) - g a(t)) + 2 a(t) 8(t) + K2 a\t). 

From Al it follows that there exists TY such that 

(4.10) LV = -Kt a(t) x2 + 2 a(t) 8(t) + K2 a2(t) = 

= -Kl a(t) V+2 a(t) 8(t) + K2 a2(t) 

for t = Tt. 

For — Q = x < 0 the inequality (4.9), by using R2, can be written as 

LV = -2K2 a(t) x2 + 2 a(t) 8(t) x + K2 a2(t) (1 + x2) = 

= -2K2 a(t) x2 + K2 a2(i) (l + x2) ; 

then as before there exists T2 such that 

(4.11) LV = -K2 a(t) V + K2 a2(t), for t > T2 . 

For — h = x _ — Q the inequality (4.9) can be written as 

(4.12) LV = 2 a(t) 8(t) x + K2 a2(t) (l + x2) = K2 a2(t) (1 + x2) = 

= K2 a2(t) (1 + h2) . 



Finally for x < — /; the inequality (4.9) can be written as 

LV < - 2 a(t) x r(x) + K2 a2(t) (1 + x2) . 

Using R2 we get 

LV < -2K3 a(t) x2 + K2 a2(t) (l + x2), 

and as before 

(4.13) LV < -K3 a(t) V + K2 a2(t) for t > T3 . 

Defining 

(4.14) P(t) = 2 a(t) 5(t) + K2 a2(t), 

T = max (Tl5 T2, T3), 

Ks = mm (KUK2,K3), 

a'(t) = K5 a(t), 

W(t, x) = V(t, x) exp ( a'(u) du\, 

then (4A0), (4.U), (4A2) and (4.13) can be written as 

(4+5) LV^{^^m^2), -h<x<-Q; 
v \-a'(t) V+ p(t) otherwise. 

From (4.2) and (4.14) we get 

(4.16) LW = exp ( I a'(u) du\ (LV + a'(t) V) . 

From Lemma 3.5.1 in [4], Fatou lemma and the regularity of the procedure we get 

(4.17) E(W(t, X(t)) - W(s, X(s))) < E f LW(u, X(u)) du . 

Let us denote 

A = [-(?, oo) u ( - o o , -h) 

and 

p(t) = P(X(t)eA). 

Using (4.15) and (4.16), the inequality (4.17) can be written as 

EW(t, Xx(t)) - EW(s, Xx(s)) < E | / ^ J J3(«) exp ( \ a'(v) dv\ du + 
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+ IÁC !(K2 a2(u) (1 + h2) + a'(u) h2) exp ( ! a'(v) dv\du] = 

= p(t) |*V(«) exp ( !"a'(v) dv\ du + q(t) !(K2 a2(u) (l + h2) 4 

+ a'(u) h2) exp ( a'(v) dv j du , for t > s ^ T > t0 . 

Thus 

(4.18) 

EV(X(t)) S EW(s, Xx(s)) exp ( - | a'(v) dv) + p(t) !p(u) exp (- f a'(v) dv\ du + 

+ K2 q(t) !'a2(u) (1 + h2) exp(- ! a'(v) dv\ du + 

+ q(t) h2 a'(u) exp ( - a'(v) dv\du . 

Consider the right-hand side of (4.18). The first term tends to zero for t -> oo since 
EW(s, Xx(sj) is bounded. The second and the third terms tend to zero for t -• oo by 
Problem 4.4.1 in [4]. 

Let us denote the last term by g(t), i.e. 

g(t) = q(t) h2 a'(u) exp ( - a'(v) dv\ du . 

By integration we get 

g(t) = q(t) h2 (l - exp ( - ! a'(v) dv\\ . 

Using Theorem 4.1, q(t) -> 0 for t -> oo, which implies with Al that ^(f) -» 0, for 
t -> co. Thus 

• lim EV(Xx(t)) = lim B(Xx(t))2 = 0 , 

completing the proof of the theorem. ' 

5. THE ASYMPTOTIC NORMALITY OF THE PROCEDURE 

To establish the asymptotic normality of the procedure, we give the following 
lemma. Its proof can be carried out as that of Lemma 6.2.1 in [4]. 



Lemma 5.1. If R3, A2, A3 and CI hold, then 

E\Xs'%t) - 9\2 = 0(t~~), for t -> oo . 

Here Xs,i(t) is the solution of the stochastic differential equation (4.1) and EJ^|2 < oo. 

Proof. As before, we can take 6 = 0. Take V(t, x) as in proving Theorem 4.L 
By using R3, A2, A3 and CI in (4.4) we get 

(5.1) L V < - 2 i ^ V + ^ * + ^ ( l + V). 

Using the inequality 

(5.2) \x\ = n~H~y + n?\x\2, ^>o, 

we get 

(5.3) LV = -2KAat~~V + K2a2t~2~V + 2a5tit~~V + K2a2t~2~ + 2abn~
1r~~ly. 

By chosing t] sufficiently small, since A3 implies that — a - 2y < — 2a, we get 

(5.4) LV= -KAai~~V+K2a2r2\ for t > T. 

From Theorem 3.1, and (5.4), we can easily deduce that 

- EV(Xs*(t)) = ELV(XsXt)) =g -KAat~~EV(Xsi(t)) + K2a2t~2~; 
dt 

its solution can be written as 

EV(X'-%t))exp(-^±- t1-*) = f ' x V i i - 2 « e x p / ' - - ^ - « 1 - « , ) d « + 

+ EV(XS-%T)) exp (~±- T1 ~~\ . 

Then 

EV(Xs^(t)) ^ m1exp( — m2t
1~~) u~2~exp (m2u1-*)d« + m3 exp ( - m 2 f 1 _ a ) . 

(Here, as well as in the sequel, m with subscript will denote positive constants, possibly 
of different values in different formulas.) 

EV(Xs'%t)) -J m1exp(-m2f1- a)rr aexp(m2 .1- a) - T~~ exp (m.T1-*) + 

+ m2 u~~~1 exp (m2u
l~~) d« + m3 exp (-m2t

1~~) = 

= m^r' + m, exp(—m2f1-11) + mt l(t) , 



460 where 

/ ( ( ) = Г м - ^ ^ e x p ^ - m ^ г 1 - " - м 1 _ Í I ) )d и . 

It is sufficient to prove that I(t) = 0(t "), for t -* oo. Substituting z = t1'" - U1-", 
we obtain 

'*'(,) = rr;].' " n V_'Vy.,-,«p(-»»)d.. 

Then lim 2" /(f) = 0, which completes the proof of the lemma. 

Theorem 5.1. If Rl, R4, A2, A3, CI and C2 hold, then the asymptotic distribution 
of fl2(Xx(t) - 0) is normal with 

(5.5) mean = 0 

and 

(5.6) varience = —° . 
V ' IB 

Proof. From R4, it follows that there exists ^ > 0 such that 

(5.7) \f(x, 0)| = - \x - 6\ for \x-e\<tj. 

From CI it follows that 

(5.8) \a(t, x)| < K' for \x - d\ < t]. 

Let us define 

(5.9) j*(x, 0) = j(x, 0) for \x - e\ <. ^ , 

-f(n + okz$ e\\á for \x-e\>ri 
\ \x - e\ J n 

= a(t, x) for \x - 0\<^ 

= a ít, (n + 9) {* ~ 6h for \x - 8\ > r, 

and 

(5.10) a*(t, x) = a(t, x) for jx - 0\ < ^ , 

Without loss of generality, we can take 0 = 0. Let us consider the following auxiliary 
stochastic differential equation 

(5.11) dX*(t) = -ar*[(BX*(t) + f*(X*(t)) - 5r*) d̂  + a*(t, X*(t)) dC(t)] 

withX*(i) = ^ where £, is 5s-measurable and E|£|2 < oo. 



From (5.9) it follows that R3 holds; then from Lemma 5.1 

(5.12) E\X*s'\t)\2 = 0(rx) for t -» oo . 

Denoting Y*(t) = f<2 X*\i), from (5.11) we get 

(5.13) dY*(r) = (7^ r 1 - aBr*\ Y*(t) - ar*12 f*(x(t)) + aSr"'2"*] At -

-ar«l2a*(t,X*(t))d{(t). 

Then 

(5.14) Y*(t) = a<5 f 7 - Y / 2 exp ( ^ L (tl~* - ul~*)\ U-"l2~» du -

- a P ("-Y72 exp ( - ^ (*--« - K 1 - " ) ) i."*'2/*(**(")) d" -

- a P ("-f2 exp ( / - ^ - (t1 - - - « - - ) ) « " " 2 a*(«, X(«)) d£ + 

+ ^ e x p ( I ^ ( f 1 - - S
1 - ) ) c . 

Let us consider the right-hand side of (5.14). Denote the 2-nd integral by I2(t)- From 
(5.9) it follows that given r\ > 0, there exists Qt > 0, such that 

|/*(x)J g >72|x| for |x| < Qi . 

From Theorem 4.1 it follows 

P[sup|X«(f)| < ( ? , ] > - - I J ; 

by this we can write 

(5-15) 

p[|/2(f)| >»,] <=», + p [ | £ Q a / " e x p ( f r ^ 1 - * " "1"a))/*"~a/2dM 

WOI > Ci] --

> t/: 

sup 

< */ + P u , i__^?.(fi-« _„i-«))) /*! м - ^ d t < > ř / | .g 

_ ij + ij [ (" ( - T 2 exp ( ——• ( r 1 - - «*-")) E[X*(M)| M -^ 2 d«l . 



462 By using the inequality \x(t)\ ^ t~*/2 + fl2\X(t)\2 and (512), the right-hand side of 
(5.15) is less than or equal to 

Denoting 

r, + 2n I" f-Y'2 „- . e x p (_5l (*i-« _ „i--)x
d« . 

G(t) = n £ Q " 2 « " exp (-=££ (f1 - - «-")) d« 

and using the substitution (5.3) z = tl~* — w1—, we have 

(,!6) C ( 0 - * , £ ' - r - - - ' —exp ( . = £ , ) * . 

Thus 

lim G(t) = f/m' exp ( z ) dz = nm", 
Jo \1 - « / 

and then 
lim P[|/2(r)| > n\ = 0. 

Considering the 3-rd integral and defining 

.1,(0 = -a f Q ' V ^ e x p j ^ - ^ . 1 - - "1_a))(^ - *0)dC(«), 

•72W - - « r ( ~ Y / 2 u_a/2 exp f f ^ (( i_a - " i _^ ff° ̂ w 
J A « / V1 - a / 

then 
-MO)2 = a2 [YiJ«-E|a* - a0|

2 exp ( f ^ O 1 " * - «1_"))d« • 

From Theorem 4.1, (5.8), (5.10) and C2 

lim E|(T*(., X*(t)) - <r0\
2 = 0. 

t-<00 

Thus given n > 0, there exists T(*j), such that 

(5.17) E(ni(t)Y fZ a2 P Q V " - V * - a o p e x p f ' ^ O 1 - - «--«))d« + 



Using (5.8), the first integral in the right hand side of (5.17) tends to zero for t -> oo, 463 
while the 2-nd integral tends to 0 for t -> oo. 

Then E(?h(t))2 -> 0, for t -> oo which implies that 

^(f) -> 0 in probability; 

»72(t) is normal random variable with mean zero, and with 

ViYu--exp^(<
1---«1-^d« . 

Using the substitution (5.3) z = t 1 - a — w1_a, the 

a2a% r ( 2aB \ , D, a - 1 
variance = exp z \ az , B = . 

2B' J 0 V 1 - « / 2 
= aalJ2B . 

It is evident that the 4-th term tends to zero for t -> oo. Then Y*(i") is normal with 
variance = aalj2B, and with 

mean = lim ad |" (-X^ exp Lz°L ( t i-« _ u i~«) \ «--/--» dM . 

From A3 it follows that —a/2 - y < —a; then u~a/2~y = e(i,)u_ a , g(«) -> 0 as 
u -> co, thus 

mean = lim ai5 ( - ) «~ aexp( («1_a - M1_a) j e(M) du . 
I— J S V«/ \ l - « / 

This integral tends to 0 for / -> oo as (5.16). Thus f12 X*{t) is normal with 

mean = 0 , 

aa2
0 

variance = . 
2B 

The proof can be completed as in Theorem 6.5.1 in [4]. 
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