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K Y B E R N E T I K A — V O L U M E 29 (199.3) , N U M B E R 6. P A G E S 5 1 8 - 5 4 6 

STRUCTURAL PROPERTIES OF 
SINGULAR SYSTEMS1 

KADRI OzgALDIRAN2 AND LATIF HALiLOGLU 

In this paper, we consider the time-invariant singular system 

E : Ex' = Ax + Bu; y = C'x 

and carry out a detailed analysis of its structural properties. Duality relations among 
different structural properties are also established. 

1. I N T R O D U C T I O N A N D P R E L I M I N A R I E S 

In this paper , we consider the linear, t ime-invar iant sys tem representa t ion 

£ : Ex' = Ax + Bu; y = Cx 

where x G X(= 3fn) , Ex _ X_(= K"-), u G U(= 3i"") and y G y(= 9£p) : We first 

recall some of the results of [1]. Let D denote the set of C 0 0 functions / from 5? 

to 3£ with bounded suppor t , and let V denote the space of d i s t r ibu t ions on D. Let 

X>pdenote the subspace of T> consisting of piece-wise cont inuous d is t r ibut ions . T h a t 

is, x G V is in Vp iff there exist poin ts . . . , T _ 2 , T _ I , TO, r i , T2,. . . in 3J (finitely m a n y 

in any bounded interval) and a piece-wise cont inuous function g such t h a t x = g 

on ( T J _ I , T J - ) for every i. Foreseeing the results to follow, we remark t ha t , roughly 

speaking, x G Vv on any finite interval is like a piece-wise cont inuous function except 

t h a t at finitely m a n y poin ts in the interval, it is given by a linear combinat ion of the 

Dirac del ta and its derivatives. Let X>[T0O), 2?(_O O T] , T>[T], V[Tl |T2j denote the spaces of 

d is t r ibut ions with suppor t in [r, oo), (—oo,r] a t r and in [ r i , r 2 ] respectively. Range 

spaces of these d is t r ibut ions will be de te rmined by the context . 

Now, let x G T'pbe given. Then , there exists an £ > 0 and a piece-wise cont inuous 

function g such t h a t x = g on (T — E,T). Restr ict ion of x to [ r ,oo) , denoted by _[ T i 0 0 ) , 

is defined as follows: 

0 if supp <j) C (—oo,r] 
P[r ,oo) ,^ = 

(aľ, ф) - fLє) g(t)Ф(i) dt if supp ф C [т - є, oo) 

1 This research was supported by Bogazigi University Research Foundation Grant No. 92 A0223. 
2 The first author is also with the Department of Applied Mathematics of TUBITAK Marmara 

Research Center, Gebze-Kocaeli, Turkey 
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This definition determines ~[T)0o) uniquely [1]. Similarly, there is a unique restric­
tion of a: to (—oo,r], which is defined as follows. 

{ 0 if supp <f> C [r, oo) 

(x, 4) - f(
T

T+c) g(t)<j>(t) At if supp <f> C (-co, T+E] 
Again, _C(_~-iT] is uniquely specified by _ and r . Now, given r_ and r2, there exists 
a unique restriction of x to [n ,r2] defined by 

-_-_,-_,] = ~(-co,r2] + %_,__) - X-

In case rj = r2, we shall simply write X[T] instead of ~[r,r]-
Left and right-hand limits of a piece-wise continuous distribution x are defined 

as ~(r_)=lim.|T g(t), and ~(r+)= limfjT (.(_) where g is that piece-wise continuous 
function which agrees with x on ( r — e, r ) and on (r, r + e) for some e > 0. In this 
case, ATx = X(T+) — a'(r_) is the jump in ~ at r. 

Propos i t ion 1.1. For any piece-wise continuous distribution __, we have: 

(i) (x[r,oo))' = (~')[T,OO) + <5T X(T-) (&T — the Dirac delta at r ) , 

(ii) ( x ( - 0 o , r ] ) ' - - ( - ' ) ( - . O Q , r ] - - r - ( T + ) ) 

(hi) (X[TUTA)' = (~')[T,,T2] + 6TlT,(T\) - 5T2~(r2
+). 

We now define asubspace B ofVp as follows, x £ _> iff there exist points .. .r_2 , r_i , 
ro, r i , r 2 , . . . (finitely many in any bounded interval) and matrices Ai, _B,-, C. so that 
on every (r ,_i , r , ) , x agrees with the smooth function y,(_) = C.e^'C*-7"'-1)..?,-.' To 
have a feeling for the way B is defined, let us recall that a distribution with support on 
[0, oo) is said to be of Bohl type if its Laplace transform is a real-rational function 
of s. That is to say, if x = __)'_. ___»^ + CeAtB for some A,B,C and q. It is 
straightforward to show that if x is a Bohl type distribution then its restriction to 
0 is given by __[0] = __,'=i ~.<5^. Thus, a Bohl-type distribution can be written as 
~[o] +~XO,OO) where the latter term is a regular distribution generated by the smooth 
function CeAtB. Now, define the shift operator _rT by 0>a:=__.Li - . 4 0 +CeA^-T">B. 

Given two Bohl-type distributions x,y and a r > 0, we define the concatenation 
of x and uTy by x o <rTy = _[0j + _-(0 f , + (cr-.y)^] + (<rTy)(T)0o). If r < 0, then the 
definition is modified in the obvious way. At this point, it should be clear that the 
space B defined above is the set of all distributions x with the property that on 
any bounded interval [T\, T2] there exist points r0 = T\, T\,..., Tq = T2 and Bohl-
type distributions x0,... ,xq so that the restriction of x to [T,T2] is equal to the 
restriction to [T\, T2] of <rTo__0 © <7T. _c_ . . . © o-Tqxq. Thus, roughly speaking, B is the 
closure of the set of Bohl-type distributions under the operations of (left and right) 
translations and of taking finitely many concatenations. In the sequel we shall also 
make use of restrictions of distributions from B to [0,oo) and to [0, T]. The classes 
of these distributions will be denoted by B[o,oo) a n f l by ~>[o,T]-
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1.1. I n p u t - t r a j e c t o r y pairs for E 

In the sequel, the set of admissible inputs for the generalized state-space system E 
will be taken to be B. Also, even when not explicitly mentioned, we shall consider 
only those solutions of E which reside in B. Thus, by an admissible input-trajectory 
pair (u, x) we shall mean two distributions from B which satisfy E. If E is regular, 
i.e. det(sE — A) ^ 0, then any admissible input generates a unique trajectory from 
B. However, in case the system is not regular, an input from B may fail to generate 
a trajectory or it may generate nonunique trajectories. 

1.2. I n p u t - t r a j e c t o r y pairs for E[0 oo) 

Our main interest in E is for t > 0. To talk about it more precisely, let us assume 
that (u, x) is an admissible input-trajectory pair for E. Using part (i) of Proposition 
IT with the restrictions of x and u to [0,oo), we get: 

£[0,00) : E(x[0iOo))' = Ax[0>oo) + Bu[0iOo) + 6 Ex(0-) 

Thus, any admissible pair (u, x) for E generates an input-trajectory pair for E[o,oo) 
compatible with the initial condition ~(0_). In this case, it can be shown that ~(0_) 
cannot be totally arbitrary, and has to reside in V*, the supremal (A, E, S)-invariant 
subspace of X which is defined as the limit of the subspace recursion 

Vk+^A-^EVk+lmB); V0 = X 

Indeed, we have: 

Proposition 1.2. Let (u, x) 6 B x B be an admissible input-trajectory pair for E. 

(i) M[o,oo) and [̂o.oo) satisfy £[0,oo)- In this case we have ~(0_) £ V*. 

(ii) _(_OO,T] and ~(_OO,T] satisfy 

E(-OO,T] : - ? - ( - O O , T ] = ^ Z ( - O O , T ] + #M(-OO,T] - Ex(T+) 

In this case, we have X(T+) G V*. 

P r o o f . Let u and _ be admissible for E. Then, taking (distributional) deriva­
tives, we get Ex" = Ax' + Bu'. Taking restrictions of x", x' and u' to [0,oo) and 
using Proposition 1.1 we conclude that 

Ex'{0oo) - Ax'[0oo) - Bu'[0oo) - 6'0Ex(0-) = 60{Ex'(0„) - A~(0_) - B_(0_)} 

Noting that the LHS is the derivative of ExL , — Ax[0:0o) — Bu[0iOo) — 60Ex(0-) 
(which equals zero), we conclude that 

Ex'(0-) = Ax(0_) + Bu(0-) 

Repeating this procedure, we conclude that 

£~ ( j ' )(0_) = ^x«- 1 ) (0_ ) + S_(J'-1>(0_); j= 1,2,... 
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Now, _7_(n)(0_) = Ax-^-^O-j+W"-1)^-) implies that x("-1)(0_) G A~1{lmE+ 
ImB} = vi. Then, x("-2)(0_) G A~l{EVi + InxB} = v2. Proceeding, we get 
~(0_) G vn = v*. Proof of (ii) is follows in exactly the same manner and will be 
left to the reader. • 

On the other hand, it is possible to think of a situation where the structure of the 
system changes at t = 0 due to some desired or undesired switching. In this case, 
such an assumption about the initial condition cannot be made. In what follows,we 
shall let x(0_) be free. Thus, we shall also be interested in solutions of E[o,oo) which 
are not necessarily the restrictions of solutions of S. However, even in this case, only 
distributions from #[o,oo) will be admitted as control inputs and among all solutions 
generated by such inputs, we shall be interested in only those which reside in _?[oi00). 

It follows immediately from the definition that there exists an admissible input-
trajectory pair of S[ol00) corresponding to a given initial condition iff there exists 
a pair of Bohl-type distributions _[o,oo) and X[0iOO) satisfying £[o,oo) with the same 
initial condition. Therefore, we shall be interested first in Bohl-type input-trajectory 
pairs of E[0ioo). Given x(0_), let two Bohl-type distributions X[o,oo) and W[0)Oo) satisfy 
E[o,oo). Let X(s) and U(s) denote their Laplace transforms. Laurent expansions of 
X(s) and U(s) around infinity yield 

X(s) = x _ , s ' + • • • + x _ i _ + x0 + x i s - 1 + x2s~2 + • • • 

U(s) = W_,_1.S , + 1 + ••• + U _ i S + W0 + U i S - 1 + M 2 S - 2 + ••• 

Note that the inverse Laplace transform of the polynomial part of X(s) is exactly 
the restriction X[0] of X[oi00) to 0 and the inverse Laplace 'transform of the strictly 
proper part of X(s) is X(o,o_). Substituting the expansions above into the Laplace 
transformed system equation 

(sE - A) X(s) - BU(s) = Ex(0_) 

we get two sets of equations in terms of the polynomial and strictly proper parts of 
X(s). The first one reads 

(sE - A) Xsp(s) - BUsp(s) = Ex(0+) 

(where x(0+) = xi) and the second one reads 

(sE - A)Xpoly(s) - BUPoiy(s) = Ao^x. 

Thus, we conclude- that if X[0|OO) = X[0] + X(0,oo) and _[o,oo) = -[o] + -(0,00) satisfy 
S[oi00) with x(0_) then X[0] and X(o,oo) satisfy the following equations: 

E[0] : E(x[Q])' = Ax[0] + 5«[o] - AoE'x 

£(0,00) : £(~(0,oo))' = ^(o,oo) + B-(0,oo) + - J-_(0+) 

To investigate some of the properties of Bohl type input-trajectory pairs of £[o,oo)> 
let us first denote the limit (which is reached in at most n steps) of the subspace 
recursion 

7~a,„+i = E~x (ATla,k + ImB); 7-a,0 = 0 
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by TZa. The recursion above is known as the almost controllability subspace al­
gorithm. This terminology will be justified in the sections to follow. Also, let us 
define 

11* = V* DTZ*a. 

Then, we have the following result: 

Propos i t ion 1.3. Let _(0_) be given. 
(i) There exists a pair (-(o,oo),£(o,oo)) of smooth function-distributions satisfying 

2(0,00) i f f - (0+)€V*. 

(ii) There exists a pair («[o], *[o]) of distributions with point support satisfying X,[0] 

iff A 0 _ €K*a. 

(iii) There exists a pair (w[o,oo). ^[o.oo)) of Bohl type distributions satisfying Sfo.oo) 

with _(o_) iff _(o_) e (v* + n*a). 

P r o o f . Parts (ii) and (iii) have already been proved in [2]. We nevertheless 
include a sketch of the proof here as its main idea will be used frequently in the 
sequel. Let (~[o,oo)i ^[o.oo)) D e a Bohl-type input-trajectory pair for £[p,oo) consistent 
with the initial condition _(0_). Let X(s) and U(s) denote their Laplace transforms. 
Then, equating the coefficients of the like terms in (sE — A) — BU(s) = E_(0_), we 
get: 

Ao~ = Ax0 + Bu0 Ex2 = Ax i + Bu\ 
Ex0 = Ax-\ + Bu-\ E_3 = Ax.2 + Bu2 

Ex-q = Bu-q-\ : 

In the above, A0_ = _i - _(0_). Now, the last equation in the first column above 
implies that __, G E~llmB = Ka,l- Then, an easy induction arguement shows 
that __,+ j G 7-aj+i- Thus, _0 G Ha,q+\ and Ao~- G Hq+2 C Tl*a. On the other 
hand, if Ao_ G TVa then there exists an integer / such that Ao_ G TZi- This implies 
the existence of an _o and a u0 satisfying A0Ex = Ax0 + Bu0 where _0 G TZ-t-i-
That _o G TZt-\ implies that there exist X-\ G H1.-2 and a u_i such that Ex0 = 
Ax-\ + Bu-\. Proceeding in this fashion, we conclude that there exists a finite 
sequence {_o,__i , . . . , - -?} where „_j G Tlt-j-i and X-q satisfies Ex-q = Bu-q-\ 
(q = £— 2). Note that this completes the proof of (ii). 

To prove (i), let / = n + 1. Then, Ext = Axt-\ + Bui implies that xt~\ G 
A-^EX + lmB} = V\. It then follows by induction that xt-j G Vj,j=l,...',£-l. 
Thus, _i G Vt-\ = v„. As Vn = V*, we have x\ G v*. Conversely, if x(0+) = 
_i G v* then there exist -2 and u\ with x2 G v* such that Ex2 = Ax\ + Bu2. 
Proceeding, one defines an infinite sequence {x\,x2, • • •} satisfying the equations 
given in the second column above , and this completes the proof of (i). Finally, we 
note that (iii) follows immediately from (i) and (ii). • 

We now present two theorems from [4] which will be crucial to the developement 
of the section to follow. 
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Theorem 1.1. Let («[o,oo)i~[0,oo)) be a pair of Bold type distributions admissible 
for £[0,00) corresponding to some initial condition _(0_). 

(i) For a l l . > 0, ~(o,oo)(<) -V*. 

(ii) If x(0+) 6 72* then for all t > 0, ~(0,oo)(0 ' K*• 

(iii) If x{0,oo)(T) = 0 for some T > 0 then ~-(o,oo)(0 6 n* for all t > 0. 

Remarks , (i) Although it does not make sense to talk about the "value" of a 
distribution at a point, on any interval_ (0,T), a Bohl-type distribution can be iden­
tified by the smooth function which agrees with it. Similarly, on any interval (TJ, T%) 
which contains no jump points, a generalized Bold type distribution can and will be 
identified by the smooth function which generates it. So the reader should read the 
statement above and similar ones to be presented below as statements made about, 
the smooth function ~(o|00)-

(ii) A distribution _ is said to lie in a subspace S iff (a;, <f>) ~ S for any test function 
<j>. It can be shown that the distributional equivalents of the statements given in 
the theorem are: (i)- ~|o,oo) G V* + 72* and for any r > 0, the restriction of ~[o,oo) 
to [T, 00) lies in V*, (ii) If a;(0+) G 72* then ~'[o,oo) lies in 72* and for any T > 0 its 
restriction to [r, 00) lies in 72*, (iii)- If X(T+) = 0 for some r then ~[o,oo) lies in 72* 
and for any r > 0 its restriction to [T, 00) lies in 72*. 

P r o o f . To prove (i), we note that if X(s) = x\s~x + x2s~2 + • • • is the Laplace 
transform of _(o,oo) then Xk G V*,V£ G Z+. Since ~(0,oo)(t) = ICfe-l xk(k-\~y. is 

obtained via term-by-term inverse transformation of a Laurent series which converges 
for all s ~ C satisfying |.s| > | s i | (for some s\), it is absolutely convergent for all 
t > 0 (see Section 30 of [5]). This and the fact that V* is closed (thanks to finite 
dimensionality) guarantee that _(o)00)(0 lies in V* for all t > 0. 

To prove (ii), we recall that A0a; G 72*. Then, A0~ = ~(0+) - _(0_) and the 
assumption _(0_) = 0 imply that ~(0+) G 72*. However, ~(0+) is also equal to 
limt_0XX=i~<fc(i-T)T = -"!• T h u s > x\ G V* n72*, i.e. x\ G 72*. If xk t= 72* 
is assumed then Exk+\ = Axk + Buk implies that a .̂+ i G E~l{An* + \mB} C 
£'-1{A72*-|-Im£.} =72*. As xk+\ G V* also, we conclude that xk+\ GV*n72;=72*. 
Therefore, xk G 72*,V/c G Z+. Then, as above, absolute convergence of ar(0>oo)(0 for 
all t > 0 and closedness of 72* guarantee that a;(0;OO)(0 G 72*, Vr. > 0. 

To prove (iii), suppose x(T) = 0 for some given T > 0. Clearly, x(T) G 
72*. Assume that x^\T) G 72* for some j . Then, smoothness of the solution 
grants Ex^+1\T) = Axj(T) + Bui(T) which immediately implies that ~^ + 1)(T) G 
E~]{An*a + ImB} = 72*. Thus, xj(T) G 72*Nj G Z+. Expanding the solution 
into a Taylor series around i = T, v/e write _(o,oo) = Yl'jLo -"* (-I") 71 • Since 
~(0,oo) is absolutely convergent for all t > 0, we have ~-(0+) = J_j_i -^(T) j j • 
As ~j G 72*,Vj G .2*+ and as 72.* is closed, we conclude that ar(0+) G 72*. Then it 
follows that ~(0+) G V* n72.*. That is to say, x(0+) ~ 72*. As before, let ar, be 
the coefficient of the s~' term in the Laurent series of Xsp(s). We have shown that 
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x\ = x(0+) is in K*. This can be used as the first step of an easy induction argue-
ment which establishes the fact Xj G K*,V j 6 Z+. Then, X(o,oo)(t) = E j = i xi^T l'es 

in K* for all < > 0. ' *' D 

Theo rem 1.2. 

(i) If x(0+) = 0 then -C(o,oo)(0 € K* for all t > 0. Conversely, if xs G K* is 
an arbitrary but given vector then for any T > 0 there exists an admissible 
pair (u(o,oo),*(ooo)) for £(o oo) which is compatible with x(0+) = 0 so that 
x{0tOo)(T) = Xf.' 

(ii) If a.(o.oo)(T) = 0 for some T > 0 then x(0+) € K*. Conversely, if x(0+) <= K* 
is arbitrary but fixed then given any T > 0 there exists a Bohl-type pair 
(u(o,oo) 1 (̂0,00)) for S(o,oo) compatible with x(0+) such that X(0)Oo)(T) = 0. 

P r o o f . First, note that the first statements in both parts of the theorem have 
been already stated and proved in Theorem 1.1. Now, assume that T > 0 and 
Xf € K* are arbitrary but given. To prove (i), we shall construct a Bohl-type input-
trajectory pair (ujo.oojj^to.oo)) satisfying S[o,oo) with x(0-) = 0 such that x(0+) = 0 
and X[0oo)(T) = Xf. To that end, first define dimK* by r. It is established in [14] 
that there exists a linearly independent chain {£ i , . . . ,£ r} in K* so that 

£ 6 = Bu0 

E& = A£x + Bui 

0 = Air + Bu>r 

for some Wfc's. Now, define xk's by: 

{ 0 if k = 1 

TtZhjtt-i if* = 2 , . . . , r 

E L r 7 i 6 - i i f t = r + l > . . . , 2 r 
and u..'s by: 

f E ^ h i ^ - i if* = 0 , . - . , r - l 
-* = j E j = i T.fWp+1-i iffc = r 

I El-rTi-'t-i if* = r+l,.. .>2r 

Note that Xk's and u/-'s thus, defined satisfy 
Exi = 0 

Exk+i = Axk + Buk\ k=l,...,2r 

Ax2r + Bu2r = 0. 
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Define ~]o,oo) and M[0|OO) by: 

£ tj-1 - ^ ij"1 

-to,*,) = 2_, xi (7-~i)i; uto.~) = 2w "'" (JZT)! 

Then,(_[o,oo), «[o,oo)) is a Bohl-type input-trajectory pair for S[o,oo) compatible with 
_(0_) = 0 such that «[o,oo) also satifies x(0+) = 0. Given _ / , write xj = a i ^ i + 
. . . + ar_> for some a\,..., ar. Then it can easily be checked that _[0 -^(T) = xj 

iff 
1 _T rT 
-p2 /T>3 npr+1 

i r "5r • " "~~n 

Г г + 1 — 2 r - l 

(273TT! J 

" 71 ' " « i 
72 

= 
<*2 

. > . . ar . 

As the matrix above is nonsingular for T 5- 0, 7. can be solved for in terms of a,-. 
Then, £[o,oo) defined using these 7,- will satisfy _[o,oo)(T) = */• 

To prove (ii) let the chain {f i , . . . ,£ r} be as defined above. Write x\ = ai£i + 
h ar£r, and define Xk's by: 

i t = r E;_ifc_1) «jej+(*-D - E J : _ 7 * ^ _? *=2, . . .> 

I ___--7j&-J if_ = r+l , . . . ,2r 
and Ufc's by: 

{ Ej r_i f c _ 1 ) "jwj+(fc-i) - E j _ i 7JW--J if Jr = 1 , . . . , r 

E j W - r 7 j « r + l - J iffc = r + l , . . . , 2 r 

Note that Xk's and u^'s thus defined satisfy 

_7_, = Ex(Q+) 

Exk+i = Axk + Buk; k=l,...,2r 

Ax2r + Bu2r = 0 

Define _[0lOo) and -[0,00) by: 
2 r - l tj_i 2r ^ _ i 

-[0,00) = _ T *J 7J3T)Ti u[°.~) = ___ "- ^TTT)! 

Then,(_[oiCO), -[0,00)) is a Bohl-type input-trajectory pair for S[o,oo) compatible with 
any x(0_) which satisfies £7_(0_) = £_(0+). It can be easily checked that x[0 oo)0r) = 
Oiff 

L 7! XIÍL 
(r+T)T 

T г + ' 
ÎГ+Ï7! 

T 2 — , 
ГŽT-TІ! J 

71 
72 

L 7r 

< * 1 

a i T + a 2 

a i T г - 1 + a 2 T r - 2 + --- + a r 
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As the matrix above is nonsingular for T y- 0, 7,'s can be solved for in terms of 
T and a,'s. Then, ~(Q,OO) defined using these 7,'s will satisfy ~[0 ) O o )(T) = 0'. This 
completes the proof of the theorem. D 

After considering S [ 0 ) O o ) with Bohl-type inputs and trajectories, we can now 
concentrate on the same system with an arbitrary admissible input-trajectory pair 
(-[0,00)1 <-[o,oo))- Recall that admissible input-trajectory pairs for S [ 0 | O o ) are of the 
form 0 1 - 0 

U[0,oo) = - © "V, u 0 (TT2ir Q ... 
_[o,oo) = x° 0 a^x1 0 aT2x

2 Q ... 
where each pair (ul, _ !) is of Bohl-type and is admissible for S[o|0o) with initial condi­
tion x ' - 1 ^ " ,) (_°(r0

-) is taken to be _(0_)).lt should be clear that understanding 
the behavior of -jo,00) i-s equivalent to understanding its behavior on an interval 
[r,_i, n] which contains no jump points in its interior. Assume, without loss of gen­
erality that r,_i = 0 and r. = r. Then, taking the restrictions of ~[o,cc) and U[0 ) O o ) 

to [0, T] we write X[0)T] = _[0] + ~ ( 0 ) T ) + _ [ T ] (where _[0] = x°0], _(o,r) = _ 0
0 ) T ) , and 

_[T] = <7T(X1)[0]), and u [ 0 i T ] = u [ 0 ] + u { 0 , T ) + U [ T ] (where u [ 0 ] = u°0], U(0lT) = «°0 | T ), 
and U [ T ] = o-T(ul)[o]). Using part (iii) of Proposition 1.1, we get: 

E [ 0 i T ] : £(»[_.-])' = .4-_o,r] + B-[O,T] + <5£x(0_) - <5T E _ ( T + ) 

which, after some simple manipulations yields: 

S[0] : £(-[0])' = Ax[0] + Su[0] - 6A0Ex 

E(0,r. : ^ ( _ ( 0 , T ) ) ' = ^_(O,T) + B«(0>r) + -_?-(0+) - 6TE~(r_) 

S[r] : _?(-[f])' = AX[T] + £Ju[r] - 6TATEx 

In the light of the equations above, we conclude there exist x(0+) and _(r_) so that 
(u[o],_[o]) satisfies S[0] with jump _(0+) —x(0_), (U[T] ,X [ T]) satisfies S[T] with jump 
x(r+) — _(r_) and x(0,r) solves the two-point boundary value problem with initial 
and final conditions ~(0+) and x(r_). Our assumption that (u°,~°) is a Bohl-type 
input-trajectory pair for S[0)Oo) compatible with x(0_) together with Proposition 
1.3 implies that: (i) _(0_) 6 V* + n*a, and (ii) x(t) € V*, t e (0 , r) . On the 
other hand, since (u^x 1 ) is assumed to be a Bohl-type input-trajectory for S[0)Oo) 

compatible with the initial condition x(r_), we conclude, again by Proposition 1.3, 
that x(r+) G V*. Thus, we have ATx 6 V*. However, that ATx is an admissible 
jump for S [TJ implies, again by Proposition 1.3, that ATx G n*a also. Therefore, we 
have ATx G V* C\n*a = n*. 

Now, consider a general trajectory -jo.oo) of S[o,oo) compatible with some initial 
condition _(0_). Let 0 = r0, n, T2, ... denote the jump points of the trajectory.The 
following proposition generalizes our discussion above. 

Propos i t ion 1.4. 

(i) If r = 0 then AT G ft*a and if r > 0 then AT G K*. 

(ii) For all t G (r._i,T.), i = 1,2,..., we have ~[o,oo)(<) G V*. 
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Theorem 1.3. 

(i) If x(0+) g 71* then for all t g (-<_«., rj), we have _[0,oo)(0 g &*> and for all 
r,'s, i > 1, we have AT| g 71*. 

(ii) If for some r. > 0, we have -![O,««J)(T+) = 0 then ~[ol00)(0+) g 71*. 

P roof. Theorem 1.1 (ii) immediately implies that x(t) g 7J* for all t g (0, ri); in 
particular, we have X(T~) g 71*. It follows from Proposition 1.3(i) that _(r,+ ) g v*. 
Thus, ATlx g v*. However, Proposition 1.3 (ii) and time invariancy imply that 
ATla? g 7S* also. Therefore, A r ,_ g v* flft* = 71*. Then we have _(r,+) = X(T~) + 
ATix g 71*. Now, repeating this arguement on (ri,r2) proves that « ( r + ) g 71*, 
repeating it on (r2,ra) proves that _ ( r + ) g 71* etc. This completes the proof of (i). 

To prove (ii), assume that _-(r+) = 0. Then, since ATix g TV, we have _ ( r f ) g 
71* also. But then it follows from Theorem 1.1 that X(T^_{) g 71*. Again, repeated 
applications of this arguement proves the result that x(0+) g TV. • 

1.3. Inpu t-trajectory pairs for S[O,T] 

E[O,T] arises in a number of different ways. First, if («, x) € B X B is an admissible 
input-trajectory pair for E then restrictions of u and x define an admissible input-
trajectory pair for S[O,T] compatible with some boundary values ~(0_) and *( -+) . In 
this case, it follows immediately from Proposition 1.2 that _(0_) and x(T+) cannot 
be arbitrary but have to reside in v*. 

Secondly, input-trajectory pairs of S[o,T] may be thought of as the restrictions of 
admissible pairs for E[o,ew) to [0, T\. In this case it is not in general true that _(0_) g 
v* (although it follows from Proposition 1.3 that _-(0_) g v* +7Va). However, the 
assumption that _[O,T] has an extension to SR+ implies that x(T+) g v*. 

Finally, as we shall be doing in the sequel, S[O,T] can be considered as a separate 
entity given together with some end conditions x(0_) and X(T+). To justify this, we 
note that one may very well conjecture the situation where the system at hand has 
varying structure, and that the system equations hold only on [0,r], with _(0_) and 
_( r + ) specified by the past and the future of the system (this would, for instance, be 
the case if controlled or uncontrolled switchings at 0 and at r result in some changes 
in the structure of the system). Now, consider S[O,T] with given end conditions _(0_) 
and _( r + ) . Let (-[O1T]I-,[O,T]) € %I ,T] X B[O,T] he an admissible input-trajectory pair 
for the system, Clearly, everything that was said for the trajectories of E[o,<») are 
also valid in this case except for the assertion that _(7+) g v*. Properties of the 
trajectories which follow immediately from the discussions and the results of Section 
1.2 are summarized below. 

Propos i t ion 1.5. Let r.'s denote the jump points in X[O,T]. 

(i) If 0 < r. < T then ATlx € TV. If n = 0 or if r. = T then AT,_ g ft*, 

(ii) For all t 6 (r, '_i,r;), we have _(/,) g v*. 
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Theorem 1.4. 

(i) If x(T+) = 0 then x(0+) € 11*. 

(ii) If x(0+) = 0 then x(T+) € H*. 

2. CONTROLLABILITY AND REACHABILITY 

Before beginning our discussion of structural properties, let us introduce the notion 
of the order of a distribution. A distribution x is said to be of finite order if it is the 
distributional derivative of a function / which is continuous on 5ft, i.e. if x = /(*) for 
some nonnegative integer k. The least integer for which this equality holds true is 
known as the order of x. Note that this terminology is not standard and some authors 
define the order of x as the least integer k for which x = /(*+2) (compare Section 3.4 
of [5], Section 12 of [6] and Section II.3 of [7]). Here, we adopt the definition given 
in [5]. Being the second distributional derivative of the unit ramp function (which is 
continuous on 5ft), the Dirac delta has order 2, and its jth-order derivative S^ has 
order j + 2. Note that if x is a Bohl type distribution then order of x is k + 2 where k 
is the degree of the polynomial part of X(s). It is of order 1 if X(s) is strictly proper. 

For a trajectory of the form X[0,T] = Z[To]+ar(ro,T1)+a:[Tl]+Z(T1>T2) + !--"(T,1>T,)+."[T,] 
we define its order as max{ord(x[T.j) : i = 0 , 1 , . . . , q] if not all of ord(x[Ti])'s are 
zero, and otherwise we define its order to be one. Note that an order one trajectory 
x[o,T] is piece-wise continuous on any open set which contains [0,T]. 

We can now start our investigation of controllability/reachability properties of 
three different types of systems introduced in the previous section. We first consider 
the system defined over some finite interval [0,T]. 

2 .1 . ControUability and Reachability of £[O,T] 

In this subsection, we let T > 0 be an arbitrary but fixed time. We resume our 
discussion by first presenting a number of definitions for the system defined over 
[0,71. 

Definition 2 .1 . 

(i) An initial condition £ of S[O,T] is said to be controllable of order k (k > 
1) if there exists an admissible input-trajectory pair (-[o.Tli-^o.T]) which is 
compatible with £x(0_) = £ and Ex(T+) = 0, and satisfies ord(x[0,T]) = k. 

(ii) A final condition is said to be reachabie of order k (k > I) if there exists an 
admissible input-trajectory pair (V.[O,T],X[O,T]) for £[o,T] which is compatible 
with Ex(0-) = 0 and Ex(T+) = £, and satisfies ord(x[0,T]) = k. 

Definition 2 .2 . If T = 0, then £ is said to be instantaneously controllable of order 
k and £ is said to be instantaneously reachable of order k. 
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Definition 2 .3 . 

(i) S[ 0 ,T] is controllable (instantaneously controllable) of order k if every initial 
condition is controllable (instantaneously controllable) of order k (k > 1). 

(ii) S[O,T] is reachable (instantaneously reachable) of order k if every final condition 
is reachable (instantaneously reachable) of order k (k > 1). 

After defining them precisely, we can now characterize these structural properties. 
We first present a more detailed version of Proposition 1.3 (ii). 

Proposition 2 .1. Let r > 0 and a ATx be given. Let na,k denote the kih step 
of the almost reachability subspace algorithm. There exists a pair of Bohl-type 
distributions (u[T),X[T)) with ord(x[Tj) = k (k > 1) satisfying Exi, = Ax[T] + EU[T] — 
6TEATx <=> EATx £ Ana,k-\ + IrnE <=> ATx G na,k. 

P r o o f has already been given for the case k > n (see the proof of Proposition 
1.3). One only needs the do some bookkeeping to show the result when k < n. • 

The following result, that we present in the form of a theorem, is indeed nothing 
more than an immediate corollary to the result above when r is taken to be 0. 

Theorem 2 .1 . 

(i) An initial condition E:c(0_) is instantaneously controllable of order k <=>• 
x(O-) G na,k <=> Ex(0-) G Ana,k-\ + Im£?.Therefore £[0)Tj is instanta­
neously controllable of order k <=> na,k = X <=> Ana,k-\ + ImE D 
ImE + ImB. 

(ii) A final condition Ex(T+) is instantaneously reachable of order k <£=> x(T+) £ 
na,k <=$- Ex(T+) € A'Jla,k-\ + ImB. Therefore £[O,T] is instantaneously 
reachable of order k <==> na,k = X <==> Ana,k-\ + ImB D Im_7 + ImB. 

Having characterized controllability/reachability of S[O,T] f ° r T = 0, we can now 
consider the same system with T > 0. In this case, we have the following results. 

Theorem 2.2 . Let k > 1 and T > 0. Then: 

(i) An initial condition Ex(0-) is controllable of order k <=> x(0-) € n* + 
na,k <*=> Ex(0-) G En* + Ana,k-\ + ImB. Therefore E[0)T] is controllable 
of order k <=> n* + na,k = X <==> En* + Ana,k-\ + ImB D ImE + ImE. 

(ii) A final condition Ex(T+) is reachable of order k <=> x(T+) £ n* +na,k <=> 
Ex(T+) G En* + Ana,k-\ + ImE. Therefore S[ 0 ) T] is reachable of order 
k<=>n* +na,k = X <=> En* + Ana,k-\ + ImE D ImE + ImE. 

P r o o f . We shall only prove part («'). Part (ii) is proved similarly. Now, let ar(0_) 
be a controllable initial condition of order k for S[O,T]- Then, there exists an input-
trajectory pair («[0 ,T]I X[O,T]) € S [ O , T ] X % , T ] satisfying S[o,T]with the end conditions 
Ex(0_) and Ex(T+) = 0. It should be clear from the proof below that there is no 
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loss of generality in assuming that ~-[O,T] is of the form a-'[o,T] = _o0-V-. 0(-"T-~)[o] 
where _ Q , _ I , ~ 2 are Bohl-type distributions. By taking restrictions of?/ and x to t 
for £ € (0,r) and for / £ (T,T), it can be easily deduced that the input, u has to be 
of the form u = u° 0 cr-u1 0 (<TTU2)[O] where u°, ul ,u2 are Bohl-type distributions. 

Now, it follows from Proposition 1.5 that A T - € 7_*. Since, by assumption of 
controllability, we have Ex(T+) = 0, it follows that _(T_) £ 7J* + Keri. = 7.*. As 
(ui,a;i) is a Bohl-type input-trajectory pair we also have, again by Proposition 1.5, 
_(T_) £ V*. Thus, _(7_) £ U*. Then, a very minor change in the proof of Theorem 
l.l(iii) shows that _(r+) £ 1Z* also. 

Now, Exi, = Ax[T] + fiu[T] - 6TArEx implies that ATa; £ 7?.* (see Proposition 
1.3). Then, x(r+) - a;(r_) £ 7?.*, U* C U*a and X{T+) £ 11* imply that _ ( T _ ) £ 7?.*. 
On the other hand, since (_o,«o) i,s a Bohl-type input-trajectory pa.ir we conclude 
from Theorem l.l(i) that x(rJ) £ V* also. Then, ar(r_) £ V* n 7_* = 71*, and 
it follows that _,(Q+) £ 7?.*. (Note that this is indeed the proof of Theorem 1.4(i) 
which was not given when it was stated.) Thus, _(0_) £ 7?.* + 7?.* because ExL, = 
Ax[o] + Bu[o] - 60A0Ex implies Aoa; £ U*a. Now, let p be the least integer for which 
A0_ £ %a,p- Then, _(0_) £ 7?.* +1ta,P. Finally, we note that the way order of 
i[o,T] is defined guarantees that p < ord(a;[Q,T]). Let k denote ord(_[o,T])- Then, 
since {Ua,j} is monotone nondecreasing, we have 7£a,,, C 1Za,k and consequently 
x(0-)elia+1la,k. 

To prove the converse, let _(0_) £ U*a + 7_a,<.. Choose an _(0+) £ 7-* such that 
Aoa; = a;(0+) - _ ( 0 _ ) is in Ua,k' Then there exists a sequence {_o,__i,... ,x-k+2} 
of vectors which satisfy 

A0Ex = Ax0 + Bua 
Ex0 = Ax-\ + Bu-i 

Ex-k+2 = 0 + Bu-k+i 

for some _,, i s 0 , - 1 , . . . , — fc + 1. Clearly, if U[o] and a![o] are defined by 

u[0] = u0S + u_i^L ) + • • .__„+,_<*- l> 

„[0] = _ 0 . + _ _ 1 „ ( 1 ) + . . - a ; _ , + 2 ^ - 2 ) 

then (u[o],_[oj) is an admissible pair for £[0] compatible with _(0_) and _(0+). 
Now, given _(0+) from 7?.* and T > 0 there exists a smooth input-trajectory pair 
(«(o,oo)i-;(o,oo)) of *-(o,oo) compatible with _(0+) such that a; satisfies x(T+) = 0. 
Then, u = U[0] + U(0,c_) and a; = aj-0] + ~(o,oe) yield an input-trajectory pair for 
*-[o,oo) compatible with the given initial condition. Restricting this pair to [Q,T] 
yields an input-trajectory pair for _.[O,T] compatible with the end condition £?_(0_) 
and with _(T+) = 0. Clearly, order of _[o,T] '8 equal to the order of _[o] which is k. 
Hence the proof. • 

IUuiiarks. (i) The results above make it clear that controllability (instantaneous 
controllability) of order k is the same property as reachability (instantaneous reach­
ability) of order k for all k > 1, 
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(ii) Note that TZ* C 7Za,n and {!£<.,fc} is monotone nondecreasing. Thus, if k is large 
enough (k > n) then the distinction between controllability of order k and instanta­
neous controllability of order k also disappears (and all four properties collapse down 
to one single condition which isTJ* = X). Indeed, this result is in tune with intuition 
which states that whatever can be done by impulses can be done instantaneously. 
The only difference between these properties is in the highest order derivative of 
the Dirac delta required to drive the initial condition down to zero. If the control 
effort is distributed over a finite interval then the highest order derivative of 6 which 
is required may turn out to be less than its counterpart when the control effort is 
concantrated at one point. 
(iii) Again, in the limit, we have indeed one property characterized by the condition 
TVa = X. Although it would be quite natural to call this property simply controlla­
bility/reachability in our context, it has already been introduced and called "almost 
controllability" in the pioneering work of J.C. Willerns [8] for proper state-space 
systems (the adjective "almost" is used to differentiate the concept from the usual 
controllability where an initial condition can be taken down to the origin in finite 
time along a smooth trajectory generated by a smooth input). Thus, adopting the 
terminology of Willerns, we shall also use the phrase "almost controllability (reach­
ability)". To emphasize this choice of terminology, we repeat the result above one 
more time. 

Definition 2.4. S[O,T] is almost controllable (almost reachable) <=> 7v* = X <=> 
AH*a + Imfl D ImE +' In_4 + ImB. 

The following corollary follows immediately from the results established above. 

Corollary 2 .1 . Given any ~(0_) £ TZa, x(T+) 6 TVa and T > 0 there exists an 
input-trajectory pair admissible for S[o,T] and compatible with Eai(0_) and E~(T+). 

One would naturally try to avoid impulsive trajectories when driving an initial 
condition down to zero or in reaching a finite condition from the origin. Therefore, 
first order controllable (reachable) initial (final) conditions are of special significance 
because they involve piece-wise continuous trajectories. An order-one (i.e., a piece-
wise continuous) trajectory is generated by inputs of order < 2. Iinpracticality of 
generating impulsive inputs render it more important to have a separate classification 
of those first-order controllable (reachable) initial conditions (final conditions) which 
can be driven down to the origin (which can be reached from the origin) by using 
first-order (i.e., piece-wise continuous) inputs. 

Definition 2.5. A first order controllable initial condition Ex(Q-) (reachable fi­
nal condition Ex(T+)) will be referred to as simply a controllable initial condition 
(reachable final condition) if there exists an input-trajectory pair («[O,T]> X[O,T]) sat­
isfying Sfo,T] with £x(0_) and Ex(T+) = 0 (with £x(0_) and Ex(T+) = 0) and 
such that ord(«[0)T]) = 1. S[o,T] is said to be controllable (reachable) if every initial 
(final) condition is controllable. 
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T h e o r e m 2.3. £ [ 0 ,T] is controllable (reachable)<==> 11* + KerE1 = X <=> Ell* + 
^Ker£: + ImB D ImE + ImA + ImB. 

P r o o f . Note that at any jump point r (including r = 0 and r = T), we 
have _[-] = 0 because the trajectory has order one as implied by the first order 
controllability of the initial (final) condition. Then the restriction of the equation 
to r yields 0 = Bu[T] — 8TATEx. If it is further required that U[T] = 0 then the 
equation becomes 8TATEx = 0. Thus, we have ATx G Ker£\ Then taking r = 0 
and noticing that Ex(T+) = 0 implies x(0+) G K* proves that _(0_) G TV + KerE. 
Similarly, taking T = T and noticing that Ex(0-) = 0 implies x(T+) G 11* proves 
that x(T+) G 11* + KerE. D 

Definition 2.6. If the trajectory in Definition 2.4, is restricted to have no jumps 
at t G (0,T) and also satisfies _(0_) = x(0+) and x(T_) = x(T+) = 0 then _(0_) is 
said to be completely controllable. If the trajectory in Definition 2.4, is restricted to 
have no jumps at t G (0, T) and also satisfies x(0_) = x(0+) = 0 and ~(T_) = x(T+) 
then x(T+) is said to be completely reachable. We say that S[o,T] is complete­
ly controllable (reachable) if every initial condition (final condition) is completely 
controllable (completely reachable). 

Using the conditions _(0_) = x(0+) = 0 and _(T_) = x(T+) in the proof of 
Theorem 2.3 shows that: 

Theo rem 2.4. x(0_) is completely controllable <=>• _(0_) G IV. x(T+) is com­
pletely reachable <=> x(T+) G 11*. Therefore S[O,T] ls completely controllable (com­
pletely reachable) <=> U* = X. 

The way it is defined together with the result above shows that complete control­
lability is a property of _(0_) rather than of £_-(0_). Therefore, the condition for 
complete controllability (complete reachability) was given in the domain. Indeed, 
if the order of the trajectory mentioned in the definition of complete controllability 
is defined to be zero, then the result expressed in the domain on controllability of 
order k can be re-written to state "_(0_) is controllable of order k for k > 0 iff 
_(0_)G ft*+•£_,*". 

Note that 11* = X iff V* = X and 1l*a = X. We have already stated that although 
any trajectory of E[oi00), when restricted to [0,T], yields a trajectory of S[O,T]I the 
converse statement is not true in general in the sense that given a trajectory of %[O,T] 
compatible with some end condition x(T+) there does not always exist a trajectory 
z of S[o,oo) such that _[O,T] = -"[o/r] aR^ u m U T - = x(T+). In case the converse 
statement is also true we shall say that the system is complete on 5t*+. A trajec­
tory ~[O,T] C-U he extended to a trajectory ~[o,oo) in the sense mentioned above iff 
x(T+) lies in V*. Thus, the system is complete iff V* = X. Thus, complete con­
trollability is equivalent to completeness and almost controllability. Consequently, a 
more appropriate choice for terminology would be to call almost controllablity sim­
ply controllability in which case complete controllability would be the joint property 
of completeness and controllability. As the theory of singular systems has already 
suffered a lot from nonhomogenous terminology, we have adopted the terminology 
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that we introduced because, as mentioned above, the condition n*a = X has already 
been called almost controllability by J. C. Willems [8]. 

If the reachability/controllability properties defined above above hold for a sys­
tem with the property \mE + ImA + ImB = X_ then they are prefixed by the word 
"strong", e.g., strong almost controllability, strong complete reachability etc. The 
adjective strong is justified by the observation that if \mE + ImA + \mB = X_ then 
all the dynamical properties introduced hold true even in the presence of determin­
istic (generalized Bohl-type) disturbances. Here, we shall not discuss this aspect. 
For interpretations of strong properties in terms of a discrete-time system with dis­
turbances, see [9]. See also [12]. We also note that a condition expressed in the 
codomain, e.g., EH* + All* + ImB = X_ implies TV = X although the converse 
statement is true only if \mE + \mA + ImB = X_. This fact provides extra justifica­
tion for the adjective "strong". Finally, we note that restricting the system operators 
E, A and B in their codomains to Imi? + Imyl + ImB makes the distinction between 
the plain and stronger versions superfluous. 

Definition 2.7. 

(i) S[o,T] is strongly instantaneously controllable of order k (k > 1) •$=> Ana<k-i+ 
ImB = X 

(ii) £[o,T] is strongly controllable of order _ ( „ > _ ) <=>• Ell* +A7la k-i+lmB = 
__ 

(iii) S[o,T] is stronly almost controllable (reachable) <=>• ATI* + ImB = X_. 

(iv) S[o,T] is strongly controllable (reachable) <_=> Ell* + AKerE + ImB = X_. 

(v) S[o,T] is strongly completely controllable (strongly completely reachable) <=> 
ETl* + AR* + ImB = X. 

2 .2 . ControUability and Reachability of £[o,oo) 

Having defined and characterized controllability/reachability properties of £[o,_] w e 

now return to E[o)00). As controllability/reachability properties for E[o,oo) are also 
defined for finite time, we naturally adopt all the definitions introduced for £[O,T]-
For instance, we shall say that Ex(Q-) is an order-k controllable initial condition 
of E[o,oo) if it is an order-it controllable initial condition of E[O,T] f° r some T > 
0. However, we shall require that all the inputs and trajectories involved in these 
definitions have extensions to di+. That is to say, it will be assumed that ~[0,T] = 
(Z)[O,T] and «[0 IT] = (w)[o,T] f° r some z 6 £>[0iOO) and u € #[o,oo) where z also 
satisfies lim(|T z — X(T+). It is easy to realize that this requirement does not impose 
any restrictions on any one of the controllability definitions introduced for £[O,T]-
Indeed, if («[O,T], ^[o.T]) is an admissible input-trajectory pair for E[O,T], T > 0, which 
drives _7_(0_) down to the origin at t = T+ then («[O,T] © <T#> X[O,T] © "T^) (where 
0 denotes the null distribution on 3?+) is an admissible input-trajectory pair for 
£[o,oo) compatible with initial condition Ex(0-) and with final condition x(T+) = 0. 
Furthermore, a careful reading of the proofs of the results of the previous subsection 
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reveals that there is absolutely no loss of generality in assuming that in definitions of 
all types of controllability properties, admissible input-trajectory pairs can be taken 
to be of Bohl-type (rather than of generalized Bohl-type). 

T h e o r e m 2.5. Let I denote ImE + Iir_4 + ImB. Then: 

(i) S[o,oo) is fcth-order instantaneously controllable <=> na,k = X <=> Ana>k-\ + 
ImB D ImE + ImE 

(ii) S[o,oo) is fcth-order controllable<=> n* + na,k = X <==> En* + Ana,k-\ + 
ImB D ImE + ImE 

(iii) S[o,oo) is almost controllable <=> H*a = X <=> AWa + ImE = X 

(iv) S[o,oo) is controllable <=> n* + KerE = X <==> En* + AiKerE + ImE = I 
(v) S[0,oo) is completely controllable <=> n* = X <=> En* + An* + ImE = X 

We also have the stronger versions of these properties. 

T h e o r e m 2.6. 
(i) £[o,oo) is fcth-order strongly instantaneously controllable<=> Ana,k-\ + ImE 

= __ 
(ii) S[o,oo) is Hh-order strongly controllable<=> En* + Ana,k-i + ImE = X_ 

(iii) S[o|0o) is strongly almost controllable <=> An*a + ImE = X_ 

(iv) S[o,oo) is strongly controllable <^=> En* + A KerE + ImE = X 

(v) £[0>oo) is strongly completely controllable <=> En* + J47_* + ImE = X_ 

Unlike controllability, reachability properties of S[0|Oo) do get affected by the re­
quirement that the input-trajectory pair defined on [0,T] to reach a final condition 
should have an extension to [0,oo). Now, &th-order reachability of some final con­
dition x(T+) can be defined in the same way as it is done for S[O,T] except we now 
have to assume that the final condition x(T+) is reached along a trajectory which 
is of the form {-[O)0O)}[O,T]- Proposition 1.2 (ii) implies that in this case x(T+) lies 
in V*. This and x(T+) _ n* (implied by the reachability of the final condition) 
together imply that x(T+) 6 n*• Thus, in this case all definitions of reachability 
reduce to that of what we called complete reachability. 

Theorem 2.7. 

(i) S[o,oo) is completely reachable <=» n* = X <=> En* + An* + ImE = X. 

(ii) S[0>oo) is strongly completely reachable <=> En* + ATt* + ImE = X_. 

Note that, the proof of Theorem 1.2 shows that if a final condition for S[0jOO) 
can ever be reached in some finite time T then it can be reached along a trajectory 
which is smooth on (0,T) and has no jumps at t = 0 or at t = T. 

The relation between the results of [10,11] and the definitions introduced here is 
worth considering. In [10,11], only inputs and trajectories of order 1 were considered. 
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Thus, what is defined to be controllability in [10] is the controllability of this paper 
also. However, in [10,11] the trajectory on [0,T] along which a given final condition 
is reached has an extension to [0,oo). Thus, reachability of [10,11] is the same as 
complete reachability of this paper. As far as other definitions introduced in the 
literature are concerned, we note that our controllability is impulse controllabilty of 
Cobb, or equivalently, controllability as defined by Verghese and our complete con­
trollability is controllability of Cobb, or equivalently, controllability of Rosenbrock 
(see [1]) when the system is regular. 

2.3. Control labi l i ty and Reachabi l i ty of E 

Finally, we consider controllability/reachability properties of E. In this case also, 
we basically use the definitions introduced for E[ 0 |T]- However, we require that the 
inputs and the trajectories used in the definitions have extensions to 3?. In this 
case, it follows from Proposition 1.2 that any initial condition has to reside in V* 
and so does any final condition. Among these initial conditions only those from 
1Za can be driven down to the origin in some finite time. Therefore, the set of all 
controllable initial conditions is V* fl Ha = 71*. Among these final conditions only 
those from 7l*a can be reached from the trivial initial condition in finite time. Thus, 
the set of all reachable final conditions is V* H7J* = 11*. Therefore, for E, the only 
meaningful definition of controllability is that of complete controllability, and the 
only meaningful definition of reachability is that of complete reachability (of course, 
we also have the stronger versions of these properties). Thus, for £, just as it was 
the case for E[ 0 ] T] , there is no need to make a distinction between controllability and 
reachability. However, unlike the case for E[0 ,T] or for E[0?oo), we now have only one 
meaningful property rather than a set of distinct properties. 

T h e o r e m 2.8. 

(i) E is completely controllable (completely reachable) <=> 71* = X -t=> EH* + 
ATI* + ImB = J . 

(ii) E is strongly completely controllable (strongly completely reachable) <=>-
Ell* + All* + ImS = X. 

3. OBSERVABILITY AND RECONSTRUCTIBILITY 

In this section, we shall consider E, E[0jOO) and E[O,T], all with 5 = 0, and consider 
observability properties of these representations. We define the following algorithms: 

VK
+1 = KerC n A~lEVK; VK = KerC* 

lla/+l = Keren E~lATI0/; 7la
K

fi =0. 

Limits of these algorithms are reached in at most n steps and they will be denoted by 
VK and by ll*a K respectively. The first limit denotes the supremal (A, E)-invariant 
subspace contained in KerC and the second one is the supremal almost controllability 
subspace of the homogenous system Ex' = Ax contained in KerC 
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3 .1 . Observability and reconstructibility of £ 

We resume our discussion by first considering the restriction of E to some finite 
interval [0,T]. That is,we consider 

S[ 0 ,T] : E(x[0iT])' = Ax[otT] + <5£~(0_) - STEx(T+); 2/[0,T] = C~-[o,T] 

where £[o,T] € £>[o,T] is the restriction to the interval of some B solution of the 
homogenous equation with end conditions Ex(0-) and Ex(T+). We consider the 
problem of identifying the initial condition (final condition) from the knowledge of 
the output and its derivatives on [0,T]. We shall assume that (J/)[O,T] is given for 
j = 0,1,2,... ,™. Note that, by Proposition 1.1, this is equivalent to saying that 
2/[o,T], 2/(0-), 2/'(0_), . . . j / * - 1 ) ^ - ) and y(T+), j / ( T + ) , . . . t ^ ^ t T f ) are given. 
Note that the proof of Proposition 1.2 shows that a compatible initial condition 
satisfies Ex(j')(0_) = y l x ^ - ^ O - ) for j = 1,2.... Therefore, the given data cannot 
uniquely determine the initial condition uniquely if there exists a nontrivial Ex(0_) 
which is compatible with a trajectory ~[0)T] G KerC and which satisfies E~J(0_) = 
Ax'~x(0-) (j = 1 , . . . , fc-1) for some sequence {~'(0_),.. •, ~ ( fc-1}(0_)} from KerC 
This observation motivates the definition to follow. 

Definition 3 .1 . Let {£'x(0_), Ex(T+)} be compatible with some x[0iT] which 
yields t/[0]T] = C~-[o,T] = 0. Ex(0_) is said to be unobservaWe with k differenti­
ations (k > 1) if there exists a sequence {~'(0_),..., x ( f c - i ; i(0_)} from KerC satisfy­
ing Exj(0-) = Aa j_ 1(0_) (j = 1 , . . . , k - I). Ex(T+) is said to be unconstructibie 
with k differentiations if there exists a sequence {x'(T+),..-, ~ ( i - 1 ) (T+)} from KerC 
satisfying Ex^(T+) = Ax^'l(T+) (j = 1 , . . . , k - 1). 

This definition is slightly stronger than necessary in the sense that it does not 
take into account any further restrictions imposed on the initial condition by the 
assumption that the trajectory involved is the restriction of some trajectory x of E. 
(For instance, it follows immediately from Proposition 1.2 that ~(0_) has to lie in 
V* of the homogenous system). We nevertheless adopt it because of two reasons. 
First, it admits a nice duality interpretation. Secondly, and more importantly, we 
shall mainly be interested in the limiting case of k > n when the above mentioned 
restriction is satisfied anyway. 

Definition 3.2. E is observable with k differentiations iff there exists no nontrivial 
Ex(Q-) which is unobservable with k differentiations. E is reconstructible with k 
differentiations iff there exists no nontrivial Ex(T+) ^ 0 which is unconstructibie 
with k differentiations. 

Definition 3 .3 . In case T=0, then the properties given in Definitions 2.1 and 2.2 
are said to hold instantaneously. 

We can now proceed to characterize these properties geometrically. 
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Theorem 3.1. 
(i) _-x(0_) is instantaneously unobservable with k differentiations iff 

Ex(0_)e EVK~\ 
(ii) Ex(T+) is instantaneously unconstructible with k differentiations iff 

Ex(T+) _ EVK~X. 

P r o o f . Now suppose that there exists a sequence {x'(0_), • •. ,x( i _ 1 ) (0_)} from 
KerC satisfying _.xJ'(0_) = _4xJ -1(0_) (j = 1,...,_). Then, £ .x» - 1 ) = -4x(*-2) 
implies x(fc-2) G A-1£.KerC = VK. Then, this and Ex<>-2) = _4x(*-3)irnplies that 
_(fc-3) - ^ - l ^ K e r C = VK. Proceeding, it follows that x(0_) G V£ - 1 . Conversely, 
if x(0_) e V£ - 1 then there exists an x'(0_) G v£-fc"2) such that /tx(0_) = Ex'(0_). 
Given x'(0_) G V(

K~2) there exists an x"(0_) G V{
K~3) such that Ax'(0_) = 

£.x"(0_) etc. Thus, such a sequence from KerC exists for x(0_) iff x(O-) - V^fc_1) 

and therefore such a sequence exists for Ex(0_) iff £.x(0_) G EV{
K~l). Then, finally, 

taking aj(0+) = ~J(0_) and taking X[0] = 0 completes the proof of (i). (ii) is proved 
similarly. • 

Theo rem 3.2. 
(i) £.x(0_) is unobservable with k differentiations iff Ex(0_) G EVK~X ~\ (EVK + 

AH*a K). Therefore, E is observable with k differentiations iff EVK~l ^(EVK + 
A%a\K) = o. 

(ii) Ex(T+) is unconstructible with k differentiations iff Ex(T+) G EVk-i<^(EVK + 
A1laK). Therefore, E is reconstructible with k differentiations iff EVK~ C\ 
(EV*K + A1l*aK) = 0 

P r o o f . Again, only (i) will be proved. Symmetrical arguements will prove 
(ii). There is no loss of generality in assuming that _"[0,T] is t n e restriction of some 
Bohl-type trajectory to [0,2j. It has been established in [15,16] that _.x(0_) is 
compatible with a Bohl-type trajectory iff £.x(0_) G (EVK+ATl*a K)nlmE. On the 
other hand, the restrictions at 0_ are satisfied iff __x(0_) G EVK~l. Thus, Ex(0_) 
is unobservable with k differentiations iff Ex(0_) 6 EVK~^ n (E V*K + AU*aK). a 

It should be clear from the results above that unobservability (resp. instantaneous 
unobservability) and unconstructibility (resp. instantaneous unconstructibility) are 
the one and the same property. That in at most n steps the distinction between 
these properties disappears should be clear from the results above and the fact that 
the sequence Vfc is monotone nonincreasing and reaches its limit in at most n steps. 
Thus, if k is large enough then all of these four properties reduce down to the 
condition EVK = 0. 

Now, let us consider the condition EVK = 0, or equivalently, VK G Ker£. nKer_4n 
nKerC. It follows from the analysis of [15,16] that EVK = 0 is a necessary and 
sufficient condition for a Bohl-type output to determine Ex(Q+) uniquely. On the 
other hand, it follows from the way instantaneous unobservability is defined and 
characterized that it may also be called jump-observability. Indeed, if x is a trajec­
tory of E and if X[T] is its restriction to r then it can be shown that ATx(')'s satisfy 
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EATXW = AATx(i~^ for i = 0, 1,2,. ... Then AT?/') = CA r i ( ' ' ' ' s uniquely deter­
mine EATx ifF E'V^=0. One is interested in the jump EATx because, together with 
yw], it may specify arr-i. However, a necessary condition for this to happen turns out 
to be KerEnKer^lnKerC = 0, and this condition holds true for a system satisfying 
EV£ = 0 iff V£ = 0. Thus, it seems that a more meaningful condition is V£ = 0, 
which could possibly be called strong jump observability. Note that in such a system, 
the knowledge of ATy(')'s is sufficient to determine ATx uniquely. In this case, if a 
segment of the output is smooth on some (0, T) then it follows that x is also smooth 
on the same interval. Then, on (0,T), _ may be identified by the smooth function 
generating the distribution , and the relations Ex^'\t) = A~(!_1); y^(t) = Cx^l\t) 
may be employed to determine x(t) uniquely for all t £ (0,T). 

These interpretations of the conditions EV£ = 0 and V£ = 0 notwithstanding, 
we note that the first one is necesssary and sufficient for the knowledge of (J/(J;) )j0 Tj 
for j = 0 , 1 , . . . , n to determine E~(0_) (Ex(T+)) uniquely, and the second one is 
necessary and sufficient for the same data to determine ~(0_) (x(T+)) uniquely. 
Forseeing the duality results to be presented in the sequel, we call them almost 
observability and strong almost observability. 

Definition 3 .4 . 

(i) £ is said to be almost observable (almost reconstructive) iff the knowledge of 
(j/^)[o,T] for j = 0, 1 , . . . , n determines £~-(0_) (Ex(T+)) uniquely. 

(ii) £is said to be strongly almost observable (strongly almost reconstructible) 
iff the knowledge of ( ^ ^ [ O . T ] for j = 0, l , . . . , n determines x(0_) (x(T+)) 
uniquely. 

Geometric characterizations of these properties are summarized below. 

Theorem 3 .3 . 

(i) £ is almost observable<£=> EV*K = 0 <=> V£ = KerE n Ker^ n KerC. 

(ii) £ is strongly almost observable<=> V£ = 0. 

P r o o f . To prove (i), note that sufficiency of the condition £?V£ = 0 is immediate 
in the light of the theorem above. To prove necessity, assume that EV£ ^ 0. Let 
Ex(Q-) £ EVj^. Then, there exists a Bohl-type trajectory ~ (see [15,16]) compatible 
with £7~(0_) and which lies in KerC. Let r > 0 be arbitrary. Define £ = <r_T~. 
Clearly, £(0_) e KerC, satisfies the restrictions ££0')(o_) = A^-^O.) and £[0|T] 

lies in KerC for any T > 0. Therefore, if £7V£ -̂ 0 then the initial condition cannot 
be determined from the knowledge of (j^)[o,T]- This proves (i) as the equivalance 
of the conditions EV% = 0 and V£ = KerEnKerylnKerC is trivial. Note that with 
almost no change this also proves (ii). • 

The more interesting (and the more realistic) problem is that of observing the 
initial condition and reconstructing the final condition from the knowledge of y[o,T] 
only. Even more significant is the problem of reconstructing the trajectory ~[o,T] 
from the knowledge of j/[o,T]-
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Definition 3.5. 

(i) An almost observable system E is said to be observable (respectively recon-
structible) if y[o,7-] uniquely determines Ex(O-) (respectively Ex(T+)). 

(ii) A strongly almost observable system E is said to be strongly observable (respec­
tively strongly reconstructible) if J/[O,T] uniquely determines £[0 ,T] and Ex(0_) 
(respectively ai[o,T] a n c l Ex(T+)). 

Theorem 3.4. 

(i) E is simply observable (reconstructible)<=> ImE n (EV*K + A7Z*aK) = 0 <=> 
(VK + U*aK) n A~l ImE = KerEnKer^nKerC. 

(ii) E is strongly observable (strongly reconstructible) <=> (V*K+7l*a K)C\A~l\mE = 
= 0. 

Proo f . Since the system is assumed to be almost observable, without loss of 
generality we may assume that Ex(0+) is known. Then, Ex(0_) can be determined 
iff A0Ex can be determined from j/[0]- Clearly, this can be done iff A0Ex — 0 is 
the only jump corresponding to j/[0] = 0. Now, if X[0] = x06 + .. . + x_q6^ lies 
in KerC and satisfies E[o] with some jump A0Ex then it follows immediately that 
(i) A0Ex- = Ax0, and (ii) x[0] C HaK. Thus, A0Ex G A7l*aK n \mE. On the 
other hand, if A0Ex ~ A7ZaK n ImE then there exists an xo € 7Z* K satisfying 
A0Ex- = Ax0. Since x0 ~ 7Za K one can easily construct a sequence {x^\,..., x_9} 
in 7ZaK such that x[0] = x06 + ... + x_q6^ satisfies E[0] with A 0Ex. As X[0] 
lies in 7Z*aK C KerC, we have j/[0] = 0. To recap, i/[0] determines A0Ex uniquely 
iff A7Za K n ImE = 0. Therefore, in an almost observable system, Ex(0_) can be 
determined uniquely iff A7l*a Kn\mE = 0. Then, EV^- = 0 and A7Z*aKn\mE = 0 can 
be compactly written as ImEn(EV;c + A7la K) = 0. As the symmetrical arguement 
for reconstructibility will be left to the reader, this completes the proof of (i). 

To prove (ii), we note that we may safely assume that y is smooth on (0,T) 
and that the corresponding smooth function-distribution X/0,T) has already been 
determined uniquely. It remains to consider the problem of determining x[0] and X[T] 
from j/[o] and from 2/[T]. Only the first problem will be tackled and the second one 
will be left to the reader. Now, j/[0] determines X[0] uniquely iff the only X[0] ~ KerC 
which satisfies E[0] for some A0Ex is the trivial one, i.e., _[0] = 0. Clearly, a 
necessary condition for this to happen is that no x0 ~ 7Va K satisfies Ax0 = A0Ex 
for any possible A0Ex. That is to say, a necessary condition is ATI* K n ImE = 0. 
In case the system is strongly almost controllable, i.e., VK = KerEnKer^lnKerC = 
0, this condition is also sufficient. Indeed, if this condition is satisfied then the 
coefficients of the only possible X[0] satisfy Ax0 = 0 ; Ea:0 = Ax_\ ; . . . ; Ex_q+\ = 
Ax-q ; Ex-q = 0. If a subspace recursion is defined by Ck+\ = KerC D A~l ECk 
with C0 = KerA D KerC, then it immediately follows that Xj £ Cj. Note that 
the sequence {£,} is monotone nondecreasing and therefore we have Cj C C* for 
all j where C* denotes the limit of the recursion. However, it is immediate that 
C* C VK = 0. Thus, we have C* = 0. Thus, in a strongly almost observable system, 
2/[o] uniquely determines _-[0] iff A7l*aK n ImE = 0. Again, this is a necessary and 
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sufficient condition for identification of X[T] also. Thus, it is necessary and sufficient 
for determining ~[o,T] from J/[o,T] in a strongly almost observable system. Hence the 
proof. • 

We now present the strongest observability/reconstructibility definition. 

Definition 3.6. A strongly observable system E is said to be strongly complete­
ly observable (respectively strongly completely reconstructible) if 2/[O,T] and y(0_) 
(respectively 2/[o,T] and y(T+)) uniquely determine ~(0_) (respectively _(T+)). 

Theorem 3.5. E is strongly completely observable (strongly completely recon-
structible) <£=> VK+TZ*aK = 0. 

P r o o f . Note that strong observability grants that ~(0+) can be identified from 
the output data. Thus, ~(0_) can be determined iff Ao~ can be determined from 
y[o,T] and from y(0~). Clearly, since y(0+) is also given, the problem is that of iden­
tifying Ao~ using the knowledge of ?/[0],and A0y. A0x can be determined uniquely 
from the knowledge of A0~ and j/[0] iff the only jump A0~ which is compatible with 
a trajectory X[0] = x06 + ... + ~_?<5? in KerC, and which satisfies CA0x = 0 is the 
trivial one. Now, it is trivial to show that a jump A0~ satisfies CAoy = 0 and is 
compatible with some ~[0] £ KerC iff A0x £ 1t*a K. Hence the proof. • 

Note that in any one of the properties defined above the stronger version is 
nothing but the plain version together with the condition Ker_7nKerAnKerC = 0. 
This fact and the observation that the geometric condition EVK = ATI*. K = 0, 
when augmented by the condition KerEnKerAnKerC = 0, is equivalent to strong 
complete observability motivates the following ad hoc definition. We would like to 
emphasize the fact that it is a formal rather than a dynamical definition. 

Definition 3.7. An observable (respectively reconstructible) system is said to be 
completely observable (respectively completely constructible) iff EVK +A7la K = 0. 

3 .2 . Observability and reconstructibility of E[0oo) 

Having finished our treatment of the system E[0]y] which was assumed to be the 
restriction of E to [0, T], we now consider the same system as the restriction of E[0]OO) 
to the same interval. This is equivalent to saying that no information whatsoever 
may be assumed about its past. Thus, no information about the "values" of the 
output at 0_ can be assumed to be given. However, information at T+ may be 
assumed to be given (the reader should keep in mind the problem of smoothing). 
In this case, all definitions of reconstructibility apply. However, the only type of 
observability which makes sense is that of observability (together with its stronger 
version) as it is the only definition, which does not assume the knowledge of y(0_). 

Theorem 3.6. 

(i) E[0oo) is instantaneously reconstructible with k differentiations <==$> EV^~l = 

= 0 <=> Vk
K~x C KerE n KerC. 
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(ii) £[o,oo) is reconstructible with k differentiations <==> EVkjfl C\(EVK+A1l*a K) = 

= 0 <=> V^_1 n (V£ + n*aK) c KerE n KerC. 

(iii) £[o,oo) is almost reconstructible <=> EVK = 0 <=> VK C KerE C\ KerC. 

(iv) £[o,oo) is reconstructible <=> \mE(~\(EVK + ATl*a K) = 0 <=> A~1\mEr\(VK + 
K,K) C KerE n Ker.4 n KerC. 

(v) £[o,oo) is completely reconstructible <=> EVK + ATl*a K = 0 <=> V*K+1l*aK C 
KerE n KerA n KerC. 

Theorem 3.7. 

(i) £[o oo) is strongly instantaneously reconstructible with k differentiations <=> 

vr=o. 
(ii) £[o,oo) is strongly reconstructible with k differentiations <=> VK~ ~\ (VK + 

K,K) = o. 
(iii) £[o,oo) is strongly almost reconstructible <=> VK = 0. 

(iv) £[o,oo) is strongly reconstructible <=> A~l\mE ~\ (V*K + TVatK) = 0. 

(v) £[o,oo) is strongly completely reconstructible <=> VK + TVaK — 0. 

Theorem 3.8. 

(0 £[o,oo) is observable <=> \mE n (EV*K + ATl*^) = 0 <==> A'HmE n (V^ + 
K,K) C KerE n KerA n KerC. 

(ii) £[o,oo) is strongly observable <=> A_,ImE n (VK +fcaiK) = 0. 

3.3. Observabil i ty and reconst ruct ib i l i ty of £[O,T] 

Finally, we consider £[o,T] not as a restriction of some system to a finite interval 
but as a separate entitiy of its own. In this case, the output is a distribution with 
support [0,T]. Thus, no information about the "values" of the output at 0_ or at 
T+ may be assumed to be given. Then, being the only property which does not 
require the "values" of the output at the end points, plain observability and its 
strong version are the only relevant observability properties and they are equivalent 
to the corresponding reconstructibility properties. 

T h e o r e m 3.8. 

(i) £[O,T] is observable (equivalently, reconstructible) <4=> ImEn(EV^+A^* K) = 

Q<=>A-llmEr\(VK + 1l*aiK)cKerEr\KetAr\KeiC. 

(ii) S[0>T] is strongly observable (equivalently, strongly reconstructible) <=> A~l\mE~\ 
(VK+K,K) C KerEnKerAnKerC. 
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4. DUALITY 

Although only a few of them are used to prove the duality relations among different 
structural properties , we nevertheless present a number of duality results hoping 
that they will be of independent interest. To that end, let us define the following 
recursions: 

Vjt+i = K e r C n A - ^ E V t + I m B } 
Vk+i = KerC n A~x {EVk + ImB} 
Ha,k+i = KerC n E-l{A1la,k + ImB} 
ňa,k+\ = KerC n E-x{AKa,k + ImB} 
Sk+i = ImB + A{E~1Sk n KerC} 
Šk+i = ImB + ^{^-'sfc n KerC} 
Aía.k+i = ImB + E{A'xNa,k n KerC} 
Ňa,k+x = ImB + E{A~xŇa,k n KerC} 

V0 = X 
Vo = KerC 
Tla,o = 0 
1íafi = KerC n Ker E 
S0 = 0 
Šo = ImB 
Na,0 = X 
Sfafi = ImE + ImB 

The relations between these subspaces are summarized by the next proposition. 
Its proof is a trivial exercise in mathematical induction and will be left to the reader. 

Proposition 4 .1 . 

(i) Ma,k = EVk + ImB and Ma,k+i = EVk + ImB. 

(ii) Vfc+1 = A~xMa,k n KerC and Vfc = A~lNa,k n KerC. 

(iii)- Sk = AKa>k + ImB and Sk+\ = ATLa,k + ImB. 

(iv)- Tla,k+\ = E-}Sk n KerC and Ha>k = E~xSk n KerC. 

Now, we let J. denote denote the orthogonal complement and note the following 
duality relations. The proof is very standard and will be omitted. 

Proposition 4 .1. 

(i) VA
X(C, E, A, B) = Sk(B', E', A', C) 

(ii) V^(C, E,A, B) = Sk(B', E',A',C) 

(iii) n^k(C, E, A, B) = Xa,k(B', E', A', C) 

(iv) •Ra~k(C,E,A,B) = tiatk(B',E',A',C) 

4.1. Duality for E 

We can now start our discussion of the duality relations between different structural 
properties defined in the previous sections. We first note that for the system E 
defined over the real line by (0,E,A,B), the only dynamically significant control­
lability/reachability property was that of complete controllability which was char.-
acterized by the condition TV = V* n TZ*a = X and its stronger version which was 
characterized by Ell* + ATI* + ImB = X_. Now, let E' denote the dual system 
defined over the real-line by the quadruple (B1, E', A', 0). 
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Theorem 4.1 . 

(i) £ is completely reachable (or, equivalently, completely controllable) iff £ ' is 
completely observable (or, equivalently, completely reconstructible). 

(ii) £ is completely strongly reachable (or, equivalently, completely strongly con­
trollable) iff £ ' is completely strongly observable (or, equivalently, completely 
strongly reconstructible). 

Remark. Note that the definition of complete observability was not motivated by 
dynamical reasoning and was put forward in a somewhat ad hoc manner. Thus, the 
dynamically meaningful duality is between strong complete reachability and strong 
complete observability. Also note that in case ImE + Iim4 + ImB = X_ then the 
distinction between the plain and the strong versions of these properties disappear 
and one is left with only one and meaningful duality result. 

P r o o f . £ is completely controllable, iff 71* = X, or equivalently, iff (n*)L = 0. 
Note, that (n*)1- = (V* n7^:)-L = (V*)1 + (n*a)

L = E'(V*)' + A'(n*a)' where (V*)' 
and (n*a)' denote the V* and n*a of the dual system £ ' defined by (B',E',A',0). 
Therefore, (n*)x = 0 iff E'(V*)' + A'(n*a)' = 0. However, this is exactly the con­
dition for complete observability/reconstructibility of the dual system. This proves 

(i). 
To prove (ii), we note that £ is strongly completely controllable iff En* + 

ImB = An* + ImB = X, or equivalently iff (E'^ln*)1 n KerB' = 0. Note that 
(^')-1(7e*)1nKerB' = (E')'1 {E'(V*)'+A'(n*a)'}r\KeTB' = {(V*)'+(E')-1A'(n*a)'} 
nKerB' = (V*)' + (n*a)'. Thus, En* + ImB = X iff (V*)' + (n*a)' = 0. But, this is 
exactly the condition for strong complete observability/reconstructibility of £ ' . • 

Note that other definitions of observability like almost observability, plain observ­
ability etc. have also been shown to have dynamical significance; however, they do 
not enter the duality picture for £ . 

4 .2 . Duality for £[o,oo) 

The reader should recall that three different controllability properties (almost con­
trollability, controllability and complete controllability) and their stronger versions 
have been introduced and characterized for £[o|0o)- On the other hand, it was dis­
cussed that only one of these properties (namely, complete controllability) and its 
stronger version would admit reachability interpretations. Similarly, for the ho­
mogenous system with observations, three distinct reconstructibility definitions (al­
most reconstructibility, reconstructibility and complete reconstructibility) and their 
stronger versions were shown to have dynamical significance; however, only one of 
these definitions (namely plain reconstructibility) and its stronger version would 
admit observability interpretations. Thus, it should be expected that controllabil­
ity and reconstructibility are duals, and so are reachability and observability. As 
shown below, the first conjecture is true. That is to say, controllability and re­
constructibility are indeed dual properties. However, duality between reachability 
and observability is problematic in the sense that the dual of the only meaningful 
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reachability property turns out to be stronger than the only meaningful observability 
property for the dual system. 

We summarize the duality results for S[o,oo) below. The proofs follow trivially 
from the characterizations of the properties and from the duality results of the 
relevant subspaces given above. 

Theorem 4.2. 

(i) E[o)0o) is fcth-order instantaneously controllable (Arth-order instantaneously 
strongly controllable) iff Ef0 . is instantaneously reconstructive with k dif­
ferentiations (strongly instantaneously reconstructible with k differentiations). 

(ii) E[o)0o) is fcth-order controllable (fcth-order strongly controllable) iff Ef0 . is 
reconstructible with k differentiations (strongly reconstructible with k differ­
entiations). 

(iii) E[o|0o) is almost controllable (strongly almost controllable) iff E[0 , is almost 
reconstructible (strongly almost reconstructible). 

(iv) E[o | 00) is controllable (strongly controllable) iff E?0 , is reconstructible (strong­
ly reconstructible). 

( v ) ^[0,00) is completely controllable (strongly completely controllable) iff E[0 N 
is completely reconstructible (strongly completely reconstructible). 

4 .3 . Duality for E [ 0 J T ] 

For the system defined over only some finite interval, it was shown that different 
definitions of controllability and reachability were possible and the corresponding 
controllability and reachability properties were equivalent. That is to say, the need 
to make a distinction between controllability and reachability disappeared for E [ 0 | T ] -
On the other hand, for the homogenous system with observations defined over a 
finite interval, it was shown that there was only one meaningful way to define recon-
structibility (namely, plain reconstructibility) which also happened to be equivalent 
to the only meaningful definition of observability (which was that of plain observabil­
ity). Stronger versions of these definitions were also given. Thus, there is basically 
one duality result which is presented next. 

Theorem 4.3. 

(i) E[O,T] is controllable (equivalently, reachable) iff E| 0 T , is reconstructible 
(equivalently, observable). 

(ii) E[O,T] is strongly controllable (equivalently, strongly reachable) iff Ef0 T , is 
strongly reconstructible (equivelently, strongly observable). 
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5. DISCUSSIONS 

In this paper, we have discussed structural properties for singular systems. It was 
shown that the structural properties depend not only on C,E,A,B but also on the 
interval over which the system equations are defined. An interesting exercise, yet 
undone, is to compare the properties introduced in here with the various proper­
ties introduced for discrete-time systems (see [9] and the references therein). For 
a review of existing definitions of structural properties, see [12]. We remark that 
the need for introducing the strong versions of various properties is because the 
condition KerEnKer^nKerC = 0 is not satisfied in general, or equivalently, the 
state-output pencil \sE' — A',C"]' may have zero column minimal indices. Clear­
ly, existence of zero c.m.i's reflects the existence of redundant variables (see [13]). 
However, since no assumption about the squareness of the system is made, there is 
no loss of generality in working with the system defined over the restricted domain 
A'/(KerEnKerAnKerC) in case the kernels intersect nontrivially. This would reduce 
the number of properties involved by half. The dual situation is also valid in the 
controlled system. Existence of zero row minimal indices of the input-state pencil 
[sE — A, B] results in proper containment of lmE + \mA + \mB in X_. This reflects 
the fact some of the equations are redundant. Again, since no assumption about the 
squareness of the system is made, there is no loss of generality in working with the 
system restricted in the codomain to \mE + \mA + Imi?, in which case the number 
of different controllability/reachability properties are reduced by half. 

Duality between different properties introduced in the paper have also been estab­
lished. It is interesting to note that for £ not all of the controllability propeties have 
meaningful duals, and for S[O,T] not all of the meaningful reconstructibility prop­
erties have meaningful duals. The most complete duality picture exists for S[o|0o)-
However, in this case, it is somewhat disturbing to note that the only dynamically 
significant reachability definition does not admit a dual observability definition, and 
the dual of the only dynamically significant observability condition does not admit 
a reachability interpretation. It seems to be possible to remedy this situation by 
providing a reachability interpretation of what was called plain controllability by re­
laxing the way the extension of the trajectory *[o,T] is defined. However, this point 
will not be elaborated here. 

(Received March 15, 1993.) 
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