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KYBERNETIKA —VOLUME 11 (1975). NUMBER 4 

LQG Problem of Estimation and Control 
in the Tensor Space 

Evolution in the Discrete Finite Time 

ANTONIN VANECEK 

LQG problem of estimation and control with linear dynamics, quadratic criterion, and gaussian 
environment leads during its application for identification naturally to the tensor formulation. 
Quasikalmanean tensor model and associated LQG problems are introduced. Theorems on pre­
diction, filtering, control, stochastic control, and stochastic control/filtering are presented. The 
cases of filtering and stochastic control for the naturally introduced tensor models are given as the 
applications. 

INTRODUCTION 

LQG problem, see [2] for a survey, was stated and solved mainly as the problem 
of estimation and control of the state vector. Through the formulation of the three 
constraints — linear dynamics, quadratic criterion, and white gaussian environment — 
LQG problem covered an inportant part of questions solvable by the finite methods. 
In [12] we have tried to show the usefulness of the mentioned problem for identifica­
tion. Nevertheless there are mainly identified the linear maps of the vectors, conse­
quently the tensors. In the following we shall state and solve the LQG problems for 
the tensors. Through the intrinsic duality we shall double our relations: from the 
motivation point of view we take the relations for the control as the by-products. 

Let us refer to one area at which the introduction of richer structures has proved 
useful. The Maxwell theory of electromagnetic field in vacuum can be desribed either 
by 24 scalar equations or by 8 vector equations or by, 3 tensor equations or by 1 
spinor equation. (It is to be understood this is not just through trivial direct sum.) 
The mentioned reduction at the same time contributed to the knowledge and the 
deepening of the Maxwell theory. 



288 PRELIMINARIES 

Tensor symbolism. 

a, e, m, u, v, w, x, y, z 1st order tensors, 
A, B, C, D, E, H, I, M, S, U, V, W, X, Y, Z 2nd order tensors, 
si, @, <€, 2, &, tf, J, tf, S£, 0>, £, 0i, if, *T, W, 3C, <&, % 4th order tensors. 

Definition 1. Let x, y, Z be the elements of the linear finite — dimensional spaces 
Rb, Ra, R" x Rb over the field of real numbers R. The map ®: R" x Ra -» R" x 
x Rb: (x, y)\^Z = y®x: (xp yx) K Zxfi = yxxe (a = 1 , . . . , a, 0 « 1 , . . . , b) we 
shall the tensor product, [4; 9], and the result of that product, Z = y ® x, we shall 
call the 2nd order tensor. Further let X, Y 2£ be the elements of the linear spaces 
Rc x Rd, R" x Rb, R" x Rb x Rc x Rd over R. The map ®: Rc x Rd x Ra x Rb ~> 
-+ Ra x Rb x Rc x Rd: (X, Y) K Z = Y® X: (Xyi, Yaf) K X+* = YxPXy5 (a = 
= 1, . . . , a; ...; S = 1,.. . ,d) we shall again call the tensor product, and the result 
of that product, S£ = Y® X, we shall call the 4th order tensor. Finally we shall 
call x, y the 1st order tensors. 

Convention (Einstein summation rule). With the use of the component tensor 
symbolism, we suppose the compatible dimensions and add over the indexes occuring 
twice. E.g. W^X^ denotes £(/JM%<xflySX^ <&xm denotes YAL^M*- W e u s e t h e 

component tensor symbolism only in Preliminaries. 

Definition 2. The map Y: Rb -+ Ra : x [-> z = Yx : x„ (-> zx = Y^x,, (a = 1, ..., a, 
p — \,...,b) we shall call the linear map between the 1st order tensors. Such 
a map Y that Vx : Yx = x we shall call unit 2nd order tensor and denote lRb. 
The map: Rb x Rc x Ra x Rb -> Ra x Rc: (X, Y) |-> Z = YX : (XPy, Yxfi) f-> Zxfs = 
= YxpXj,y (a = 1 , . . . , a ; . . . ; y = 1, . . . , c) we shall call the product of the 2nd order 
tensors. The map <& : Rb x Rd -+ R" x Rc : X |-> Z = <WX : Xfi |-> Zay = W^X^ 
(a = 1, ..., a; ...; 5 = 1, ..., d) we shall call the linear map between the 2nd order 
tensors. Such a map <W that VX : <WX = X, we shall call the unit 4th order tensor 
and denote lRbxRa. The map: Rb x R" x Rd x Rf x Ra x Rb x Rc x Rd -» 
-> Ra x Rc x Re x R ' : (iT, ^ ) |-> £? = W : ( ^ , <3JaS>yi) | - # „ „ = <Wx^„eiqi 

(a = 1, ..., a; ...; (p = 1, . . . , / ) we shall call the product of the 4th order tensors. 

Definition 3. The map tr : Ra x R" -» R : Y|-> tr Y: Y^ (-* ^ „ (a, j5 = 1, ..., a) we 
shall call the trace of the 2nd order tensor. The map tr : R" x R" x Rc x Rc -» 
-> R : <& h- tr <& : <Wxfy51-> <Wxm (a, 8 = 1 , . . . , a; j8, y - 1 , . . . , b) we shall call the 
trace of the 4th order tensor. 

Definition 4. Let x e Rb, Y: Rb ^ Ra, z e R". Such a linear map Y*: Ra - • R* that 
Vx, Y z : tr [z ® (Yx)] = tr [(Y*z) ® x] we shall call adjoint to the map Y. 



Further let X e Rb x Rd, 9 : Rb x Rd -> Ra x Rc, Z e R" x Rc. Such a linear map 

9* : R" x Rc - Rb x Rd that VX, 9, Z : tr [Z ® (^X)] = tr [(<3t*Z) ® JY] we 

shall call adjoint to the map 9. Finally let X e R" x Rc,9 : R" x Rc -> R" x Rc, 

ker 3t = 0. Such a linear map 3t~' : R" x Rc -+ R" x Rc that VJT, 9 : 9~ l9X = X 

we shall call inverse to the map 9 (ker denotes kernel, i. e. null space). 

Note 1. Having at our disposal matrix algebra numerical algorithms, the matrix 

realization of tensor algebra may be useful. Let x e Rb, YE R" x Rb, X e Rc x Rd, 

9 e Ra x Rb x Rc x Rd, 3E e Rb x Re x Rd x Rf. Then from Definitions 1, 2, 4 

follow the isomorfisms ( = d f stands for "denotes"): 

є R" x R ; 
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Y^ 
> u " 

_""... 

"ľ.ь" 

.Y°ъ. 

= d f py. . .»y]s є RaЪ x R ; 

Y®X s 
XnY ... XUY 

YclY ... XcdY 

9U ... 9 

є Rac x Rb 

9ti 

9X S 

9Ж S 

'9U 

• 9C 

. 9, 

. W 

9 U 

9cd 

9„ 

є Rяc x R* 

є Rbd x Ra 

e Rac x R; 

'X 

đx ^ 

Жгl . . . ЗC1S 

Жlt .. . ЗCd[ 

єRa 
Ref 

where Y ® X e Ra x Rb x Rc x Rd, 9* e Rb x Ra x Rd x Rc, 9X e R" x Re, 

93C e Ra x Rc x R' x Rf. Further let ker 9 = 0, b = a, d = c. Then 

9~l __ є Я я c x Rя 

. . . 9„ 



290 Note 2. We shall show how the tensor product and the 4th order tensors naturally 
arise. Let st : Rb x Rd -> Ra x Rc : X \-> Y = s4X = AXB + CX + XD. Then 
from Definitions 1, 2, 4 or from Note 1 follows: si = A ® B* + C ® \Rd + 
+ \Rb ® D*. 

Definition 5. Le tZ e R" x Rc, 1V e Ra x Ra x Rc x Rc, SC e R" x Re x Rc x Rf. 
Then \X\\W, | |^ | |2

r will denote tr [X ® (1VX)*~\ = tr [X*(1VXJ\, tr [2£*(iV%)~\, 
respectively. Esp.for IV = \RaXRC, \X\2, \<S£ 
tr (9£*%), respectively. Further if VX + 0 
2: 0, respectively. Finally let IV > 0. Then 
norm of X, 3,, respectively. 

will denote tr (X ® X*) = tr (X*X), 
\r > 0, ^ 0 , we shall write IV > 0, 

X\ir, |l^||-r w e shall call the quadratic 

Definition6. Let (Qu Ft, Pt), (Q2, F2, P2) be the probability spaces and X : Qt -~> 
-> Rd x RC,Y:Q2 --> R" x Rb be the random variables. The map: (X, Y) \-+ 
K E {[Y(fl2) - E Y(i32)] ® [X(Qt) - EX(Qt)]*} e Ra x Rb x Rc x R" we shall 

fiixfi2 n, fii 

call the covariance and denote cov (Y X) or £fYX. Esp. cov (Y Y) we shall denote 
cov(Y ...) or 5^ r y or ¥. The random variable Y: Q -* Ra x Rb with the mean 
value MYeRa x Rb, with the covariance S"YY e Ra x Rb x Rb x Ra, <fYY ^ 0, 
and with the characteristic function: Ra x Rb ~+ R2 : V\-> exp { j t r (V® M*) -
- 2 _ 1 t r [ V ® (^rrV )*]} , j 2 = - 1 , we shall call gaussian. We shall write Y~ 
- N(My , <?„). 

Note 3. The map tr induces — together with the componentwise addition and the 
outer (from R) componentwise multiplication — the Hilbert space over R for the 
tensors. In the stochastic case the Hilbert space scalar product is in addition induced 
by the trace mean value. 

PROBLEM STATEMENT 

Definition 7 (Quasikalmanean tensor model and associated LQG problems). 

State model: 

(1) Xk + 1=s*kXk + @kUk+®kWk, 

output model: 

zk = %kxk + vk, 

where k = 0, 1, ..., N — 1 and linear maps s4k:R
a x Rb -+ R" x Rb, @k:R

c x 
x Rd -* Ra x Rb, S)k : R

e x Rf -> R" x Rb, <tfk : R" x Rb -* Rg x Rh. 



A priori distribution: 

Po" ~ N ~M~ 

w0 
0 

wk 
. 0 

v0 
0 

љ. 0 _ 

~SЃ 

iľ0 

y, w0,..., #•_ ^ o, r0,..., f_ > o. 

Control criterion: 

J(Uк) = tr 

XN-I 

Xк 

UN-t 

\_vк _J j _ 

2.N-i 

iľк 

Г„ 

rt 

mк\\u 

xN 

XN-i 

xк 

UN-I 

k_l l_v k _ ] 

i-, _ w _ 1 ( ...,Mk,0~N-u ..., »k > 0; future control: U_ = d f {Ut) U,c+1, ..., U^J. 

Past inputs: Zk = d f {Zfc, Z k _ . , . . . , Z„, M, •¥}, Z.x = d f { M , 5^}; past states: 

X =df {X"fc, xk_l,..., X0}. 

One-step prediction problem — n = 1, prediction problem — n ^ 2, filtering 
problem — n = 0 are: Find affine map Zk |-> Xk+n]k minimizing E{||__k+„ - -_k + l l |k |2 | 

Control problem: For _?tVt = . . . = S^- jy jy-! = 0 find a linear map Xk |-» Uk 

minimizing J(_'fc). 

Stochastic control problem: Find a linear map Xk [-> Uk minimizing E{j(Uk) | X j . 

Stochastic control/filtering problem: Find an affine map Zk |-> Uk minimizing 
E{j(Uk) I Zk}. 



PROBLEM SOLUTION 

Lemma. Let tr (Y ® Z*) = 0; Y ® Y*, Z ® Z* > 0. Then 3! (there exist unique) 
tensors s/°, 3° minimizing J(s/,3S) = ||X - s/Y - !MZ\\2. Further: s/° = (X ® Y*) 
(Y® Y*)-\@° = (X ® Z*)(Z®Z*y\J(sJ°,@°) = t r [ X ® X* - s/°(Y® X*)-
- @°(Z ® X*)]. 

Proof . We shall find the stationary point of criterion from nullity of the Gateaux 
differential, [6, 10]: 5 J(s/, 3Z; W, Jf) = lim a"1 [j(s/ + aJf, @ + a / ) -

a-0 
- J(s/, J1)] = lim a"1 tr {[X -(si + aJf) Y - (38 + a J f ) Z ] ® [X - (s/ + atf) . 

a-0 
. y - (M + a J ) Z ] * } = t r l i m a - ^ - a ^ f y ® (X - s/Y)* - a(X - s/Y) ® 

a-0 
® (jfY)* - txJfZ ® (X - J'Z)* - a(X - @Z) ® (jtTZ)* + o(a)] = - 2 tr [(X -
- s/Y) ® (MY)*] - 2 tr [(X - 3SZ) ® (XZ)*] = -2 tr [(X - s/Y) ® Y*tf*] -
- 2 tr [(X - 0SZ) ® Z*Jf*] = 0 Vjf, JT. The given condition is fulfilled just 
for (X - s/Y) ® y* = 0, (X - @Z) ® Z* = 0, i.e. for the normal equations for 
the tensors s/, J1. From Y ® Y*, Z ® Z* > 0 follows that 3! solution of these 
normal equations: s/° = (X ® Y*) (Y ® Y*)~\ 2° = (X ® Z*) (Z ® Z*)~\ From 
the unit criterion weight follows that this solution is the minimum. Finally the value 
of J(s/°, gg°) follows from the direct substitution. 

Corollary 1. Let Y® Y* > 0. Then 3! tensor s/° minimizing J(s/) = 
= \SftXt + Se2X2 - s/Y\2. Further: s/° = S£xs/\ + S£2s/°2 where s/° = 
= (Xt® Y*)(Y® Y*)~\ i = 1,2. 

Note 4. Let X, Y Z be random variables such that Mx, MY, Mz, SfYZ = 0 ; SfYY, 
Sfzz > 0. Defining the criterion of estimation as E{||X - s/Y - @Z\2 \ Y Z}, 
we shall call s/°Y + @°Z (s/° = S^XY SfYY, S8° = SfxzSfzz) the (linear) optimum 
estimate of X conditioned by Y Z and denote X]Y z . (For Mx + 0 we shall obtain 
the (affine) optimum estimate Mx + s/°Y + @°Z.) Similarly we shall call s/° Y( + 
+ 38°Zj (or Mx + s/°Yt + &$°Z}) the optimum estimate of Xk conditioned by 
Y;, Zj and denote Xk\U = Xk\t + Xk^. 

Corollary 2. Let Y ® Y*, / ® /* > 0, where innovation I = Z - (Z ® Y*) . 
. ( Y ® Y*)"1 Y T h e n : ( i ) t r ( Y ® / * ) = 0, (ii) ||X - s/°Y - @°Z\\2 = ||X - T Y -
- 2>°I\2. 

Proof . I ® Y* = Z ® Y* - (Z ® Y*)(Y® Y*)-1 (Y® Y*) = 0, so it holds (i) 
and for minimization of ||X — ^Y — &>I\\2, Lemma can be used. Further let us 
notice that both Y Z and Y, J span the same linear space (innovation de facto took 
its origin as the 2nd step of Gram-Schmidt orthogonalization) so it holds (ii) and 
instead of the minimization of ||X — s/Y — &Z\\2, we can concern ourselves with 



the simpler minimization of \\X - VY - Slf : if°-(X® Y*)(Y® Y*)'1, __»° = 
= (XiY®I*)(l®I*)-\ Xir =„ X - <g°Y, \\XiY - ®°lf = tr {XiY ® X*r -
- _?-(/ ® X*Y)}. 

Theorem 1 (One-step prediction). 3! solution of one-step prediction problem. 
Further 

(2) _£_+_,_ = j / A | 4 . , + ^ U , + sekik, xoi_1 = M 

where the gain Sek = s/kS<'kik-.1
e#k*('gkSPkik-1'_'* + Vk)-\ the innovation Ik = 

= Zk — <SkXkik_l, the one-step prediction error Xk+1 — Xk+lik = dfXk+i\k, and 
its covariance cov [Xk+lik, . . . ] = d f Sfk+lik is 

(3) S"k+1]k = si.^^.stl + V A * - -?_- ,_^*|*-i- /*, ^ o i - i = -* • 

The value of the criterion is tr Sfi
k+1\k. 

Proof . Xk+iik from (2) is an affine map of Zk, we shall convince ourselves that 
s4k, Sfk optimize the one-step prediction criterion. We shall use isomorfisms between 
Corollary 2, Note 4 and one-step prediction problem: X __ Xk+1, Y __ Zk_x, Z __ Zk, 
I — h — Z_ — Zk\k~i. =d(Zk\k-i, ® = •*„• Then X_+1|_ = Xk+iik_i + SCkZkik_1 

where _-"_+!,_-! = (s4_Xk + ®kUk + -*»-V»)|*-_ = ^ A n - i + -*_U_, w h e n _w e 

used Corollary 1 and Note 4. Further J?fc = cov [Xk+iik_i, 2k\k-i_ cov - 1 . 
. [2_,___, . . . ]= - cov [stkXk + 3SkUk + ®kWk - _ / A | H - _?kU„ ^ . , + V_]. 
. cov"1 [Vk!kik_i + Vk,...] = cov [stfkXklk_i + ®kWk, %kXk]k_i + V4] . (^k^k\k-i 
• < + n ) " 1 = ^k^k\k-i<(^k^k\k-i< + ^ „ ) _ 1 w h e r e -**,*__ __ 0, ^ k > 0 
so that 3! ( V ^ n - i V ? + n ) " 1 . Finally _ / t + 1 | 1 - cov [X_+n__i, . . . ] -
-.Sf_ cov [_.„__!, _?,+!,__,] = c o v [ ^ X | „ - i +®_Wk, •••] - _ ? k c o v [ ^ X k | , _ i + 

+ n, -*_£_,_-_ + - w j = j*kPk\k-iJ*i + - M ^ ; - x_v_yki_-iJ*t. By this we 
have proved that if (2, 3) hold for k - 1 then (2, 3) hold for k (k > 0). For k - 0 
we use Z _ , = [M, Sf}, and (2, 3) follow from Lemma and Note 4. Finally E{ \Xk+. -
~~ -Ai. + in|| |Ztj = E{Xk+1,_ ® Xk+lik | Z_J = tr Sp

k + lik. 

Theorem 2 (n-step prediction). 3! solution of n-step prediction problem. Further 

Xk + „\k = ^k + n,k+l^k+l\k + Z.U)^k + „,j+l^jUj , 

j — k + 1 , . . . , fc + n - 1, -?%,,. = s£l
m_1s4'm_2, ..., s4'., J^i.. = lj._XJl_ and -?k+i ) t 

is one-step prediction from Theorem 1. The n-step prediction error Xk+„ — Xk+„ik = d r 

= -f ^*+»|it, its covariance cov [Xk+n]k,...] = d f _^k+n|k is 

"^- + n|„ = ^k + n.k+l^k+Hk^k + n.k+l + ___(. )^k + n,J +1@J Wj@j ^ k + „j + j 

where -^jt+1|k is the one-step prediction covariance-error from Theorem 1. The value 
of the criterion is tr ^k+n |_ . 



294 Proof . We apply Corollary 1 and the definition of Sp
k + „^k directly to Xk + „ = 

= Pk+n,k+1Xk+1 + Ia>-r_+_j+1(-*/-_ + ®JWJ) . 

Theorem 3 (Filtering). 3! solution of the filtering problem. Further 

(4) _?„,„ = _?„*_. + _?_/_, _?0 | 0 = M + jSP0/0 

where one-step prediction based on the old filtered value 

(5) -?„|„-i = -/_-_--__i. |_-_ + -_ . - i t l . _ i , - -01-1= M , 

the gain _f, = _ - V - i < ( ^ * l * - i « * + n ) " 1 , ^o = .-*-'_(<!?__-*<_-_ + T^o)"1; the 
innovation Ik = Zk — _V-__|t-L, _0 = Z0 — _„M; the filtering error X s — _?*,„ = d f 

-a,-__!__ its covariance, cov [_;„„, . . . ] = d t _ % , is 

(6) yk\k = _^„i*-i ~~ ^k^kS^kik-i , ^olo — S£ — &?0
(€QSP 

where the error of one-step prediction based on the old filtered value Xk — _;_|„_- = d f 

= df _?„,„_! and its covariance, cov [_?Mi_„ . . .] = __.$•_;,__„ is 

(7) - V - i = -*„-_>*- i |* -_- -*- i + _ 2 „ - i ^ * - i . ~ * - , , _ V - = _*• 

The value of the criterion is tr $fkik. 

Proof . J_„|„ from (4) is an affine map of Z_, we shall convince ourselves that 
_-/„__, _- „ optimize the filtering criterion. We shall use isomorfisms between Corollary 
2, Note 4 and filtering problem: _¥ s __fc, Y _. Z__„ Z =_ Z t , J S Ik = Z ^ - i , 
^ ° s. ifk. Thenl„,_ = _? t | J _ , + _?„/„ where!„,„_! = ( _ A _ A - i + ___-___-_ + 
-*_-if-_-i)i_-i = _/*-_-5__-_|*-.i + ^ f c - i U „ - i - Further jSffc = cov [ I ' m - ! , 2j.|*_i] . 
. cov" 1 [Z„,__ _, . . . ] = cov [_?*,__,. » A n . , + VJ.cov-1 [*_„?_,__! + V„,...] = 
= ^*|*-i<(^-^*i*-i«? + n ) " 1 , where _>'_,__, ^ 0, rt > 0 so that 3! 
( -„_V- i -„ + n ) " 1 . Finally _-> = cov [_?_,»__,...] - S£k cov [ 2 ^ . , , 
_-*l*-i] = cov [s/k_lXk-1 + i - V i - V i + _._-if*__, - _-V-i_-_-i|*-i ~ __*-i-
. U „ - „ . . . ] - _^COV [ « A ) t . , + Vk, *_,»_,] = COV [__-*______ Hfc-j + -?,.__• 
. ff__„...] - _*Y__-'_|k-_ = _/t-i^-i|_-i_/J-i +_.4-IUr*-,_??-1 - --Y-*-
•_'*l*-i = -^*|*-i - _?*-* _^*|*-i- By this we have proved that if (4, ..., 7) hold 
for fc - 1 then (4, ..., 7) hold for k (fc > 0). For fc = 0 we use Z__, and (4, ..., 7) 
follow from Lemma and Note 4. 

Theorem 4 (Control). 3! solution of control problem. Further 

Uk = JfkXk 



where the gain JT„ = - (3$*k3?k+1@k + Mk)~
x 0&X0>k+iS$k, 

0>k = (_/. + ®kyrk)* 0>k+i(s4k + @kxk) + _2_ + _r;_t»_r__, 0>N = 0>. 

The value of the criterion is |X„|_.fc. 

Proof . From the criterion definition we shall succesively obtain: J(U°k) = 
= min {||__w|||, + £(.)!_-.Hi + ||U.||_,.} = min min {\\Xk\l + \\Uk\\l + J(Uk+i)} = 

uk uk U k . i 
= min {||_-„||_fc + |U„||__fc + J(U°k+l)} for i = k,..., N - 1, k < N - 1, respectively 

c„ 
min {||-___||jfc + ||U„||_._ + \\XN\l} for fc = 7V - 1. We shall start solving the recur-
vk 

sive equation for Uk at time TV - 1. We shall minimize the criterion J(UJV_1) = 
= \\XN\\l + l ^ - i l l i . , + IIU^-ili,.., = tr {(-/..-.--..-i + ®N-xUN-i)* <? . 
.(S*H-IXN-I + ®N-iUN-i) + XH-I^H-IXH-I + t/J._i_?_._iUJV_i}. We shall find 
the stationary point of our criterion from the Gateaux differential: _ J(UJV_1; H) = 
= H m a - ' J t V A . , +@N-i(UN-i + «H)]*0>[sfN-iXN-i + 4SH-I(UN-I + 

_-o 
+ an ) ] - ( _ / „ - _ * . . - 1 + _.JV_1UJV_1)*_2(_^JV_i___._1 + ^ JV_1U / ._1) + XH-!-
. i _ - A _ 1 - I _ _ A - A - 1 + (t/_.-i + «H)* ®N-i(UN-i + aH)~U*-L. 
.®N-iUN-i} = 2tr{(®H-iH)* &(S4H-IXH-I + @N-iUN-t) + J_*_iK-:.l7Jf-_} = 
= 2tr{H*\j%N-x3?(s4N-iXN-i + @H-IUH-I) + -?/v-2Uw-i]} = 0 Vn . 
Further £f *_1_2__'W_1XJV_1 + (__ J J - ^ ^ - j +_?JV_1)UW_, = 0. _? £ 0, 0tN-i > 0 
guarantee that 3! (__*_1_-'_?_v_1 + ^?^r__)_r, so the unique stationary point: 
U_,__ = - ( ^ _ 1 _ 3 ^ J V _ 1 + - f jy-0 - 1 ®N-i&s4N-iXN-i =dfJtN-iXN-1. Then 
•/(Uj.-.) = tr{[(sfN-i + _?_v_1_rJV_1)__JV_1]*_?[(-_'iV_i + -f_._1JTJV_1)Z_Y_1] + 
+ X*_1J-JV__XJ.__. + (JTJV_1XJV_1)* ^ . ( . ( J T ^ . ^ - O } = -:{__*_,[(_/„_! + 
+ ^ J V_1 j r J V_1)*_^(^ J V_1 + _ , . , / _ , . , ) + __«_! + _r£_1_?,._1x i V_1]j_ i V_1} = 
= ||-S:W_11| J_,_, where _»•_,_.. = d f ( ^ J v _ i + _ - _ . - i _ r J V - t ) * 0>(s4N-i +®N-iXN-i) + 

+ ______ + ^%-i^N-i^N-i- ^^N-U^N-1 > 0 guarantee that _*Vi > 0 and 
the stationary point is the unique minimum. If we introduce &>N = 0> and further 
the maps TV — 1 |-» k, TV (-*• k + 1 then from the premise that Theorem 4 holds for 
/c + 1 we obtain that it holds for k (k ^ 0) and thus we obtain the assertion of 
Theorem 4. 

Theorem 5 (Stochastic control). 3! solution of stochastic control problem. 
Further U°k, Jfk, 0>k (k ___ TV — 1), SPN are given by the same relations as in control 
problem. The value of the criterion is ||_£„||_.fc + __(o|^ri||_._», + ,®, where . = k, ... 
...,7V - 1. 

Proof . From the criterion definition: EJ(U_) = min E{|__'k|||. + |U„||_._ + 

+ EJ(U°k+1)} for k < N - 1, respectively min E{||__/_||^+ \\Uk\\lk + \\xJ%} for 
- „ 

k = N - l . Further E / ( U ^ ) = E tr {(_/_._,__.,_. + ®N-,UN-i + 9N-i • 



.WV_)*-J» ( _ _ V I * N ~ I + -^jv-iUjv-t + i - V i W V , ) + - V ^ - A - I - . J V - I + 
+ U*_i_.jv_iUjv-i}. The Gateaux differential: S E J(UN-t; H) = 2 E tr {H* 
. [ < _ I ^ ( - _ V I * N - I + -9j.-ilIj.-i + - V i ^ i r - i ) + -«N-iUN-i]} = 2 t r { H * 0 
. [ ^ * _ I ^ ( ^ J V _ , X J V _ I + -.N-jUjv-i) + _*_,-__V_]} = OVH. _*»,_*«_, > .. 
guarantee that 3! stationary point: UN_t = — (_5i.*_1^

,^/tf_, + @N-t) * . 
._?£_,^ .s_V, .7-V, = d f J T l v - 1 X N _ i . Then E J(U^__) = E tr {[(__Vi + ^ v - i • 
. _ r j v - 0 ^ N - i ] * ^ [ ( ^ N - , + - . J V - ^ J V - O - Y J V - , ] + ( _ - V , * V I ) * ^ N - 1 2 W N - I + 

+ XN-I^N-IXN-1 + \^~N-lXN-l)* ^N-l(^N-l^N-l)} = \\XN-1 ||_»N- I + 

+ B ^ - i l U r , - . _•»_.>! w h e r e ^ N - i = d f ( ^ N - i + ^ - i J T j v - , ) * - ? (s/N-t + 
+ ^ jv- i JT^- i ) + i jv- i + - ^ N - A - I ^ N - I - ^ , - V , , ®N-\ > 0 guarantee that 
^ V i > 0 and the stationary point is the unique minimum. Introducing 0>N = 0> 
and the maps N — 1 f-> fc, iV f-> k + 1, the assertion of the theorem already follows. 

Theorem 6 (Stochastic control/filtering. Separability principle). 3! solution of 
stochastic control/filtering problem. Further 

uk = yckxk\k 

where for Xk\k, <£k, Ik, Sfk\k (k <_ N — l) , £fN\N hold the relations from filtering 
problem and for Jfk, 0>k (k ^ iV — 1), ̂  hold the relations from control problem. 
The value of the criterion is \\Xk]k\\%k + LoII-^+1.11-7.•_*,•.-.,•. + | ^ i | i | _ , + 
+ II^NINI-S where i = k,.... JV — 1 and the innovation covariance cov [/,,...] = d f 

= dt -?i = ^ i - i ^ - i i f - - - * * - . + -Vi^ - i - ?* - . )<<?* . 

Proof . We shall use isomorfisms between state model (l) and filter (4; 5) : 
Xk^Xk^k,9k^ <£k+1,Wk^lk+1,1Vk^ Sk+1 = cov\_<€k+1(s4kXk + @kUk + 
+ 9kWk) + Vk+1 - Vk+1(s/kXklk + 0k+1Vk+1),...] - cov [_W_(__.-S_|k + 
+ @kWk) + r t +„. . . ] = ̂ + I K ^ | A * + 9kir&f)Vi+1 + n+i- Applying 
stochastic control problem to the model (4, 5) we directly obtain that the control 
from Theorem 5 with jfTk, 0>k(k _S _V - l), 0>N preceded by filtering from Theorem 3 
with Xk\k, SCk,Ik, £fk\k (k g JV — 1), £?N\N solves uniquelly stochastic control/filtering 
problem. It remains only to obtain the criterion value. From the criterion definition: 
E{j(Ul)\Zk}=E{\\XN]N + Xm\\l + £ „ ! * , „ + XiU\\l + l l / . f l i J . F r o m the 
expression of the optimal estimate given by Lemma and from its stochastic interpre­
tation given by Note 2 follows that _?.|, and _?.|, are mutually uncorrelated. 
So the criterion is E{| |*w|w | |£ + \\XmN\\% + L D I I ^ I U I I * . + ll^iull-. + I N I - U = 
= E{||*w|w | |£ + Loll^.-nll., + M , } + B f fiilli, + I ^ N I N I I . Applying before 
mentioned isomorfisms to the value of the criterion from Theorem 5, we directly 
obtain that our criterion value is as asserted. 



APPLICATIONS 

Case 1 (Covariance control). Covariance evolution of the model 

**+i = Akxk + Dkwk, 

k = 0, ..., N - 1 where 

5, W0,...,Wk = 0, is 

Using Note 2: 

x0 ~ N m , 
w0 • 0 

Ук 0 

W0 

Sk + l = AkSkA*k + DkWkD*k 

W„ 

Sk+l = j*kSk + %wk 

where s4k = Ak ® Ak, Q)k = Dk% Dk. Covariance Sk control problem: Find a linear 

map Sk K Wk minimizing fl_.w||i + S w l s t | | I * + M * . w h e r e -*. -?iv-i> .... 5_, 

_fN_i,..., _f_ > 0. Case 1 can be of importance for start-up control, stabilization, 

and shut-down control in the presence of the stochastic disturbances having manipu­

lative covariance. Solution: through direct use of Theorem 5. 

Case 2 (Coupled state-vector filtering and gain-matrix continuously running 

identification). State equation: 

*„+1 = Лt ,kxk + Bkuk + Dkwk , xkєRn , 

output equation: 

zk = Ckxk + vk, Ck:R"-*R'. 

State model of gain-matrix evolution: 

Bk+l = A2tkxkat + s4kBk + 3>kWk, 

output model of gain-matrix evolution: 

Zk = <gtBk +Vk, ZkeRs x R°. 

Using Note 2 we first notice that Bkuk = (lR„ ® u*) Bk; A2<kxka* = (A2ik ® ak) xk. 

Then coupled state equation: 

[ x _+i Bk+i] — p л 

LA2ik®ak sék 

!_, ® u*l [x_ Bk] + YDk 0 "I [wk HtJ , П [*_ BJ + Г_>_ 0 1 



298 coupled output equation: 

[zk zk] = \ck 0 "I [xk Bk] + [vk Vk] . - Q 0 "I 
.0 <řj 

For the interpretation of the partitioned tensors see Note 1! With application of 
a reduced Case 2 we were concerned in [12]. Solution: through direct application 
of Theorem 3. 

Case 3 (Control, resp. continuously-running identification of nonstationary 
multivariable stochastic regression model). Let the model external description be: 

zk + l ~ L,U)Aj,kzk-j + l + Bj,kuk-j+l. + ek 

where; = 1, ..., n; further where „(.-, e Rr is the measured (known) input and z 0 ) e Rr 

is the measured (known) output, and ek ~ N(0, Ek). Ek — 0 for the control, Ek > 0 
for the identification. 

At first we shall be concerned with the control. For the control-model internal 
description, the control-state Xk = [ u t _ „ + 1 , ..., uk_1, zk_n+1, ..., zk], further Uk = 
= uk, Wk = ek. Finally the control-state equation: 

0 0 0 0 
0 

An-l,k, •••> A\,k 

wb. 

For the interpretation of the partitioned tensors see Note 1. 
Now we shall be concerned with the identification. For the identification-model 

internal description, the identification-state Xk = [Alk, ..., A„ik, B1 k,..., Bnk], the 
identification-output Zk = zk+1, further Vk = e f c + 1. Finally the identification-output 
equation: 

Zk = { V ® [z*, ..., z*_„ + 1 , a*, ..., «*_„+.]} Xk + Vk, 

and the identification-state equation which models the parameters evolution is: 

(8) Xk+1=ss?kXk + @kWk. 

Applications of Case 3 follow from derivation and explication of the multivariable 
stochastic regression model, [11]- Solution of control-case: through direct applica-

0 0 0 
0 0 0 
0 0 0 

n,k B„-l,k> •••>B2,k An,k 

+ " 0 " uk + " 0 

0 
0 
0 

ßм > 



tion of Theorem 5. Solution of identification-case: through direct application of 
Theorem 3. 

An identification part of Case 3 can easily be generalized. Let the internal 
description be: xk+1 = Akxk + Bkuk + Dkwk where u(>), and x(.) e R" are measured 
(known) and wk ~ N(0, Wk), Dk+1Wk+1Dk+1 > 0. We introduce the state: Xk = 
= [Ak, Bk~\, output Zk = xk+l, measurement disturbance Vk = Dk+1wk+1-. Then 
output equation: Zk = {lR„ ® [x*, «*]} Xk + Vk. (8) is again the state equation. 
Applications can be of importance in area of electric actuators where the state is 
usually measurable. Solution: through direct application of Theorem 3. 

CONCLUSION 

There exist over 103 contributions concerned with LQG problem of estimation 
and control. Nevertheless we have been convinced that its version concerned with 
the nonstationary internal description has not been closed yet. This is because of not 
fully digged algebraic structure of the mentioned version of LQG problem. 

Comparisons of the solution of LQG problem in the tensor space with its solution 
in the vector space, [7, 8, 5, 1; 2], suggest that our solution is a tensor realization 
of the solution in the abstract linear space. Nevertheless, in all contributions we are 
aware of, the solutions has been hitherto both derived and interpreted as the solutions 
in a concrete vector space, i.e. with maps taken to be matrices and not abstract 
linear spaces homomorfisms. This tensor realization follows also from the fact that 
during derivation it was virtually sufficient for us to consider the 2nd order tensors 
as the elements of the linear space and not of the linear associative algebra. Because 
of the mentioned correspondence and because of the space limitations, we fully 
passed the analysis of the properties of our LQG problem in the tensor space. 

(Received June 14, 1974.) 

REFERENCES  

[1] K. J. Astrom, R. W. Koepcke, F. Tung: On the control of linear discrete dynamic systems 
with quadratic loss. Res. Rep. RJ-222, IBM, San Jose Res. Lab., San Jose, Calif., 1962. 

[2] M. Athans (Ed.): Linear-quadratic-Gaussian problem in estimation and control. Dedicated 
to prof. R. E. Kalman. IEEE Trans. Aut. Contr. AC-16 (Dec. 1971), 6, 529-869. 

[3] R. Bellman: Dynamic programming. Princeton Univ. Press, Princeton 1957. 
[4] N. Bourbaki: Algebre. Livre II. Hermann, Paris 1948. 
[5] P. D. Joseph, J. T. Tou: On linear control theory. AIEE Trans. (Appl. Indust.) 80 (Sept. 

1961), 193-196. 
[6] E. Hille, R. S. Phillips: Functional analysis and semigroups. Amer. Math. Soc. Colloq. Publ. 

XXXI. Rev. ed., Providence 1957. 
[7] R. E. Kalman, R. W. Koepcke: Optimal synthesis of linear sampling control system using 

generalized performance indexes. Trans. ASME 80 (Nov. 1958), 1820—1826. 



[8] R. E. Kalman: A new approach to linear filtering and prediction problems. Trans. ASME, 
Ser. D, J. Bas. Eng. 83 (March 1960), 3 5 - 4 5 . 

[9] S. MacLane, G. Birkhoff: Algebra, Macmillan, New York 1967. 
[10] D. G. Luenberger: Optimization by vector space methods. Wiley, New York 1969. 
[11] V. Peterka: Mathematical models for digital control of multivariable technological processes. 

(In Czech.) Res. Rep. No. 540, ÚTIA CSAV, Prague 1974. 
[12] A. Vaněček: Coupled air/fuel dynamic optimization and temperature regulation. A case 

study in stochastic control. Preprints IFAC Symp. Stochastic Control, Budapest, Sept. 
1974, 573-580. 

Ing. Antonín Vaněček.CSc; Ústav teorie informace a automatizace ČSAV {Institute of Infor­
mation Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou 
věži 4, 180 76 Praha 8. Czechoslovakia. 


		webmaster@dml.cz
	2012-06-05T01:34:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




