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K Y B E R N E T I K A - V O L U M E 22 (1986) , N U M B E R 2 

CLASSIFICATIONS WITH RELATIONS: 
A MODEL FOR THE DESCRIPTION OF DISTRIBUTIONS 
AND THEIR DISTANCES 

JAN REHAK, BLANKA REHAKOVA 

Distributions on classifications are met wherever we work with categorical variables. A vast 
investigation has been done in developing methods for statistical analysis of nominal variables 
(e.g. variables with simple classification), partially are solved also problems for ordered classifica­
tions and classifications with assigned numbers. In this paper we propose a general model which 
enables us to develop descriptive measures for distributions on various types of classifications 
with relations. The simple, ordered and quantitative classifications will be special cases of this 
general model. In this way, it is possible to handle with general decision and predictive models 
as well as with the analysis of generalized categorical variables. 

1. BASIC DEFINITIONS: A GENERALIZED CATEGORICAL 
VARIABLE 

The presented model (we call it the D-model) includes classifications with binary 
relations on the set of categories. A set of categories {au ..., aK} is said to be a classifi­
cation if the categories form a mutually exclusive system of events whose union 
covers all possibilities of the classification process. The distribution f on a classification 
{au,..,aK} is a column vector from the simplex QK = {p: p = (pu ..., pK)', 

K 

pk >. 0 (fc = 1, ...,K), Y^Pk = !}• We restrict ourselves to the class of relations 
k=i 

which can be expressed by numerical values. This class has been found meaningful 
with regard to the data analysis. 

Definition 1. Let D = |[dy | = |jd(oj3 fly-)|| = ||d(i',j)|[ be a real, square matrix 
of order K. Matrix D is said to be the matrix of scores generating the type of the 
variable A = {au ..., aK}, if the following conditions hold: 

a) identity: du = 0 for i = l,...,K; 
b) symmetry: du = dn for i,j = l,...,K; 
c) nonnegativity: d^ — 0 for i, j = 1, . . . , K and dti > 0 for at least one pair (i, j); 
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d) interpretability: the more unlike categories o;, aj are, the greater is the score 
d(ah Oj.) characterizing their dissimilarity. 

Elements of D are called the scores of distances or dissimilarity scores of the catego­
ries (ai, dj). Properties a) — d) correspond to meaningful practical requirements 
on di}. 

A general categorical variable (a classification with numerical relations, D-
generalized categorical variable) is given by a list of its values and by a matrix 
of scores generating its type: 

A = { o 1 ) . . . , o A , ; D } . 

The basic types of variables as they occur in practice have the models stated by 
Definition 2. 

Definition 2. We say that A = {au ..., aK; D} is 

a) a nominal variable (a simple classification) if di} = 1 for all i 4= j ' , we denote 
it also A = {ol5 ..., aK); 

b) a discrete ordinal variable (an ordered classification) if d^ = \i — j \ for all 
i,j; we denote it also A = {o 1 ; . . . , aK; D0}; 

c) a discrete cardinal variable (a numerical or quantified classification) if its 
values are numbers xu ...,xK assigned to categories by the mapping x ; = x(a,), 
and djj = (x; — Xj)2 for all i, j ; we denote it also X = {xu ..., xK) or A = { o l s . . . 
...,aK;Dx}. 

2. BASIC CHARACTERISTICS OF THE DISTRIBUTION 
OF A GENERALIZED CATEGORICAL VARIABLE 

The definition of a variability is based on C Gini's idea: the variance is taken as 
the expected dissimilarity among pairs of independently repeated random events. 

Definition 3. We define the generalized variance of a distribution f e Q K of 
A = {o 1 ) . . . s o K ;D} as 

(1) GvarD f = Gvar f = £ £/ ;/ ;rf ; , = f'Df = EE(dy). 
; = i y = i ij 

Properties of the generalized variance are summed up in Theorem 1. 

Theorem 1. (Properties of the generalized variance.) 
a) Let dij > 0 for all i 4= j . Gvar f = 0 if, and only if, there exists / , = 1 (1 % i <£ 

SK). 
b) Let D be a general matrix. Then Gvar f = 0, if, and only if £/ ,• = 1 for some 

ieW 

set W = {i: d(ah a;) = 0; i e W, j e W}. (Property a) is a special case in which all 
sets W are singletons.) 
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c) Define d as max dtJ and let t > 1 be the size of an index set T for which it holds 
(i J) 

that the respective submatrix DT of order t has the elements dtJ = (1 - Stj) d, where 
Stj is the Kronecker delta and let there exists no submatrix of a higher order with 
this property. Let d!y < d when (ij)£T xT,i # /. Then the generalized variance 
attains its maximal value 

max Gvar f = Gvar f,nax = d 
fsQK t 

for the distribution fmax with the components / = 1/r for i e T and / , = 0 for i £ T. 

Proof. The property a) is obvious. 

b) Let Gvar f = 0 and let there exist positive ft,f} and dtj. Then Gvar f > 2fJjdtJ> 
> 0 and the contradiction follows. Therefore under the assumption that Gvar f = 0 
it must be true that f has nonzero components only on such a subset of indices W 
for which dtj = 0 for all pairs ije W. Let W be a subset of {1, 2, ...,K} with 
dtj = 0 for all pairs (ij) e W and Yj/j. = 1. Then 

keW 

Gvarf=2 Y, £ fifjdiJ. 
i<J 

{(,,j):d,-j*0) 

Under the assumption dtj + 0 there are three possibilities: either i e W and j $ W, 
or ( 4 W and ; e W, or i i W and j $ W. It follows that fj = 0, /• = 0, / , = fs = 0 
respectively. Therefore Gvar f = 0. 

c) Gvar f = £ f / ^ d , , = £ £ L M v + 2 £ £// ,</, , . + 
i = l J = l ieT JET ieT jeT" 

+ Z Z/ .M-, = E S/t/jd + 2 Z lfjj(d - flU) + 
isT" J E T " ieT JET iET jeT<= 

i * J i*J 

+ Z I / ih (d - 9ij) - l̂ Z Z M - - 2 Z ZM-s'ij -
ieT=jET<= i = l j = l IET jeT" 

l*J i*J i*J 

- Z Ififjav 
ieT" jeT<= 

i*j 

where g;j- = d — dtJ >, 0, Tc is the complement of T. Therefore it is necessary 
to look for the distribution which maximizes the generalized variance among those 
distributions f for which Z j i = j+r = 1- Then 

i sT 

Gvar f = d £ Iftfj = 4 / + T - Z / 2 ] = 4 1 - Iff] • . 
iET J E T ieT ieT 

i*J 

The maximum of this expression is equal to d(t — l)jt and it is attained i f / = 1/r 
for all i e T. If there exists a set T => T, t' > t, then d(t'-l)jt' > d(t - l)/r. The­
refore, the maximum is obtained for the set T having the property given above and 
containing the maximal possible number of indices. • 
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Remark. The normalized measure of variability can be introduced as 

„ , Gvar f 
norm Gvar f = . 

Gvar fmax 

We introduce characterisation of each classificatory value with regard to the 
distribution f in the following manner. 

Definition 4. Consider a variable A = {a1,...,aK; D}. We define the measure 
of concentration about the value ak as the expected score of the distance from the 
value ak 

(2) dt^dl = E[d(ahak)-] = ifid(ahak). 
i i = 1 

Any value c of the variable A for which 

d* = mind* = YJfid(ai,c) 
t J i=i 

is called a centre of the distribution f. 

It is obvious that 

a) Gvar f = Ed*, 
b) the distribution can have more centres, 
c) d* = 0, only if/, 4= 0 for those i's satisfying d(au c) = 0, 
d) d* ^ Gvar f. 

Let us denote Cf = C the vector of concentrations (d*,..., dK)'. We see that 
C = Df and for a nonsingular matrix D it holds that f = D _ 1 C. In this case we can 
characterize a set of distributions {f} by means of {Df} and this can be a useful 
transformation in the data analysis. 

3. METRICS GENERATED BY THE MATRIX D 

Consider a real function 

(3) D(f, g) = v/((f - g)' D(g - f)) 

on QK x QK. An important class of variables A = [at, ..., aK; D} is determined 
by Theorem 2 which shows when D(f, g) can be regarded as a measure of dissimilarity 
of two distributions f, g and moreover possesses the properties of metrics. 

Theorem 2. (Existence of metrics.) The function D(f, g) is a metrics (semimetrics) 
on QK x QK if and only if the matrix D* = | d * | of ordei K - 1, where 

(4) 4 = diK + dKJ - dtJ 

is a positive (positive semi-definite) matrix. 
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Proof, a) LetS = {u = (« , , . . . , uK)' : £ u ; = 0}. Let us denote v = (M., ..., _K_<)\ 
Then i = 1 

K - l K - l _ - l _ - l 
u'Du = _ _ «.-_<-_ + UK S "A; + "A- I M« = 

; = i . = 1 ; = i «=i 
K—1 K — 1 K — IK — 1 

= H «i«/d. - dKJ - diK) = - H «**;< = -VD*V . 
i=l j=l i=l J = l 

It is seen that u'Du is a negative semi-definite form on S if, and only if, v'D*v is 
a positive semi-definite form. (A quadratic form u'Du is said to be a positive definite 
on a set S if u'Du ^ 0 for all u e S and u'Du = 0 o u = 0, if 0 e S. A quadratic 
form u'Du is said to be a positive semi-definite on a set S if u'Du ^ 0 for all u e S. 
Negative definite and negative semi-definite forms on S are defined similaily.) It 
follows that u = (ut, ..., uK)' e S is the zero vector iff v = (ut, ..., t-x_ t)' is the zero 
vector and therefore u'Du is a negative definite form on S if, and only if, v'D*v 
is a positive definite form. Consequently (f — g)' D(g - f) is a positive definite 
(positive semi-definite) form on QK if, and only if, (f* - g*)' D*(f* — g*) is a positive 
definite (positive semi-definite) form and f* = (flt . . . , / x - i ) ' , g* = (_/.i> •••, #__-i)'-

b) Let D* be a positive definite or a positive semi-definite matrix (i.e. a Gramian 
matrix). With regard to non-negativity of all members the relation 

D(f, g) + D(g, h) ^ D(f, h) 

holds for all f, g, h e QK if and only if 

(5) £>2(f, g) + 2D(f, g) D(g, h) + D-(g, h) ^ D2(f, h ) . 

With regard to the identity 

D2(f, g) + D2(g, h) - D2(f, h) = 2(g - f)' D(h - g) = 2 l g * - f*)' D*(g* - h*) 

(5) holds if and only if 

(g* - f*)' D*(g* - h*) + D(f, g) D(%, h) ^ 0 . 

The statement of the theorem follows from here and from the Schwarz inequality. • 

Direct examination of existence of metric can be based on the following properties 
of the matrix D. 

Theorem 3. If D(f, g) is a semimetrics on QK x QK, then each of the following 
conditions is sufficient for D(f, g) being a metrics on QK x Qk; 

K K 

a) D is a nonsingular matrix and £ £ d<r'> +. 0, where D " 1 = H4/""1!-
; = i „ = i 

b) Both D and the block matrix 

G = | D J 

|J' 0 

where J = (1, ..., 1)', are nonsingular matrices. 
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Proof, a) If £>(f, g) is a semimetrics on QK x QK then Y'DY = 0 for all vectors 
K K 

Y = (yi,...,yK)' such that 5 > ; = °- Let us denote E(Y) = Y'DY - A £ >>,-, 

where A is the Lagrangian multiplier. Then 

M Y i = 2 D Y - AJ, J = ( 1 , ..., IV. dY v . > / 

Let DY = JAJ be a consistent system and D ~ be a generalized inverse matrix to D. 
Then Y0 = \XD~i is a solution of the given system and all solutions are expressed 
as Y = Y0 + (D~D — I) Z, where Z is an arbitrary vector. From consistency it 
also follows that iADD~J = ^AJ. If D is a nonsingular matrix, then Y = iAD~xJ 
is the solution of DY = \Xi. It is easily seen that 

0 = f ^ = J ' Y = i A J ' D - 1 J = i A f f x r 1 ' . 
t = i i = i ; = i 

K K 

If YJ Z ^f/1' + 0> t n e n ^ = 0 a n d consequently Y = 0 is the only solution of the 
. • = 1 . 7 = 1 

equation DY = \Xi and Y'DY = 0 only for Y = 0. 

b) If D is a nonsingular matrix, then 

lG l= , D i = |D| |0 - J'D-^Jj = |DJ l-J'D-^JJ = - | D | £ I d\jlK D 
* " « = i j = i 

The following theorem shows how equivalence classes are generated by a semi-
metrics. 

Theorem 4. (Classes of equivalent distributions). If D(f, g) is a semimetrics on 
QK X QK, t n e n for e a c h f e QK there exists an equivalence class f+ which contains 
all distributions g from QK given by 

g = f + iAD~J + ( D ~ D - l ) Z 

where X = (2/K)J'D(g - f) = 2D;(g - f) for arbitrary k = 1, . . . , K, D " is a general­
ized inverse matrix to D, I is the identity matrix and Z is an arbitrary vector, Dk is 
the fcth row of the matrix D. The set Q£ of all equivalence classes with D(f+, h + ) = 
= D(f, h), where fef+ , h e h + is a metric space. 

Proof. Let us write f ~ go D(f, g) = 0. It is obvious that this relation is equi­
valence on QK by which QK decomposes into equivalence classes (reflexivity and 
symmetry are obvious, since from D(f, g) = 0 it follows that D(g, f) = 0 and D(f, f) = 
= 0; transitivity follows from the triangular inequality: 0 _ D(f, h) ^ D(f, g) + 
+ £>(g, h) = 0). Further, we can see that D(f, g) = 0 o g - f = \XD~i + 
+ (D"D - I) Z. In fact if D(f, g) = 0, then g - f must be a solution of the system 
DY = \Xi and consequently g - f = iAD~J + (D"D - I) Z (see the proof of 
Theorem 3). If g - f = ^ADJ + (D D - I) Z, then D(g - f) = iADD"J = 
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= \XS (it follows from consistency of the system D Y = \XS) and thus (f — g)' D(g -
- f ) = i l ( f - g ) ' J = 0 . 

If f+, h + a r e two equivalence classes, let us choose fef + , h e h + and define 
£>(f+, h + ) = D(f, h). If f ~ u, h ~ v, then D(f, h) = £>(u, v), so that D(f+, h+) 
is well defined. In fact if D(f, u) = D(h, v) = 0, then D(f - u) = \XXS, D(h - v) = 
= \X2S (see proof of Theorem 3). From here D(h - f) = D(v - u) + \(X2 - X^S 
and consequently D\f, h) = (f - h)' D(h - f) = (f - h)' D(v - u) + \(X2 - 2 . ) . 
. (f - h)'J = (f - h)' D(v - u). Further we can see that D\u, v) = (u - v)' . 
. D(v - u) = (u - v)' D(h - f) - \(X2 - 2a) (u - v)'J = (u - v)' D(h - f) = 
= (f - h)' D(v - u) => D\f, h) = D\u, v). 

From the proof of Theorem 3 it follows that 2 belonging to the matrix D and the 
vector Y(Y>; = 0) is X = (2JK)J'DY = 2D^Y(DY = \XS => J'DY = \\S'S = 
-.(1-/2) A). . D 

Corollary 1. Let D generates a semi-metrics on QK x QK. Then f, g e QK belong 
to the same equivalence class if and only if D(g — f) = ^2J, where 2 is a constant 
which is dependent on D and g - f, J = (1, ..., 1)'. 

Proof. If D(g - f) = \XS, then D\f, g) = (f - g)' D(g - f) = \X(f - g)'J = 0. 
Let D\f, g) = 0. The difference g — f must fulfil the stationarity condition for the 

K 

function F(Y) = Y'DY — Xj] yk (see the proof of Theorem 3) because g - f 
( t = l K 

belongs to the vectors Y which maximize the form Y'DY on the set S = (Y: V, yk = 0} 
and max Y'DY = 0. Hence D(g - f) = \XS. t = 1 • 

Corrolary 2. Let D generates a semi-metrics on QK x QK and f, g e QK belong 
to the same equivalence class. Then 

Gvar g - Gvar f = 2 f ' D D J = X , 

where D~ is a generalized inverse matrix to D, J = (l . ..., 1)', 2 = (2JK) J'D(g - f) = 
= 2D^(g - f), Dk is the fcth row of D, k = 1, . . . , ! ? . 

Proof. Gvar g = Gvar [f + \XD~S + (D~D - I) Z] = (f + £2D"J + 
+ (D~D - I) Z)' D(f + \XD'S + ( D - D - I) Z) = f'Df + \\f'DDS + f'D . 
. ( D - D - I) Z + J2(D-J)' Df + \X\D~S)' DD S + \X(D~S)' D(D"D - I) Z + 
+ Z'(D D - I)' Df + i2Z (D D - I)' D D J + Z (D D - I)' D(D D - I) Z = 
= Gvarf + 2f'DD-J + i22(D~J)' DD-J. 

The same method can be applied to the condition (f — g)' D(g — f) = 0. We 
obtain that i22(D~J)' DD"J = 0. If we take into consideration the fact that 
|2DD"J = $XJ then we have Gvar g = Gvar f + Af'J = Gvar f + 2. • 

Theorem 5. Let D(f, g) be a metrics on QK x QK, then the metrics D(f, g) and 
the metrics for the nominal case g(f, g) = ,/((f - g)' (f - g)) are almost equal, i.e. 
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there exist finite positive numbers a, b so that it holds: 

IXf.g) 
e(f.g) 

a<^É<b 

f o r a l l f e Q K , g e Q K , f + g. 

Proof. 

J»2(f, g) = (f - g)' D(g - f) = (f* - g*)' D*(f* - g*) 

e2(f,g) ( f - g ) ' ( f - g ) "_ (f* - g*)'c(f* - g*) 

where f* = ( / , , . . . . / K - J ) ' , g* = (gx,..., 9K-i)', D* (see Theorem 2) and C = 
= | |cy | | , cn = 2 (i = 1, . . . , K — 1), Cy = 1 (i + ;') are positive definite matrices and 
hence the following relation holds (see [1], pp. 287, 289, 295). 

o<x1<^M<xK_l, 
' " e ^ g ) ' 

where 0 < Xx _" ^2 = ••• = ^ K - I a r e the roots of the equation |D* - AC| = 0, 
i.e. the eigenvalues of the matrix D*C~'. We see that a = V(^i) > °» b = V ( ^ - 1 ) > 
> 0 . 

Corollary 3. If the semimetrics D(f, g) does not have the property of a metrics 
on QK x QK then 

- e 2 ( f , g ) -

For the proof see [ l ] , pp. 287, 289, 295. 

Remark. The simplex Q x is not the space with the inner product. In spite of that 
it is appropriate to introduce an analogical concept that we obtain from the expression 

D2(f, g) = Gvar f + Gvar g - 2s(f, g) . 

It is an analogy of the relation among distances, norms and inner products in vector 
spaces. From here we can obtain s(f, g) that will be called covariance of distribution 
f and g: 

(6) s(f, g) - f 'Df + g'Dg - f 'Dg = f 'Dg - D2(f, g) = 

= i ( f ' D f + g ' D g - D 2 ( f , g ) ) . 
It holds that 

- f 'Dg g s(f, g) ^ f ' D g . 

The lower bound is attained iff Gvar f = Gvar g = 0 and the upper bound is attained 
iff D(f, g) = 0. Since 0 ^ D2(f, g) g 2f'Dg and the upper bound in this inequality 
is attained only when Gvar f = Gvar g = 0, we can define the correlation coefficient 
of two distributes by means of normalization of s(f, g) under the condition that 
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f Dg 4 0, namely 

« -M-Sf—-**. 
This coefficient is a measure of similarity between two distributions and it has the 

following properties. 
1. It is defined only for f'Dg 4= 0 (i.e. there exists /.gr/dy 4 0) and it takes values 

from the interval < —1, 1>. 
2. corr (f, g) = - 1 iff Gvar f = Gvar g = 0 and at the same time D(f, g) #= 0, 

corr (f, g) = 1 iff D(f, g) = 0 and at the same time either Gvar f 4= 0 or Gvar g + 0. 

Two more remarks. 

1. The function D(f, g) can be expressed also by means of the vectors of concentra­
tions Cf = Df, Cg = Dg as 

Kf>s)^A(cf-cgyD-\ce-cf)) 
under the condition that D is a nonsingular matrix. 

2. Measurement of dissimilarity of distributions with respect to D can be based 
also on the Euclidean distance of vectors of concentrations, namely 

D*(f, g) «- V(C, - C,)' (C, - C,) = V(Df - Dg)' (Df - Dg) = 

= V ( f - g ) ' D 2 ( f - g ) . 

4. DECOMPOSITION OF THE GENERALIZED VARIANCE 

Now we will investigate the relation of a set of distributions {f(1), ..., f(R)] to their 
convex (probabilistic) mixture. Its relevance in data analysis is obvious. The result 
of Theorem 6 is fundamental for data analysis because it enables us to formulate 
the problem of the analysis of variance for a generalized categorical variable and to 
introduce meaningful measures of association. 

Theorem 6. (Decomposition of the generalized variance.) Let {f(1), ..., f(R)} be 
R distributions of the variable A = [au ..., aK; D} and let w = (w1 ( . . . , wR)' be 

R 

a vector from QR. Let us consider the vector f = £ wrf(r), where f(r) = ( /1 / r , . . . , /K / l .) ' . 
Then r = 1 

(8) Gvar f = £ wr Gvar f(r) + i £ £ wrws D
2(f(r), f(s)) = 

r = l r = l s = l 

R R 

= £ wr Gvar f(r) + £ wr D
2(f(r), f ) . 

r=l r « i 
Proof. 

Gvar f = f 'Df = ( £ wrf(r))' D( £ w,.f(p)) = £ £ wrwsf;r)Df(s) -
r = l r = l r = 1 s = 1 
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- i S Sw,w s f w Df ( r ) - i£ X w.w^Df(i) + f wrfwDf(r) = 
r = l s = l r = l s = l r = l 

= i Z Z vvrws Z)2(f(r), f(s)) + £ wr Gvar f(r). 
r = l s = l r = l 

Similarly 

Gvar f = f'Df = ( £ wrf(r))' Df = £ wrf('r)Df = £ wrf('r)Df - £ wrf Df + 
r = l r = l r = l r = 1 

+ I wrfwDf + i wrf/r)Df(r) - f wrf('r)Df(r) = 
r = l r = l r = l 

= I ^r(f(r) - f)' D(f - f(r)) + £ Wrf('r)Df(r) = 
r = l r = l 

= E wr D
2(f(r), f) + f w rGvarf ( r ) . D 

r = l r = l 

Theorem 6 can easily be extended to the case in which the distributions f(r) are again 
convex mixtures of the distributions f(r s) etc. Straightforward application is possible 
for the analysis of contingency tables in which distributions of rows are conditioned 
by values of simple classification B = [bu ..., bR] and w is the marginal distribution 
of B. Decomposition of population by B results in R strata, each stratum determined 
by individual value br, r = 1, ..., R. Then the result of Theorem 6 for the contin­
gency table can be described as: 

total variability of a distribution f 

= variability within strata + variability between strata 

= mean variability of conditioned distributions + mean distance between 

conditioned distributions. 

The analysis of variance for the nominal case based on this decomposition was 
developed by Light and Margolin [3], Theorem 6 enables us to solve analogical 
problems for generalized categorical variables. 

5. MEASURES OF EXPLANATORY AND PREDICTIVE POWER 
OF DECOMPOSITION 

Theorem 6 and results of the previous parts enable us to introduce meaningful 
measures of association between an independent nominal variable B = [bu ..., bR] 
and a dependent generalized variable A = [au ...,aK; D}. 

Definition 5. The coefficient of explanatory power of decomposition is defined as 
a relative portion of the variability of the dependent variable A explained by the 
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nominal variable B that generates the decomposition (8) 

£w r Gvarf ( r ) i £ £ wrws D
2(f,r), f(l)) 

(9) 5 = ^ / B = 1 - ^ 
Gvar f Gvar f 

Properties of the coefficient 8 follow immediately from Theorem 6. 

1. The coefficient is defined whenever Gvarf 4 0. 
2. 0 £ £ £ 1. 
3. (5 = 0 iff f(r) belongs to the same equivalence class with respect to D(f, g) = 0 

for all r for which w, > 0. 
4. 8 = 1 iff Gvar f(r) = 0 for all /• for which wr > 0. 

The coefficient of predictive power of decomposition is based on proportional-
reduction-in error principle (PRE principle, see [8]). The optimal prediction is 
considered with respect to the matrix D, a predictive value being a centre of distribu­
tion which minimizes the expected loss expressed by d\j 's (expected dissimilarity 
scores between true and predicted values). The coefficient is given as a ratio of reduc­
tion in expected predictional error in A that provides knowledge about the value 
ofB. 

Definition 6. The coefficient of predictive power of decomposition is defined as 

(10) 8* = 1 -
K J d* 

where d* and d*r) are the measures of concentration around the centre for the distribu­
tion f and f(r) respectively. 

Theorem 7. (Properties of the coefficient 5*.) 

1. The coefficient is defined only if d* * 0. 
2. 0 g 8* £ 1. 
3. Iff(r) = f for all r = 1, ..., R (the case of statistical independence), then 8* = 0. 

Conversely it holds only: if 8* = 0 then any centre of the distribution f is also a centre 
of every distribution f(r) for all such r that wr > 0. 

4. 8* = 1 iff d*r) = 0 for all r = 1,...,R for which wr > 0. 

Proof. The first property is obvious. 
2. Denote c and c(r) centres of the distribution f and f(r) (r = 1 , . . . , R) respectively. 

The result follows from the inequality 

d* = lftd(ai, c) = £ I wrfi/rd(at, c) = i wr ifilrdiah c) = 
( = 1 ; = i r = l r = l ; = 1 

^£wr i : /^«f . -e w ) - lMj ,a :o . 
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3. If fw = f for all r, then d*r) = d* for all r and hence 8* = 0. If 8* = 0, then 
R 

£ wrd*r) = d*. Let us suppose that wr > 0 for all r = 1, . . . , R and that at least 

for one 5 holds that a centre c of f is not a centre of the distribution f(v), i.e. rf*s) = 

= I j V t K ew) < Zfilsd(°i> c). Then d* = £ wr I /V rd(e. , , e) > £ wrd*r) and 
; = i ; = i r = i ; = i r = i 

it is the contradiction. Thus if 8* = 0 then c is a centre of all distribution f(r) (r = 
- I , . . . , * ) , 

R 

4. ,5* = 1 o £ wrd(*r) = 0 o d*, = 0 for all r for which wr > 0. • 

Remark. The coefficient of explanatory power of decomposition has also PRE 
interpretation, where prediction is done proportionaly to the distribution of a given 
variable. 

6. RESULTS FOR SIMPLE, ORDERED AND QUANTITATIVE 
CLASSIFICATION 

In this part we present the previous general results for three most frequent and 
important cases of dependent variables. Theorems 8, 9, 10 are straightforwards 
consequences of the general properties that were established in the preceding sections. 

Theorem 8. (Simple classification, nominal variable?) Let A = [a1, ..., aK; D} 
be a nominal variable (dtJ = (1 — StJ)), f, g, f(1),..., f(R) e QK. Then 

K 

1. Gvar f = nomvar f = 1 — £ / 2 . 
; = i 

2. max nomvar f — (K — 1)/X; the maximum is attained for the distribution 
f E Q K 

f = (Ii, • • • , /*), where / , = 1/K for all i = 1, . . . , K. 

3. d*. = 1 - / , - f o r all i = 1,...,K. 

4. The centre of a distribution f is its modal category. 

5. d* — 1 — j M , where M is an index of the centre of the distribution, i.e. fM = 
= max/;. 

; K 

6. D(f, g) = .y( _>](/ - a,)2) and it is an Euclidean metrics. 
; = i 

7. The covariance of distribution f and g is 

< f - g ) = l - f / f - I ^ +X/;<?; = 
; = i ; = i ; = i 

= l-KEj;2 + L?)-i£(/;-0.-)2 
; = i i = i ; = i 
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and it holds that 

X/ ia , - 1 = s(f, g) = 1 - YfiQt • 
; = i i = i 

K 

8. The correlation coefficient of distributions f, g under the condition £ fSi =f= 1 
is: 

1 - I / 2 - X>2 + £j;0i £ ( / i - 0 ; ) 2 

corr (f, g) = £=- ^ !_ - ! - . = ! - • - _ . - — . 

1 - Ifdi 1 - £/<?; 
; = i ; = i 

A' 

9. The coefficient of explanatory power of decomposition is ( fo r£ j j + 1) 
Wallis'tau (cf. [2]): ; = ' 

R K R K K 

i - X X I X I ^ I / ^ - X / 2 

1 - I j i2 1 - 1 / 2 

i = l i = l 

10. The coefficient of predictive power of decomposition is (for max/,- 4= 1) 
Guttman's lambda (cf. [2]): 

R R 

1 — X Wr maX/i/r I Wr maX/i/r — m a X / i 
5* = X = 1 t i l ' = ^ J ! « . 

1 — m a x / 1 — max/-

Theorem 9. {Ordered classification, discrete ordinal variable?) Let A = 
= {o 1 , . . . , aK; D} be a discrete ordinal variable {dtj = \i — j \ ) , f, f(1), ..., f(R) e QK. 
Then 

K-l i 

1. Gvar f = dorvar f -= 2 £ F ;(l - F,), F , = £ / , . 
; = i j = i 

2. max dorvar f = (î T — l)/2; the maximum is attained for the distribution f 
feQK 

in which/, = j K = 0,5. 
i t 

3. d* = XjylJ - i|for all i= 1,...,K. 
J ' = I 

4. The centre of a distribution is its median category, i.e. the category defined 
by the relation F M e _ x < 0,5, FMe = 0,5. 

5- d* = EJ/|j - Me|. 
y = i 

K- 1 

6. D(f, g) = 7 [ 2 X (F ; - G;)2] and it is a metrics. 
i = i 
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7. The covariance of distributions f and g is 

<*. g ) = i W- - F>) + i W - - G--) - E V « - G--)2 . 
i = l i = l i = l 

- f'Dg -g s(f, g) = f'Dg , 

f'Dg = X Ei(l - G;) + Y, Gi( 1 - I^i) = I (-Pi + G / - 2 F A ) = 
1=1 i = i i = i 

- i k i - I7-) + Gi(i - GO + (I7* - G/)2] • 
i = l 

K 

8. The correlation coefficient of distributions f , g under £Lfif; 4= 1 is: 
i = l 

' i k i - -p.) + Gi(i - G<) - (pi - G<)2] 
corr(f,g) = j=± . 

H E / 1 - E;) + G;(l - G;) + (E; - G;)
2] 

i = 1 

K 

9. The coefficient of explanatory power of decomposition under £ E;(l - E;) + 0 
is the coefficient jS (cf. [4]): '=* 

£wr£E,r(i-E,r) 
,5 = ,? = 1 - - J _ p i . 

i = 1 

K 

10. The coefficient of predictive power of decomposition under ^j , | / '-Me| + 0 
is the coefficient /?* (cf. [4]): i = 1 

R K 

.5>r2./i/r|i - Me(r)\ 
5* = p* = l - ^ — ^ , 

i / / | i - Me\ 
i = 1 

where aMe and oMeir) are median categories with respect to the distribution f and f(r) 

(/* = 1, ..., R) respectively. 

Theorem 10. (Numerical classification, discrete cardinal variable.) Let X = 
= {xu ..., xK] be a discrete cardinal variable (dtj = (xt - Xj)2), f, f(1),..., f(/?) e QK. 
Then 

1. Gvar f = 2 var X = 2 X j ;(x ; - * ) 2 , X = £ / * , , 

(x - x )2 

2. max Gvar f = - m a x — ^ i n L - ; x^^ — m a x ( X l ; _ _ _; XjC^ Xm[n = m m (_Vi) _ ^ 
feQK 2 

xK); the maximum is attained under the distribution f which has on the places cor­
responding to the values xmin, xmax the values 0,5. 
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3- < = lfj(xj ~ x,)2 = Xffa - X)2 + (xt - X)2 = varX + (*; - X)2. 
; = i j = i 

4. The centre Xc of a distribution is the value of the variable X for which it holds 
that \Xe - X\ = min [x, - J | . 

5. d* = var X + (Xc - X)2. 
K K 

6. D(i, g) = ^(2) \Xf — Xg\, Xf = Y,fixi> Xg = Y, gtXt and it is a semimetrics. 
i = l i = l 

All distributions having the same arithmetic mean belongs to the same equivalence 
class. 

7. The covariance of distributions f and g is 

s(f, g) = I /* 2 + i gtf - 2(xj + x] - xfxg) = 
i = l i = l 

= ( I M 2 -xj) + d 9i4 - x2
g) - (xf - xg)

2 = 
i = l i = 1 

= v a r ( X | f ) + v a r ( X | g ) - ( J / - X ! , ) 2 . 

It holds that |s(f, g)| ^ f'Dg, where 

f'Dg = i j ; x 2 + X ^ 7 - 2 J / J , = 
i = 1 i = l 

= var (X | f) + var (X | g) + (Xf - Xg)
2 . 

8. The correlation coefficient of distributions f, g under f'Dg + 0 is 

corr (f z) - V a r ( X 1 f ) + V a r ( X I g ) ~ & ~ X»)2 
y ' SJ var ( X | f) + var(X | g) + (Xf - Xg)

2 ' 

9. The coefficient of explanatory power of decomposition under var (X | f) + 0 
is the correlation ratio: 

i^LU(Xi-X(r)y I>,var(X|f(r)) 
,5 -> n2 = l - f = 1 ' - ' = l - m • , 

lft(Xi-xy v a r ( x l f ) 
i = l 

i = l i = l 

10. The coefficient of predictive power of decomposition under var(X|f) +- Ois 

i^{iu(^-x(r)y + {xHr)-x(r)y] 
s * - i - ^ - ^ = 

£/,(*, - J)2 + (Xc - X)2 
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J> r [var (X| f ( r ) ) + (XC ( o-X ( r ))
2] 

var(X|f) +7x c - X)2 

where Xc and Z c are centres of distributions f, f(r) (r = 1, ..., R) respectively. 

Further important special cases concern matrices D, elements of which come from 
geographic or M-dimensional distances. 

Theorem 11. Let f* = (f(1), f(2),..., f(H)), g* = (g(1), g ( 2 ) , . . . , g(H)) be two sets 
of distributions that belong to variables A(1), A(2)) ..., A(H), let D(0(f(0, g (0) be 
a metrics (semimetrics) for i = 1, . . . , H and Wt > 0 (i = 1, 2, ..., H). Then the 
functions 

Z5vf*,g*) = £ ^D{0(f (0 ,g (0), 
i = 1 

I>Vf*.g*) = V[ i^ , 2 , ( f (0 ,g (0 ) ] 
i = 1 

are the metrics (semimetrics) for sets of distributions from Q* = QKl x QK, x ... 

••• x QxH-

Proof. Both functions are symmetric, non-negative and are equal to zero if, and 
only if, all JD(;)(f(;), g (0) are equal to zero. The triangular inequality for £>(f*, g*) is 
a straightforward consequence of the triangular inequalities for D(i)(f(f), g(;)). For 
D(f*, g*) it follows: 

D2(f*, g*) = ZWi D2
;)(f(0, g(;)) ^ £Wi D2

;)(f(0, h (0) + 

+ I * . I)fo(h(o, fto) + -ZWJ D(l,(f(;), h(0) Z)(0(h(;), g(0) g 

= I * . 4)(fd). h(o) + I * . I>fo(h(0, g(o) + 

+ 2 V[ E W. O(
2
0(f(o, h(0)] Vt I *i l>(o(h(0> fto)] = 

= U l l k ->(2>(W Ko)] + V E ^ i I>(2o(h(o, fto)]}2 = 

= (Dvf*, h*) + D(h*, g*))2 . • 

Theorem 11 permits the multidimensional analysis of distances. Moreover, if 
we set f{0 = f and A(;) = {o^ ..., aK; D ( 0}, we can introduce two important types 
of variables, the matrix of distances of which generates a metrics or semimetrics. 

Definition 7. If there exist K vectors Xu ..., XK, Xk = (xkl, ..., xkM), k = 1, ... 
M 

..., K so that dkJ = £ (xkm — xjm)2, Xk + X} for k + /, we call the variable A = 
m = l 

= {a l 5 . . . , aK; D} where D = \dkj\ the M-dimensional metrical variable. If M = 2 
the variable A is called the areal or geographical variable. 
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Definition 8. If there exist M different vector Ru R2, ..., RM, Rm = (rlm,..., rKm), 
m = 1, ..., M whose components are permutations of the numbers (1, 2 , . . . , K) 
so that dkj = Y\rkm - rjm\> w e caH t n e variable A = {au ..., aK; D} where D = 

= | 4 / | | the M-dimensional ordinal variable. 

Corollary 4. a) The matrix of distances of an M-dimensional metrical variable 
generates a semimetrics on QK x QK. 

b) The matrix of distances of an M-dimensional ordinal variable generates a metrics 
on QK x QK. 

Proof, a) Let us set in Theorem 11 f(m) = f, g(m) = g, D(m) = | | 4 T 1 » where dkf = 

= (xkm - xJm)2, m = 1, ..., M. We see that D(m)(f, g) are semimetrics on QK x QK 

and that 

IXf> g) = VKf - g)' D(g - f ) ] = v l ( f - %)' ( E D
W ) (g - f ) ] = 

M M 

= vc i (f - g)' D(„(g - f ) ] = v [ i nuf> g)] = m g*) • 
m = l m = l 

b) The proof is analogical but D(m)(f, g), where D(m) = || \rkm - rJm\ || are the 
metrics for m = 1, ..., M. 

CONCLUSIONS 

The presented general model aims towards a unifying approach to and a look 
at various measures of variability, central tendency, predictive and explanatory 
coefficients. The paper deals with the discrete data that are the most frequent in the 
social sciences. The model generalizes well known statistical characteristics and ena-
ables to fill the existing gap for analogical measures for ordinal data. The important 
generalization goes to the M-dimensional metric or ordinal variable. 

(Received October 30, 1984.) 
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