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K Y B E R N E T I K A - V O L U M E 22 (1986), N U M B E R 2 

A NOTE ON ESTIMATION 
IN CONTROLLED DIFFUSION PROCESSES 

VERA LANSKA* 

A system described by a stochastic differential equation is considered. Its evolution is affected 
by a nonanticipative control. The drift function involves an unknown parameter. The local 
asymptotic normality is proved for the corresponding family of distributions. The control, 
providing good quality of the identification, is exhibited. 

1. INTRODUCTION 

Let us consider a system ¥. Its evolution is described by a stochastic process 
X = {X„ t ^ 0} with the state space equal to the real line ft. We assume that the 
process X is a diffusion one but depends on a control process U = {U„ t ^ 0}. 
The states of the control process, control parameters, range over a set % c ft". 
To keep the presentation concise and simple we limit ourselves to the family of X 
given by the following stochastic differential equation 

(1) dX, = [ax{Xt, Ut) + a a2(Xt)] dt + a(Xt) dWt , X0 = x0 e R , 

where a is an unknown parameter taking its values in A. Let us assume A c ft is open, 
{Wt, t ^ 0} is a standard Wiener process. 

The control parameter is chosen in the dependence on the past trajectory. Its 
value at time t is Ut = ut (Xs, 0 ?g s g t). The control U is stationary (homogeneous 
and Markovian) if Ut = u{Xt), t 5; 0. The set of all stationary controls is denoted 
by <?/°. 

Let us introduce basic hypotheses concerning the equation (1). 

Assumption 1. Let the diffusion coefficient a(x) be positive and Lipschitz continuous 
on ft. 

* This work was performed while the author was at the Institute of Information Theory and 
Automation of the Czechoslovak Academy of Sciences. 
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Denote by ^T the space of all continuous functions on [0, T], by ^> the Kolmo-
gorov cr-field on (€T and by P 0 the distribution of Y satisfying dYt = a(Y,) dW„ 
Y0 = x0, on (^V, Wj). Under Assumption 1 P 0 exists and it is unique. 

Assumption 2. For every K < co sup \at(x, u)\ < oo. The function ax(x, u) 
\x\<K,ue% 

is continuous in u uniformly with respect to x and a2(x) =£.0 is continuous on R. 

Assumption 3. For a(x, a) = sup \at(x, u) + a a2(x)| there holds 
m<U 

~a(X„ a)" 
1 ГГa(X„o 

2 J o L « 
dîl < oo , a є A , E0exp ^ 

where E0 denotes the mathematical expectation under P 0 . 

Under Assumptions 1, 2, 3 there exists a weak solution of (1). The detailed proof 
can be found in [ l ] . 

2. LOCAL ASYMPTOTIC NORMALITY 

First, the definition of the local asymptotic normality is recalled. Let U = 
= {U„ t S: 0} be a nonanticipative control. The probability distributions of the 
process {X„ 0 g t ^ T} form the family 

(2) {P*'v, a e A, T ^ 0} . 

The initial position x0 is supposed to be independent of a. Due to Assumption 1, 2, 3 
the mutual probability density function of the processes corresponding to a, a' e A 
equals 

Definition 1. (2) is locally asymptotically normal at a e A (LAN at a e A) if for any 
heR (3) conforms to 

(4) d~^f = exp |* . Ay -h~Fv

 + eI'D(ft)} , 

where for underlying distribution P j ' D A['v has asymptotically normal distribution 
iV(0, rv), rv > 0, and Ql'v(h) tends to zero in probability as T-» oo. If (2) is LAN 
at a e A for all a e A then (2) is LAN at A. 

Definition 2. The control U is asymptotically stationary (U ~ M") if to any a e A 
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there exists n" e <%° such that 

(5) lira ||U, - W(Xt)\\ = 0 a.s. P'a'
u . 

t-nx 

Substituting a + (./-/Tfor a' in (3) we have 

_p;_r--u-__rr__if„i 
V- Jo «A) 2-JoU_.)J J 

To verify LAN for (2) it is sufficient to prove that 

(6) lim T"1 f f"-2-^ f d. = TU >0 in probability P ™ . 
r->- J o L < w J 

It is known, e.g. [ l ] , that if (6) is true then for 

\T.V _ ~ - 1/2 f a 2 ^ t ) 
A i u _ J.-./2 ______ d F y; 

Jo <Xt) 
the central limit theorem holds, it means, that AT,U has asymptotically _V(0, ru), 
as T-> oo. Simultaneously 

ßľ » = ү 
hТ_.„ __, ГТ_2(xř) f]Ҹ loL^r 

tends to zero in probability TJ,c/. To ensure the validity of (6) we follow the procedure 
introduced in [ l ] . 

Using the notation of [1] or [4] let 

a+(x, a) = sup (flt(x, u) + a a2(x)), 
i r e . 

a~(x, a) = inf (at(x, u) + a a 2 (x)), 
u s . 

/ + (x,a) = 2 i V l ^ a - ^ d j ; , 
Jo 

m + (x,a) = 2 P V ^ V - ^ d . y , 
Jo 

_>.(*,_) _. I" _-'•<*«> dj>, 

/_(x, a), m_(x, a), p_(x, a) are defined similarly. The integrals are assumed to exist. 

The constant T^ is in fact determined by u*(x). Were U identically stationary 

control defined by u"(x) the procedure how to get T^ would be as follows. T. is the 

unique number such that the following differentia! equation 

(7) - $ _ v»(x) + [ai(x, »%x)) + a «2(x)] v'(x) + ^MJ _ T% - 0 
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has a solution satisfying the boundary conditions 

a \ L [x uAy, ua(y)) + a a2(y) , . 
hm v'(x) exp)2 • ^ "" 2^J~ dy\ = 0 . 

* - * • I Jo <r(y) i 

Some questions concerning the solvability of the equation (7) were treated in [6]. 
The auxiliary function v(x) will be an efficient instrument in our further proofs. 
From Assumption 2 and (7) it follows that Ea is positive. 

Let us denote 

(8) <p(x, u) = ^ v"(x) + [ai(x, u) + a a2(x)] v'(x) + \ ^ \ \ - Ea, 
2 L<wJ 

(9) Lt = P I ^ f f ds - r a . . + <X r) - ,(x0) - f p(X„ Us) d s . 
J o L <vQ J J o 

Assumption 4. Let the following integrals be finite, B(s) = 1 + <r2(s) v'(s)2. 

B(s) dm+(s, a) dp+(y, a) = wt +(x) , 

2 B(s) Wj +(s) dm+(s, a) dp + (>', a) = w2+(x) , x ^ 0 , 

^

o p 
B(s) dm_(s, a) dp_(j , a) = w. _(x) , 

x J - C C 

V / /.o p 

2 £(s) Wl_(s) dm_(s, a) dp_(y, a) = w2_(x) , x < 0 , 

while w1+(oo) = Wj_(— GO) = GO. 

Lemma 1. Under Assumption 1 —4 {Xt, t 2: 0} given by (1) is bounded in prob­
ability and {L„ t S: 0} is a local martingal fulfilling the law of large numbers. 

Proof. The process X is bounded in probability if 

(12) lim sup P'x'
u(\Xt\ > R) = 0 . 

(10) 

R->oo î > 0 

We use the method introduced in [1] (the proof of Theorem 4). Applying Ito's 
formula to dw1+(__s) resp. dwt _(__,.) and the differential operators 

_, _. <x2(x) d2
 + , N d 

Dm+Dp+ = ^ J _ + a + ( x , « ) - r 

2 dxz dx 
resp. 

_, _, a2(x) d2 _, . d 
Dm D. = —*-i —- + a (x, a) — 

P~ 2 dx2 V ' dx 

on (10) resp. (11), we find the majorant for E'a'
vw1+(X') resp.. E'x'

v wt _(__'). Thus, 

sup P'«'U(\X,\ > R) = sup f dP'f £ const. (w^(R ) + w7/_(K)), 
f S° ' S ° J | X t | > K 
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and (12) is a straighforward consequence of it. Substituting (8) into (9) we obtain 

L, = f a(Xs) v'(Xs) dWs, t^O, 

and that is as generally known a local martingale. A sufficient condition for the 
validity of the law of large numbers is according to [1] the following one 

(13) lim r 2 loglog t f [>(XS) v'(Xs)]
2 ds = 0 in probability . 

' - c o J 0 

It suffices to prove that 

lim sup r 1 [<T(XS)V'(XS)Y ds < oo a.s. 

»-» Jo 
Using the method of the proof introduced in [1] (Theorem 5) simultaneously with 
(10) and (11), (13) is proved without difficulties. D 

Assumption 5. The function <p(x, u) defined by (8) has the following property. 

(14) <p(x, u) = cpt(x). <p2(x, u) 

where <p2(x, u) is continuous in u uniformly with respect to x, <p2(x, ua(x)) = 0 
and E ^ I ^ X , ) ! ^ const. < co. 

Theorem 1. Under Assumptions 1 - 5 the family (2) is LAN at v. for the asymptotic­
ally stationary control U. 

Proof. As it was mentioned in advance it remains to prove (6). Let s > 0. Denote 

A = { | < p 2 ( z ! , U / ) | < 8 2 , r ^ ; 0 } . 

Since \<p2(Xt, U,)| = \<p2(Xt, U,) - <p2(X„ u"(Xt))\ , then P'f(A) > 1 - s for t0 

sufficiently large. Thus 

Z'UXA\<p(Xt, Ut)\ ^ e3 cost.,, r s t0 

and 

lim sup E ^ ^ r 1 j |<p(*s, Us)| ds ^ e2 const. 
' -» Jo 

Therefore 

lim r 1 cp(Xs, Us) ds = 0 in prob. 
•-•» Jo 

Then using expression (9) and Lemma 1 we obtain (6). D 

Example 1. Consider a linear case, 

dXt = -(U, + aXt)dt + dWt, 

where a e A = (0, oo) and U, = z(6tt) Xt, z(y) is positive, continuous and bounded 
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on R. If a, is a strongly consistent estimate of the unknown parameter a, then U = {U„ 
t _ 0} is the asymptotically stationary control. 

The problem of LAN in controlled Markov chains was treated in [5]. The condi­
tions for a finite state space and also countable state space chains were set up. 

3. OPTIMAL CONTROL 

For the locally asymptotically normal families of distributions Theorem of J. Hajek 
[2] or [3] holds. Its special case is the asymptotic Rao-Cramer inequality 

(15) lim inf sup TEj'p(ar - a)2 _ \\f", , 5 > 0 , 
r-00 \a-*\<5 

for any family of estimates {aT, T _ 0} of the unknown parameter a. (15) provides 
a bound on the quality of the identification of the system y. So, during the identifica­
tion stage the control U is to be used for which 

(16) lim T-l f r ^ ) T dt = sup rv
a = if = f.. 

T-cc Jo L <--'.) J " 

The Bellman equation for the criterion (16) has the following form 

(17) max \-*-$ w"(x) + [a,(x, u) + a a2(x)] w'(x) + f - ^ T - f \ = 0. 
BS* [ 2 L f f W J J 

Some questions concerning a solution of (17) are discussed in [6]. The stationary 
control achieving fx is given by maximizer u[x, a) of the expression in curly brackets 
in (17). A control that suits to (16) is obtained according to [1] by substituting 
a strong consistent estimate at for a in the optimal stationary control given by 
u(x, a). Thus U = {U„ t _ 0} corresponds to Ut = u{X„ at). 

The maximum likelihood estimate of a equals see e.g., [1] 

* a2(Xs)dX _ r ai(XsUs)a2(Xs) ^ 

(18) ât = kÆÀ Ĵ  ñïL 
Г \aJЩ 
J.U-fjJ 

ds 

Under Assumptions 1 — 5 the estimate (18) has asymptotically normal distribution 
N(a, lft. tx), t -» oo, i.e. the best lower bound in (15) is reached. 

Example 2. Take again 

dXt = ~(Ut + a.Xt) dt + 7(2) dWt, t _ 0 , 

a e ( 0 , oo), U, = z(at)X„ 0 < Kt _ z(y) _ K 2 < oo, continuous on R. Then (17) 
equals 

max {w"(x) - (z + a)x w'(x) + x2\2 - f.} = 0 . 
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Maximum is achieved for z = K± independently of x and 

w(x) = fa. x2\2 , ta = [2(K, + a ) ] - 1 . D 

If condition (16) is used the expenses of the measurement are expressed through 
the duration of the experiment. Considering a more general evaluation, e.g., the costs 
of the measurement are taken into account, (16) should be replaced by the following 
expression 

(19) Km - 2 , 
' r~co DT 

where 

DT=[ r ^ ^ T ds and c r = I* c(*« Us, a) ds . 
J o . L « « J Jo 

The function c(x, u, a) is supposed to be nonnegative and to fulfil assumptions 
analogous to Assumptions 4, 5, where [a2(xt)\a(X,)Y is replaced by c(X„ Ut, a). 
The aim is to minimize (19). The minimal value is denoted by ©(a) and the corre­
sponding optimal control by U. The Bellman equation for (19) reads 
(20) 

m i n p * ) W"(x) + [a,(x, u) + a a2(xj] w'(x) + c(x, u, a) - \2M~f ©(«)} = 0 . 
«** [ 2 L<K*)J J 

Proposition 1. Let U be an asymptotically stationary control, {a„ t «g 0} be any 
family of estimates of unknown parameter a. Then an analogy of (15) holds for LAN 
at a families of distribution. Namely, 

(21) lim lim inf sup ET
a'

vCT£.Ta-
v(aT - a)2 § 0(a) . 

«-»0 T^oo | a - a | < d 

Proof. Let U ~ u". Then in probability 

l i m T ^ C r = §t(x) g l iminfT^Ej '^C, . and 
r->co r->oo 

l i m T - 1 ^ = 02(a) = ru . 
r->co 

From the optimality of 0(a) with respect to (19) follows 

6>.(a)/02(a) £ 0 ( a ) . 
Thus 

lim lim inf sup ^'vCT^-u(dT - a)2 ^ 
o->0 T-*oo \a-a\<6 

^ lim( inf ©^a)) lim inf sup TEj,t7(ar - a)2 ^ 01(a)/02(a) ^ @(a). U 
3^0 | a - a [ < o T^oo ] a - a | < o 

The relation (21) gives asymptotically the minimal mean value of costs needed 
to achieve the given variance of aT, i.e., to attain the variance V(a) the minimal mean 
costs required are 

0(a)/V(«) . 
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Example 3. We assume the linear case, i.e., 

dXt = -(all, + aXt) dt + 7(2) dWt, ae (0, oo) 

is unknown. The criterion has the form (19), particularly, c(x, u, a) = c0 + cxu
2, 

where a, c0, cx are known positive constants such that 

(22) 2acx - c0a
2 > 0 . 

Substituting into (20) we have 

min {w"(x) - (au + ax) w'(x) + c0 + c{u
2 - &(a) x2\2) = 0. 

The minimum is achieved for u(x) = (a/2cj) w'(x), w(x) is a quadratic function and 
w'(x) = —c0x. The mmimal value of the criterion equals 

<5(a) = 2 a c 0 - ^ 2 . 
2c. 

It is positive as (22) holds. Thus, the process corresponding to the optimal control 
is described by the following stochastic differential equation 

dXt - - ŕa - — ° ì X, dt + 7(2) dWt. 

The optimal strategy during the identification stage 0, = —(ac0j2ct). X, is that one, 
under which the system has 'minimum stability'. • 

If we have instead of (16) the criterion additively composed of two parts 

JT = f c(Xs, Us, a) ds + f [ - f e l T ds = Cj(Xs, Us, a) ds , 
Jo J 0 L aiXs) J J 0 

then the theory presented in [l] can be used without any modification. The method 
of the insertion the strongly consistent estimate into the optimal stationary control 
gives the optimal procedure as it was mentioned formerly. 

Example 4. Let c(x, u, a) = — (x2 + JA(a) u2), therefore 

JT= _ i F(x2 +X(a)U2)ds, 
2 Jo 

where X(a) is continuously differentiable with respect to a, 0 < K ^ 1(a) < oo, 
dXt = -(Ut + aXt) dt + 7(2) dWt. This case was treated in [1], so only results 
are mentioned. It holds &(a) = A(a) (a — 7(«2 + ^(a)-1)) ar>d the appropriate 
control is Ut = (a, — ^/[(a2 + Aft,)'1)]) X„ where a, is a strongly consistent 
estimate of a, e.g., MLE. • 
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4. CONCLUDING REMARKS 

The stated theory can be generalized for processes satisfying instead of (1) a non­

linear equation 

(23) dX, = a(X„ U„ a) dt + a(Xt) dWt. 

The modifications of Assumptions 2, 3 are straightforward. The likelihood function 
(3) has the expression 

• a (x . . t / . , a + / . /V(r ) ) - f l (X. ,C7, ,a ) d T T , 

d-P™ [Jo o(Xs) 

_ 1 [T\a(Xs, U- a + ft/V(T)) - a(Xs,Us,a)V 

2joL < « J . 
and therefore to prove the relation (4) Taylor's expansion and some additional 
conditions are needed. They are more complicated than Assumptions 4, 5, but they 
also concern the validity of the law of large numbers and the central limit theorem 
for local martingales. The reason for developing the theory for (1) instead of (23) 
was to keep the presentation coincise, illustrative and as simple as possible. The 
restriction to the one-dimensional unknown parameter follows the same reason. 

(Received February 25, 1985.) 
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