
Kybernetika

Alexander Meduna; Cynthia J. Crooks; Milan Šárek
Syntactic complexity of regulated rewriting

Kybernetika, Vol. 30 (1994), No. 2, 177--186

Persistent URL: http://dml.cz/dmlcz/125000

Terms of use:
© Institute of Information Theory and Automation AS CR, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125000
http://project.dml.cz

KYBERNETIKA — VOLUME 30 (1994), NUMBER 2, PAGES 177-186

SYNTACTIC COMPLEXITY OF
REGULATED REWRITING

ALEXANDER MEDUNA, CYNTHIA J. CROOKS AND MILAN SAREK

The syntactic complexity of regulated grammars with respect to the number of non­
terminals is investigated. Several characterizations of the family of recursively enumerable
languages are established; most importantly, it is proved that this family is defined by
programmed grammars with only seven nonterminals.

1. OVERVIEW

Recently, the language theory has systematically investigated the syntactic com­
plexity of various grammars with respect to the number of nonterminals (see Chapter
4 in [3] and references therein). In particular, several characterizations of the family
of recursive enumerable languages by regulated grammars with a reduced number
of nonterminals have been established.

For context free grammars, the parameter of the number of nonterminals leads to
an infinite hierarchy of languages (see [5]). On the, other hand, two (three) nonter­
minals are sufficient for the generation of all linear (metalinear) languages by matrix
grammars; moreover, there are non-context-free languages that can be generated by
matrix grammars with only one nonterminal (see [2] and [4]). Furthermore, any
recursively enumerable language can be generated by matrix grammars with six
nonterminals and by programmed grammars with eight nonterminals (see [6]). For
further results, the reader is referred to [2-6].

In this paper, we contribute to this vivid area of the language theory by pre­
senting several characterizations of the family of recursively enumerable languages
based upon regulated grammars, including matrix and programmed grammars, with
a reduced number of nonterminals. In particular, we characterize the family of re­
cursively enumerable languages by seven-nonterminal programmed grammars.

2. PRELIMINARIES

We assume that the reader is familiar with the basic concepts and notation used in
formal languages (see Chapter 1 in [3]). Next, we give informal descriptions of the
grammars discussed in this paper.

For a grammar, G, the following notation is used:

178 A. MEDUNA, C. J. CROOKS AND M. SAREK

(1) N and T are the alphabets of nonterminals and terminals, respectively;
V = NUT;

(2) S G N denotes the axiom of G;

(3) P denotes the set of productions of G;

(4) Fa (or simply F if G is understood) denotes the set of labels assigned to the
productions in P.

Unless stated otherwise, the language generated by G, L(G), is defined as L(G) =
{w : w G T*, S =>* w} where =>* denotes the reflexive and transitive closure of the
direct derivation =>. The notation x => y [p] is used to express x => y according to
production p; x =>* y [p] indicates that p was the last production applied in x =>* y.

The productions of a programmed grammar, G = (N, T, P, S), are of the form

(t:A^a,Ts,TF)

where t G F, A G N, a G V*, Ts C F, and TF C F. A production of this form is used
so A is replaced with a, and, in the next direct derivation, a rule with a label in Ts

is used. If A does not occur in the current sentential form, this production allows
us to use a production with a label from TF in the next step. An unconditional
transfer programmed grammar is a programmed grammar in which each production
of the above form has Ts = TF.

A matrix grammar has the form G = (N, T, M, S, R) where M, called the set of
matrices, is a finite set of sequences of productions, and R is a subset of Fa- All of
the productions of a matrix must be used sequentially; if a label, t, appears in R
and the production labeled with I is not applicable to the current sentential form,
then this production is skipped.

A regularly controlled grammar has the form G = (N, T, P, S, C, K), where pro­
ductions in P are of the form t : A —+ w with A G N,w G V* ,t G F\ C is a
regular language over F, and K C F. If t'o h • • -in G C(n > 0), to, • • •, tn G V* so
<o = S, tn G T*, and for every j,0 <j < n — 1, either tj = UjAjVj, tj+i = UjWjVj,
ij : Aj —* Wj G P (for some Uj, VJ G V*) or tj = tj+\, ij : Aj —> Wj G P, Aj does
not occur in tj, and ij G K, then tn is a word in the language generated by G. The
generated language consists of all words obtained in this way.

The classes of matrix, programmed, unconditional transfer programmed, regular­
ly controlled, and type-0 grammars are denoted by M, PR, UTPR, RC, and RE,
respectively. Let X be a class of grammars, X G {M,PR,UTPR,RC,RE}\ then,
C(X) denotes the class of languages defined by X, that is, C(X) = {L(G) : G G X}.
Let G G X, N is the set of nonterminals in G, L G C(X), and AfOAfTSTl(G)
denotes the cardinality of N. We set

M(X, L) = min{tfON'T£1l(G) :GeX, L(G) = L}.

3. NONTERMINAL COMPLEXITY OF REGULATED REWRITING

This section establishes several results concerning the nonterminal complexity of
grammars defined in the previous section.

Syntactic Complexity oí Regulated Rewríting 179

Theorem 1. Foг every L Є C(RE) : Я(RC, L) < Я(M, L).

Proof . Let G = (N,T,M,S,R), G Є M, L(G) = L, and ЯOЯTЄЩG) =
Я(M, L). Then, this theorem follows immediately from the first part of the proof of
Theorem V.6.1 in [7] because this construction introduces no new nonterminal. D

Theorem 2 . For every L Є C(RE) : Я(PR, L) < Я(RC, L) + 1.

Proof . Intuitively, we define a controlled language of a regularly controlled
grammar, G, by a finite automaton, A. Then, we construct a programmed grammar
G that synchronously simulates both the derivations in G and the computations in
A.

Formally, let GєRC,L = L(G), and ЯOЯTЄЩG) = Я(RC, Ľ). Assume that
G is of the form G = (N, T, P, S, L(A), K) where A = (Q, Ľ, 6, q0, Qj) is a completely
specified fìnite automaton (see [1], the set of final states is denoted by Qj).

The new set of labels, FQI, is defined as:

FG- = {(J,£):JЄQ,£ЄFG}U {(FIRST), (LAST)}.

Let 8(y, £) = q, q Є Qғ, and £ : A —* a Є P. Then, we define a new programmed
production, p, as follows:

(1) if £ £ K, then p = ((y,£) :A^a, {(q, k) : k Є FG} U {(LAST)},0);

(2) i f / Є / ř , t h e n p = ((7,Ą :A-+a, {{q,k) : k Є FG}U {(LAST)},
{{q,k):кєFG}U{(LAST)}).

Let P' be the set of all productions obtained in this way.

Now, let 8(y,£) = q, q ţ" Qғ, £ : A -> a Є P. Then, we add to P' a new
programmed production according to the following two conditions:

(1) i f * g Ä , t h e n p = « 7 , /) :A-*a,{{q,k):kєFG},0);

(2) if t Є K, then p = ((y,£) :A-^a, {(q,k) : k Є FG},{(q, k) : k Є FG}).

Let X £ NUT. Consider the progгammed grammaг G' = (NU{X},T, {((FIRST) :
X ->SX,{{q0,£) :£Є FG},0), ((LAST) : X ~> A,0,0} U P',X) — observe that X
is the only new nonterminal.

Next, we prove that L(G) = L(G').
Claim 1. S =>" w [p] in G iff X =>m wX [(j,p)} in G' for some n > 1, m > 2,
w Є (NUT)*, p Є FG, (j,p) Є FGi (p and (7,p) aгe the labels of the last productions
applied in these deгivations).

Only if: If S =>n w [p] in G, then X =>* wX [{j,p)] in G' for some n > 1.
Base Case: Let n = 1. If s in G is to derive any w, then there suгely exists
a production, p, such that p : 5 -» a foг some a Є (N U T)*. From the above
constгuction, we see that the following two pгoductions are in G':

(FIRST) :S-*SX

180 A. MEDUNA, C.J. CROOKS AND M. SAREK

and

(«o,p) : S ~>a.

Therefore, S =>l a\p] in G and S => SX [(FIRST)] => a X [(qQ,p)] in G'.

Induction Hypothesis: Assume that if S =>n w [p] in G, then X =>* wX [(7,p)] in

G'for a l l n > 1.

If S =>" w [p] => y is a valid derivation in G, then the following two conditions
hold:

a. A production, pi : A —* a £ P , was applied to UJ to derive y in G: 5 =>n

w [p] =*• 2/ [Pi]-

b. The state of >4 is some 7' G Q and 6(7',pi) = g for some q G Q.

Case 1: w — y.

a. Production pi is not applicable to u>, that is, A $ alph(w).
b. pi G A'; therefore, it can be ignored in G.

c. At least one of the following productions is in P :
1. ((7',Pi) : A -> a, {(«,*) : * € FG} U {(I^5T)},{(g,fc) : Jb £ FG}U

{(LAST)}) if q€QF-
2. ((7 ' , p 1) : ^ - a , { (9 , l :) ^ e l r , G } , { (g , l :) : ^ e l ? G }) i f g £ QF-

d. By the induction assumption, X =>* u;A [(7,p)] => yX [(7',pi)].

e. Processing can continue in G' because TF of (7',Pi) is nonempty.

Case 2: w ^ y.
a. Production pi is applicable to w in G, that is, J4 G alph(w).

b. At least one of the productions presented in Case l.c or of the following pro­
ductions appear in P':

1. ((7',Pi) : A ~* a, {(,, jfc) : k G To} U {(LAST)},0) if 9 G Q F .
2. ((7 ' , P i) : > l - ^ a , { (g , *) : i t G F G } , 0) i f g £ Q F -

c. By the induction assumption, X =>* wX [(7,p)] => yX [(7 ;,pi)] in G'.

Hence, if S =>n+1 y [p\] in G, then X =>* j/X [(7',Pi)] in G'.

Therefore, if S =>n w [p] in G, then X =>* u>X [7, p] in G' for all n > 1 and
u>G(A~UT)*.

//• If X =>m wX [(7, P«)] in G', then S =>* to [p«] in G for some ra > 2.

5ase Case: m = 2. For any production (go,p) : S —> a G P' in G', there exists a
production p : S -> a G P in G. Therefore, 5 => SX [(FIRST)] => cvX [(qo,p)] in
G' and 5 => a [p] in G.

Induction Hypothesis: Assume that if A" =>n wX [(7,p«)] in G', then S =>* w [pa]
in G for all n = 2 , . . . , ra; for some ra > 2.

Induction Step: If X =>m wX [{7,Pa)] => yX is a valid derivation in G', the
following conditions (a) through (d) hold:

Syntactic Complexity of Regulated Rewriting 181

a. A production of the form (7',p0+i) : A -+ a € P' was applied to w to derive
y in G':

X^mwX[(j,pa)]=>yX[(y',pa+1)].

b. p„+i : A -> « 6 P in G.

c. <5(7',p„+i) = q,q£Q.

d. pi P2 • • -Pa Pa+i is a prefix of a string 5 € £(-*4)-

Case 1: w = y.

a. Production (7',p«+i) is not applicable to w in G', that is, J4 g alph(w).

b. Tf of production (7 ' ,p a + i) is nonempty if processing is to continue.

c. Pa+X e A'.

d. By the induction assumption, S =>* w [pa] => y [pa+i] in G.

Case 2: w ^ y.

a. Production (7',Pa+i) is applicable to w in G, that is, A G alph(w).
b. By the induction assumption, S =>* 10 [p«] => J/ [Pa+i] in G.

Hence, if X =>m+1 J/X [(,7',Pa+i)] in G', then S =>* y [pa+1] in G.
Therefore, if X =>m wX [(7,pQ)] in G', then, by induction, S =>* w [p] in G for

a l l m > 2 a n d w € (! V U T) * .

G/aim £: 5 =>" to [p] in G if and only if X =>m wX [(j,p)] => w [(LAST)] in G'
for some n > 1, m > 2, w G T*, p G EG, (7,p) G P c , 7 G Q.F (p and (7,p) are the
labels of the last productions applied in these derivations).

Recall that 7 G QF- If <7,p) was applicable, (LAST) G Ts 7 ; otherwise, (L.45T) G
I > 7 . That is, the production (LAST) may be applied to the word wX in G'.
Observe that this is the only way to continue the derivation, so S =>n w [p] iff
X =>m wX [(j,p)] => w [(LAST)].

Hence, L(G) = L(G'). a

The construction of the proof of Theorem 2 implies the following two corollaries.

Corollary 1 (Normal Form of Programmed Grammars) . For every
L G C(RE), there exists G G PR, G = (N, T, P, S), such that

0) L = L(G);

(ii) if (t: A -* a, Ts, TF) G P, then either Ys = YF or TF = 0.

Corollary 2. Let G = (N,T,P,S,C,K), G G PG, and EG = A'. Then L(G) G
C{UTPR).

By Lemma 5 in [4], N(P#, L) < M(M, L) + 2 (for every L G C(RE)). Next, we
improve this relation.

182 A. MEDUNA, C.J. CROOKS AND M. SAREK

Theorem 3. For every L G C(RE) : M(PR, L)<M(M,L) + 1.

Proof . It follows from Theorems 1 and 2. D

Theorems 1 and 3 together with Theorem 2 in [6] imply the following two results.

Corollary 3. For every L G C(RE):

(i) N(RC, L) < 6;

(ii) Af(PR,L)<7.

Notice that (ii) improves the relation M(PR, L) < 8 (for every L G C(RE))
presented in [2].

T h e o r e m 4. For every L 6 C(RE): N(RC, L) < M(PR, L)+\.

Proof . Informally, given a programmed grammar, G, we construct a regularly
controlled grammar, G', whose controlled language is defined by a finite automaton,
A. G and A synchronously simulate derivations of G.

Formally, consider GePR,L= L(G), G = (N,T,P,S), and NONTeK(G) =
N(PR,L).

Let G' G RG, G' = (N U {B},T, P', S, C, K), be defined as follows:

B is a new symbol, B & N U T; P' and FGi are defined by:

if (t: A -> a, rs, TF) G P, then add {[t, 1], [t, 2]} into FG,
and {[t, 1]:A - a, [t, 2]:A -> 5} into P ' .

A nondeterministic finite automaton (see [1]), A, is constructed as follows:

A = (Q,FG,,6,qo,Q-{qo})

where Q = {go, tfempty} U IG (we assume that g0, (/empty £ FG), and <5 is defined as
follows:

for each (t: A —+ a, Ts> ^F) G P , we define:

(1) 6(t,[t,l]) = {k:keTs}i{Ts^0,

(2) ^ , [i , l]) = {?empty}ifrs = 0,

(3) 6(t,[t,2]) = {k-.kerF} if rF^0,

(4) *(A[A2]) = {<Zempty}ifrF = 0,

(5) 6(q0, [t, l]) = {k:k€ Ts} if A = S and Ts # 0,

(6) % 0 , M) = {<7empty}ifr = 0.

Let C = L(A) and K = {[t, 2] : 1 G FG}.

The proof of the equivalence of G and o' follows next:
Claim 1: S =>" w[pi] in o where w =>* <i in G with h G T* iff S =^m u; [pii^i] i n

G' where nv =>* «2 in G' with <2 G T*, t\ G {1,2}, for some n,m>l,w€(NU T)*
(pi G P and [pi.li] G P ' are the last productions applied in these derivations).

Syntactic Complexity of Regulated Rewriting 183

Only if: If S =>" w \p\] in G where w =>* t\ in G with t\ G T*, then S =>* w \p\,t\]
in G', n > 1, wG(iVUT)* , u; =>* t2 in G' with <2 G T*, and £1 G {1,2}.
5ase Case: Let n = 1. There must exist at least one production in G of the form
p : S —*• a where a G (At U T)*, which implies that productions [p, 1] : 5 —• a and
[p, 2] : S —• B are in G'. As production [p, 2] would block a complete derivation in
G', [p, 1] is surely used. Therefore, S => a [p] in G and S => a [p, 1] in G'. The rest
of the base case is left to the reader.

Induction Hypothesis: Assume that if S =>n w \p\] in G where w =>* t\ G T*, then
S =>* w \p\,£\] in G', where w =>* t2 in G' with <2 G T", £\ G {1,2}, for all n > 1.

If 5' =>n w [pi] => y is a valid derivation in G, then the following conditions hold:

a. A production p2 G P was applied to w to derive j / in G, that is 5 =>n w \p{] =>
y [p2]-

b. p\ and p2 are labels of productions of the form:

(PI : A - a , r S u r F l) ,
(P 2 :B^/?,rS 2 ,rF 2) ,

a,pE,(NUT)*, A,BeN.

c. By the definition of a programmed grammar, Ts, U r F l ^ 0.

d. p 2 G r 5 l u r F l .
If .5 =>* w\p\,£\] is a valid derivation in G', then the following conditions hold:

a. The sequence of labels [po,^o] • • -[Pi,^i] is a valid prefix of a word s G L(A),
and [pi,^i] is the label of the last production applied in the derivation in G'.

b. If p2 G TSl in G, then p2 G 6(p\, \pv, 1]) in G'. If p2 G TFl in G, the p2 G
6(Pl,\p\,2]) in G'.

Case 1: w = y.

a. B is not a substring of w, that is, B £ alph(w).

b. Production p2 is not applicable to w in G.

c. If the derivation is to continue, then TFl of p2 in G is nonempty,

d. If TFl of p2 in G is nonempty, then 6(p2, [p2,2]) in G' is nonempty and qempty &
6(P2,\P2,2]).

e. Since 6(p2, [p2,2]) is defined, [po,lo] •• • [pi, li][P2> 2] is a valid prefix of s G L(A)
i nG ' .

f. Because [p2,2] G A", processing can continue in G'.

g. By the induction assumption, S =>* w \p\,£\] => y [p2,2] in G'.

Case 2: w ^ y.

a. 5 is a substring of w, that is, S G alph(w).

b. Production p2 is applicable to w in G.

c. If the derivation is to continue, then Ts2 of p2 is nonempty.

184 A. MEDUNA, C.J. CROOKS AND M. SAREK

d. If r s 2 of P2 in G is nonempty, then 6(p2,\p2, 1]) is nonempty and does not
contain gempty

e. As (5(p2, [P2,1]) is defined, [p0,4>] • • • \p\,h]\p2,1] is a valid prefix of s £ L(A)
i nG ' .

f. By the induction assumption, S =>* w \p\,h]=> y \p%, 1] in G'.

Hence, if S =>n+1 y [p] in G, where y =>* t\ in G with h £ T*, then S =>* y\p,l]
in G', where y =>* tf2 in G with 22 6 T*,i £ {1,2}. Therefore, we have completed
the only if part of the induction.

If: If 5 =>m w \p\,l\] in G' where w =>* t2 in G' with t2 £T*, then 5 =>* w[pi]
where w; =>* *i in G with h £ T* in G, m > 1, w £ (NUT)*, lx £ {1,2} (px £ P
and [pi,'i] £ P' are the last productions applied in the derivations).

Base Case: Let m = 1. To yield a word /2 £ 71* in G', there surely exists a
production, [p, 1] : S —» a, where a £ (TV U T)* in G'. Then, by the construction,
there exists a production p : S —• a in G. Hence 5 => a [p, 1] in G', and £' => a [p]
in G. The rest of the base case is left to the reader.

Induction Hypothesis: Assume that if S =>' w \p\,£\] in G', where w =>* t2 £ T*,
h £ {1,2}, then S =>* w [pi] in G where w =>* t\ £ T* for every i satisfying i < m,
for some m > 1.

If 5 =>m iw [pi,/i] => y is a valid derivation in G', then the following holds:

a. a production labeled by \p2,£2] was applied to w to derive y in G', that is,
S=>mw \pi,ti]^y\p2,t2].

b. productions [pi,/i] and [p2,^2] are of the form:
\p\,\]:A-*a,
\p\,2]:A^B,

\P2,1] : £ - /?,
\p2i2]:B-+B.

A,B£N, a,/3 € (NUT)*.

c. The production sequence [po,^o] • • • [Pi,^1^2,^2] is a valid prefix of a control
word s £ L(A) in G'.

d. By the construction, the following productions belong to P in G:

(Pl :A^a,rSl,rFl),
(p 2:P-*/?,r 5 2 ,rF 2) .

e. rSl u rFl ± 0.
Case 1: w = y.

a. 5 is not a substring of w, that is, B £ alph(w).

b. Production [p2,^2] is not applicable to w.

c. If the derivation is to continue in G', then:

1- \P2,t2]eK amU 2 = 2.

2. The current state of A in G' is not gempty

Syntactic Complexity of Regulated Rewriting 185

d- p2 G Ts! and/or p2 € T ^ in G; therefore, p2 can be applied in the derivation
at this point.

e. TF2 in G is nonempty and processing can continue.

f. By the induction assumption, S =>* w [pi] => y [p2] in G.

Case 2: w ^ y.

a. B is a substring of w, that is, B G alph(w).

b. Production [p2,^2] is applicable to w in G'.

c. If i2 = 2, then S would be replaced by B and y does not derive t2 G T* in G';
therefore, £2 — 1 f° r processing to continue.

d. If the derivation is to continue in G', then the current state of A in G' cannot
be qempty

e. p2 G Tsj and/or p2 G IV, in G and p2 can be used at this point in the
derivation.

f. Ts2 ^ 0 in G, so y can continue to be processed in G.

g. By the induction assumption, S =>* w [pi] => y \p2] in G.

Hence, if S =>m+1 y [p2,t2] in G', 5 =>* y [p2] in G. Therefore, the if part of the
induction holds.

Claim 2: S =>* t, t G T* in G if and only if 5 =>t, * € T* in G'.
Claim 2 follows from Claim 1. Consider the case when S =>* w [p] in G where

w 6 T* (p is the label of the last production applied in the derivation). From
Claim 1, we know that S =>* w [p,i] in G', w G T* and [p,t] is the label of the last
production applied. Thus, w G L(G). Since all states, excluding go, of A are final
states the control word [po.^o] • • -[p,t] G L(A) and w G L(G').

Hence, L(G) = L(G'). •

Corollary 4 (Normal Form of Regularly Controlled Grammars). For each
L G £(/?£) , t h e r e ^ s t s G G RC, G = (N, T, P, S, C, K), such that:

(0 L = L(G);

(ii) if x 6 C, then every (nonempty) prefix of x is also from C.

Corollary 5. L = L(G) for some G G UTPR if and only if L = L(G') for some
G' £RC, and tf = FG<.

Proof . //: See Corollary 2.

ora/z/ ./: This can be established by analogy with the method of the proof of Theorem
4 (we only take [t, \]-[t,2] for all I G FQ and omit from P' every production for
which the right side is equal to B). •

The following corollary follows from Theorems 3 and 4.

186 A. MEDUNA, C.J. CROOKS AND M. sAREK

C o r o l l a r y 6 . For every L € C{RE) : M(RC, L) < Af(M, L) + 2.

(Received October 17, 1989.)

REFERENCES

[1] A.V. Aho and J.D. UUman: The Theory of Parsing, Translation, and Computing, Vol.
1: Parsing. Prentice-HaU, N.J. 1972.

[2] J. Dassow and G. Paun: Further remarks on the complexity of regulated rewriting.
Kybernetika 21 (1985), 213-227.

[3] J. Dassow and G. Paun: Regulated Rewriting in Formal Language Theory. Akademie-
Verlag, BerUn 1989.

[4] J. Dassow: Remarks on the Complexity of Regulated Rewriting. Fund. Inform. 7(1984),
83-103.

[5] J. Gruska: Descriptional complexity of context-free languages. In: Proc. 2n d MFCS,
1973, pp. 71-83.

[6] G. Paun: Six nonterminals are enough for generating a recursively enumerable language
by matrix grammar. Internat. J. Comp. Math. 75(1984).

[7] A. Salomaa: Formal Languages. Academic Press, New York 1973.

Alexander Meduna, Department of Computer Science, University of Missouri -

Columbia, Columbia, MO 65211. USA.

Cynthia J. Crooks, Department of Computer Science, University of Missouri - Columbia,

Columbia, MO 65211. USA.

Milan Sdrek, Department of Computer Science, Masaryk University, Buresova 20, 60200

Brno. Czech Republic.

		webmaster@dml.cz
	2012-06-06T03:26:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

