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KYBERNETIKA — VOLUME 30 (1994), NUMBER 2, PAGES 177-186 

SYNTACTIC COMPLEXITY OF 
REGULATED REWRITING 

ALEXANDER MEDUNA, CYNTHIA J. CROOKS AND MILAN SAREK 

The syntactic complexity of regulated grammars with respect to the number of non­
terminals is investigated. Several characterizations of the family of recursively enumerable 
languages are established; most importantly, it is proved that this family is defined by 
programmed grammars with only seven nonterminals. 

1. OVERVIEW 

Recently, the language theory has systematically investigated the syntactic com­
plexity of various grammars with respect to the number of nonterminals (see Chapter 
4 in [3] and references therein). In particular, several characterizations of the family 
of recursive enumerable languages by regulated grammars with a reduced number 
of nonterminals have been established. 

For context free grammars, the parameter of the number of nonterminals leads to 
an infinite hierarchy of languages (see [5]). On the, other hand, two (three) nonter­
minals are sufficient for the generation of all linear (metalinear) languages by matrix 
grammars; moreover, there are non-context-free languages that can be generated by 
matrix grammars with only one nonterminal (see [2] and [4]). Furthermore, any 
recursively enumerable language can be generated by matrix grammars with six 
nonterminals and by programmed grammars with eight nonterminals (see [6]). For 
further results, the reader is referred to [2-6]. 

In this paper, we contribute to this vivid area of the language theory by pre­
senting several characterizations of the family of recursively enumerable languages 
based upon regulated grammars, including matrix and programmed grammars, with 
a reduced number of nonterminals. In particular, we characterize the family of re­
cursively enumerable languages by seven-nonterminal programmed grammars. 

2. PRELIMINARIES 

We assume that the reader is familiar with the basic concepts and notation used in 
formal languages (see Chapter 1 in [3]). Next, we give informal descriptions of the 
grammars discussed in this paper. 

For a grammar, G, the following notation is used: 
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(1) N and T are the alphabets of nonterminals and terminals, respectively; 
V = NUT; 

(2) S G N denotes the axiom of G; 

(3) P denotes the set of productions of G; 

(4) Fa (or simply F if G is understood) denotes the set of labels assigned to the 
productions in P. 

Unless stated otherwise, the language generated by G, L(G), is defined as L(G) = 
{w : w G T*, S =>* w} where =>* denotes the reflexive and transitive closure of the 
direct derivation =>. The notation x => y [p] is used to express x => y according to 
production p; x =>* y [p] indicates that p was the last production applied in x =>* y. 

The productions of a programmed grammar, G = (N, T, P, S), are of the form 

(t:A^a,Ts,TF) 

where t G F, A G N, a G V*, Ts C F, and TF C F. A production of this form is used 
so A is replaced with a, and, in the next direct derivation, a rule with a label in Ts 

is used. If A does not occur in the current sentential form, this production allows 
us to use a production with a label from TF in the next step. An unconditional 
transfer programmed grammar is a programmed grammar in which each production 
of the above form has Ts = TF. 

A matrix grammar has the form G = (N, T, M, S, R) where M, called the set of 
matrices, is a finite set of sequences of productions, and R is a subset of Fa- All of 
the productions of a matrix must be used sequentially; if a label, t, appears in R 
and the production labeled with I is not applicable to the current sentential form, 
then this production is skipped. 

A regularly controlled grammar has the form G = (N, T, P, S, C, K), where pro­
ductions in P are of the form t : A —+ w with A G N,w G V* ,t G F\ C is a 
regular language over F, and K C F. If t'o h • • -in G C(n > 0), to, • • •, tn G V* so 
<o = S, tn G T*, and for every j,0 <j < n — 1, either tj = UjAjVj, tj+i = UjWjVj, 
ij : Aj —* Wj G P (for some Uj, VJ G V*) or tj = tj+\, ij : Aj —> Wj G P, Aj does 
not occur in tj, and ij G K, then tn is a word in the language generated by G. The 
generated language consists of all words obtained in this way. 

The classes of matrix, programmed, unconditional transfer programmed, regular­
ly controlled, and type-0 grammars are denoted by M, PR, UTPR, RC, and RE, 
respectively. Let X be a class of grammars, X G {M,PR,UTPR,RC,RE}\ then, 
C(X) denotes the class of languages defined by X, that is, C(X) = {L(G) : G G X}. 
Let G G X, N is the set of nonterminals in G, L G C(X), and AfOAfTSTl(G) 
denotes the cardinality of N. We set 

M(X, L) = min{tfON'T£1l(G) :GeX, L(G) = L}. 

3. NONTERMINAL COMPLEXITY OF REGULATED REWRITING 

This section establishes several results concerning the nonterminal complexity of 
grammars defined in the previous section. 
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Theorem 1. Foг every L Є C(RE) : Я(RC, L) < Я(M, L). 

Proof . Let G = (N,T,M,S,R), G Є M, L(G) = L, and ЯOЯTЄЩG) = 
Я(M, L). Then, this theorem follows immediately from the first part of the proof of 
Theorem V.6.1 in [7] because this construction introduces no new nonterminal. D 

Theorem 2 . For every L Є C(RE) : Я(PR, L) < Я(RC, L) + 1. 

Proof . Intuitively, we define a controlled language of a regularly controlled 
grammar, G, by a finite automaton, A. Then, we construct a programmed grammar 
G that synchronously simulates both the derivations in G and the computations in 
A. 

Formally, let GєRC,L = L(G), and ЯOЯTЄЩG) = Я(RC, Ľ). Assume that 
G is of the form G = (N, T, P, S, L(A), K) where A = (Q, Ľ, 6, q0, Qj) is a completely 
specified fìnite automaton (see [1], the set of final states is denoted by Qj). 

The new set of labels, FQI, is defined as: 

FG- = {(J,£):JЄQ,£ЄFG}U {(FIRST), (LAST)}. 

Let 8(y, £) = q, q Є Qғ, and £ : A —* a Є P. Then, we define a new programmed 
production, p, as follows: 

(1) if £ £ K, then p = ((y,£) :A^a, {(q, k) : k Є FG} U {(LAST)},0); 

(2) i f / Є / ř , t h e n p = ((7,Ą :A-+a, {{q,k) : k Є FG}U {(LAST)}, 
{{q,k):кєFG}U{(LAST)}). 

Let P' be the set of all productions obtained in this way. 

Now, let 8(y,£) = q, q ţ" Qғ, £ : A -> a Є P. Then, we add to P' a new 
programmed production according to the following two conditions: 

(1) i f * g Ä , t h e n p = « 7 , / ) :A-*a,{{q,k):kєFG},0); 

(2) if t Є K, then p = ((y,£) :A-^a, {(q,k) : k Є FG},{(q, k) : k Є FG}). 

Let X £ NUT. Consider the progгammed grammaг G' = (NU{X},T, {((FIRST) : 
X ->SX,{{q0,£) :£Є FG},0), ((LAST) : X ~> A,0,0} U P',X) — observe that X 
is the only new nonterminal. 

Next, we prove that L(G) = L(G'). 
Claim 1. S =>" w [p] in G iff X =>m wX [(j,p)} in G' for some n > 1, m > 2, 
w Є (NUT)*, p Є FG, (j,p) Є FGi (p and (7,p) aгe the labels of the last productions 
applied in these deгivations). 

Only if: If S =>n w [p] in G, then X =>* wX [{j,p)] in G' for some n > 1. 
Base Case: Let n = 1. If s in G is to derive any w, then there suгely exists 
a production, p, such that p : 5 -» a foг some a Є (N U T)*. From the above 
constгuction, we see that the following two pгoductions are in G': 

(FIRST) :S-*SX 
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and 

(«o,p) : S ~>a. 

Therefore, S =>l a\p] in G and S => SX [(FIRST)] => a X [(qQ,p)] in G'. 

Induction Hypothesis: Assume that if S =>n w [p] in G, then X =>* wX [(7,p)] in 

G'for a l l n > 1. 

If S =>" w [p] => y is a valid derivation in G, then the following two conditions 
hold: 

a. A production, pi : A —* a £ P , was applied to UJ to derive y in G: 5 =>n 

w [p] =*• 2/ [Pi]-

b. The state of >4 is some 7' G Q and 6(7',pi) = g for some q G Q. 

Case 1: w — y. 

a. Production pi is not applicable to u>, that is, A $ alph(w). 
b. pi G A'; therefore, it can be ignored in G. 

c. At least one of the following productions is in P : 
1. ((7',Pi) : A -> a, {(«,*) : * € FG} U {(I^5T)},{(g,fc) : Jb £ FG}U 

{(LAST)}) if q€QF-
2. ( ( 7 ' , p 1 ) : ^ - a , { ( 9 , l : ) ^ e l r , G } , { ( g , l : ) : ^ e l ? G } ) i f g £ QF-

d. By the induction assumption, X =>* u;A [(7,p)] => yX [(7',pi)]. 

e. Processing can continue in G' because TF of (7',Pi) is nonempty. 

Case 2: w ^ y. 
a. Production pi is applicable to w in G, that is, J4 G alph(w). 

b. At least one of the productions presented in Case l.c or of the following pro­
ductions appear in P': 

1. ((7',Pi) : A ~* a, {(,, jfc) : k G To} U {(LAST)},0) if 9 G Q F . 
2. ( ( 7 ' , P i ) : > l - ^ a , { ( g , * ) : i t G F G } , 0 ) i f g £ Q F -

c. By the induction assumption, X =>* wX [(7,p)] => yX [(7 ;,pi)] in G'. 

Hence, if S =>n+1 y [p\] in G, then X =>* j/X [(7',Pi)] in G'. 

Therefore, if S =>n w [p] in G, then X =>* u>X [7, p] in G' for all n > 1 and 
u>G(A~UT)*. 

//• If X =>m wX [(7, P«)] in G', then S =>* to [p«] in G for some ra > 2. 

5ase Case: m = 2. For any production (go,p) : S —> a G P' in G', there exists a 
production p : S -> a G P in G. Therefore, 5 => SX [(FIRST)] => cvX [(qo,p)] in 
G' and 5 => a [p] in G. 

Induction Hypothesis: Assume that if A" =>n wX [(7,p«)] in G', then S =>* w [pa] 
in G for all n = 2 , . . . , ra; for some ra > 2. 

Induction Step: If X =>m wX [{7,Pa)] => yX is a valid derivation in G', the 
following conditions (a) through (d) hold: 
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a. A production of the form (7',p0+i) : A -+ a € P' was applied to w to derive 
y in G': 

X^mwX[(j,pa)]=>yX[(y',pa+1)]. 

b. p„+i : A -> « 6 P in G. 

c. <5(7',p„+i) = q,q£Q. 

d. pi P2 • • -Pa Pa+i is a prefix of a string 5 € £(-*4)-

Case 1: w = y. 

a. Production (7',p«+i) is not applicable to w in G', that is, J4 g alph(w). 

b. Tf of production (7 ' ,p a + i ) is nonempty if processing is to continue. 

c. Pa+X e A'. 

d. By the induction assumption, S =>* w [pa] => y [pa+i] in G. 

Case 2: w ^ y. 

a. Production (7',Pa+i) is applicable to w in G, that is, A G alph(w). 
b. By the induction assumption, S =>* 10 [p«] => J/ [Pa+i] in G. 

Hence, if X =>m+1 J/X [(,7',Pa+i)] in G', then S =>* y [pa+1] in G. 
Therefore, if X =>m wX [(7,pQ)] in G', then, by induction, S =>* w [p] in G for 

a l l m > 2 a n d w € ( ! V U T ) * . 

G/aim £: 5 =>" to [p] in G if and only if X =>m wX [(j,p)] => w [(LAST)] in G' 
for some n > 1, m > 2, w G T*, p G EG, (7,p) G P c , 7 G Q.F ( p and (7,p) are the 
labels of the last productions applied in these derivations). 

Recall that 7 G QF- If <7,p) was applicable, (LAST) G Ts 7 ; otherwise, (L.45T) G 
I > 7 . That is, the production (LAST) may be applied to the word wX in G'. 
Observe that this is the only way to continue the derivation, so S =>n w [p] iff 
X =>m wX [(j,p)] => w [(LAST)]. 

Hence, L(G) = L(G'). a 

The construction of the proof of Theorem 2 implies the following two corollaries. 

Corollary 1 (Normal Form of Programmed Grammars) . For every 
L G C(RE), there exists G G PR, G = (N, T, P, S), such that 

0) L = L(G); 

(ii) if (t: A -* a, Ts, TF) G P, then either Ys = YF or TF = 0. 

Corollary 2. Let G = (N,T,P,S,C,K), G G PG, and EG = A'. Then L(G) G 
C{UTPR). 

By Lemma 5 in [4], N(P#, L) < M(M, L) + 2 (for every L G C(RE)). Next, we 
improve this relation. 
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Theorem 3. For every L G C(RE) : M(PR, L)<M(M,L) + 1. 

Proof . It follows from Theorems 1 and 2. D 

Theorems 1 and 3 together with Theorem 2 in [6] imply the following two results. 

Corollary 3. For every L G C(RE): 

(i) N(RC, L) < 6; 

(ii) Af(PR,L)<7. 

Notice that (ii) improves the relation M(PR, L) < 8 (for every L G C(RE)) 
presented in [2]. 

T h e o r e m 4. For every L 6 C(RE): N(RC, L) < M(PR, L)+\. 

Proof . Informally, given a programmed grammar, G, we construct a regularly 
controlled grammar, G', whose controlled language is defined by a finite automaton, 
A. G and A synchronously simulate derivations of G. 

Formally, consider GePR,L= L(G), G = (N,T,P,S), and NONTeK(G) = 
N(PR,L). 

Let G' G RG, G' = (N U {B},T, P', S, C, K), be defined as follows: 

B is a new symbol, B & N U T; P' and FGi are defined by: 

if (t: A -> a, rs, TF) G P, then add {[t, 1], [t, 2]} into FG, 
and {[t, 1]:A - a, [t, 2]:A -> 5} into P ' . 

A nondeterministic finite automaton (see [1]), A, is constructed as follows: 

A = (Q,FG,,6,qo,Q-{qo}) 

where Q = {go, tfempty} U IG (we assume that g0, (/empty £ FG), and <5 is defined as 
follows: 

for each (t: A —+ a, Ts> ^F) G P , we define: 

(1) 6(t,[t,l]) = {k:keTs}i{Ts^0, 

(2) ^ , [ i , l ] ) = {?empty}ifrs = 0, 

(3) 6(t,[t,2]) = {k-.kerF} if rF^0, 

(4) *(A[A2]) = {<Zempty}ifrF = 0, 

(5) 6(q0, [t, l]) = {k:k€ Ts} if A = S and Ts # 0, 

(6) % 0 , M ) = {<7empty}ifr = 0. 

Let C = L(A) and K = {[t, 2] : 1 G FG}. 

The proof of the equivalence of G and o' follows next: 
Claim 1: S =>" w[pi] in o where w =>* <i in G with h G T* iff S =^m u; [pii^i] i n 

G' where nv =>* «2 in G' with <2 G T*, t\ G {1,2}, for some n,m>l,w€(NU T)* 
(pi G P and [pi.li] G P ' are the last productions applied in these derivations). 
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Only if: If S =>" w \p\] in G where w =>* t\ in G with t\ G T*, then S =>* w \p\,t\] 
in G', n > 1, wG(iVUT )* , u; =>* t2 in G' with <2 G T*, and £1 G {1,2}. 
5ase Case: Let n = 1. There must exist at least one production in G of the form 
p : S —*• a where a G (At U T)*, which implies that productions [p, 1] : 5 —• a and 
[p, 2] : S —• B are in G'. As production [p, 2] would block a complete derivation in 
G', [p, 1] is surely used. Therefore, S => a [p] in G and S => a [p, 1] in G'. The rest 
of the base case is left to the reader. 

Induction Hypothesis: Assume that if S =>n w \p\] in G where w =>* t\ G T*, then 
S =>* w \p\,£\] in G', where w =>* t2 in G' with <2 G T", £\ G {1,2}, for all n > 1. 

If 5' =>n w [pi] => y is a valid derivation in G, then the following conditions hold: 

a. A production p2 G P was applied to w to derive j / in G, that is 5 =>n w \p{] => 
y [p2]-

b. p\ and p2 are labels of productions of the form: 

(PI : A - a , r S u r F l ) , 
(P 2 :B^/?,rS 2 ,rF 2 ) , 

a,pE,(NUT)*, A,BeN. 

c. By the definition of a programmed grammar, Ts, U r F l ^ 0. 

d. p 2 G r 5 l u r F l . 
If .5 =>* w\p\,£\] is a valid derivation in G', then the following conditions hold: 

a. The sequence of labels [po,^o] • • -[Pi,^i] is a valid prefix of a word s G L(A), 
and [pi,^i] is the label of the last production applied in the derivation in G'. 

b. If p2 G TSl in G, then p2 G 6(p\, \pv, 1]) in G'. If p2 G TFl in G, the p2 G 
6(Pl,\p\,2]) in G'. 

Case 1: w = y. 

a. B is not a substring of w, that is, B £ alph(w). 

b. Production p2 is not applicable to w in G. 

c. If the derivation is to continue, then TFl of p2 in G is nonempty, 

d. If TFl of p2 in G is nonempty, then 6(p2, [p2,2]) in G' is nonempty and qempty & 
6(P2,\P2,2]). 

e. Since 6(p2, [p2,2]) is defined, [po,lo] •• • [pi, li][P2> 2] is a valid prefix of s G L(A) 
i nG ' . 

f. Because [p2,2] G A", processing can continue in G'. 

g. By the induction assumption, S =>* w \p\,£\] => y [p2,2] in G'. 

Case 2: w ^ y. 

a. 5 is a substring of w, that is, S G alph(w). 

b. Production p2 is applicable to w in G. 

c. If the derivation is to continue, then Ts2 of p2 is nonempty. 
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d. If r s 2 of P2 in G is nonempty, then 6(p2,\p2, 1]) is nonempty and does not 
contain gempty 

e. As (5(p2, [P2,1]) is defined, [p0,4>] • • • \p\,h]\p2,1] is a valid prefix of s £ L(A) 
i nG ' . 

f. By the induction assumption, S =>* w \p\,h]=> y \p%, 1] in G'. 

Hence, if S =>n+1 y [p] in G, where y =>* t\ in G with h £ T*, then S =>* y\p,l] 
in G', where y =>* tf2 in G with 22 6 T*,i £ {1,2}. Therefore, we have completed 
the only if part of the induction. 

If: If 5 =>m w \p\,l\] in G' where w =>* t2 in G' with t2 £T*, then 5 =>* w[pi] 
where w; =>* *i in G with h £ T* in G, m > 1, w £ (NUT)*, lx £ {1,2} (px £ P 
and [pi,'i] £ P' are the last productions applied in the derivations). 

Base Case: Let m = 1. To yield a word /2 £ 71* in G', there surely exists a 
production, [p, 1] : S —» a, where a £ (TV U T)* in G'. Then, by the construction, 
there exists a production p : S —• a in G. Hence 5 => a [p, 1] in G', and £' => a [p] 
in G. The rest of the base case is left to the reader. 

Induction Hypothesis: Assume that if S =>' w \p\,£\] in G', where w =>* t2 £ T*, 
h £ {1,2}, then S =>* w [pi] in G where w =>* t\ £ T* for every i satisfying i < m, 
for some m > 1. 

If 5 =>m iw [pi,/i] => y is a valid derivation in G', then the following holds: 

a. a production labeled by \p2,£2] was applied to w to derive y in G', that is, 
S=>mw \pi,ti]^y\p2,t2]. 

b. productions [pi,/i] and [p2,^2] are of the form: 
\p\,\]:A-*a, 
\p\,2]:A^B, 

\P2,1] : £ - /?, 
\p2i2]:B-+B. 

A,B£N, a,/3 € (NUT)*. 

c. The production sequence [po,^o] • • • [Pi,^1^2,^2] is a valid prefix of a control 
word s £ L(A) in G'. 

d. By the construction, the following productions belong to P in G: 

(Pl :A^a,rSl,rFl), 
(p 2:P-*/?,r 5 2 ,rF 2) . 

e. rSl u rFl ± 0. 
Case 1: w = y. 

a. 5 is not a substring of w, that is, B £ alph(w). 

b. Production [p2,^2] is not applicable to w. 

c. If the derivation is to continue in G', then: 

1- \P2,t2]eK amU 2 = 2. 

2. The current state of A in G' is not gempty 
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d- p2 G Ts! and/or p2 € T ^ in G; therefore, p2 can be applied in the derivation 
at this point. 

e. TF2 in G is nonempty and processing can continue. 

f. By the induction assumption, S =>* w [pi] => y [p2] in G. 

Case 2: w ^ y. 

a. B is a substring of w, that is, B G alph(w). 

b. Production [p2,^2] is applicable to w in G'. 

c. If i2 = 2, then S would be replaced by B and y does not derive t2 G T* in G'; 
therefore, £2 — 1 f° r processing to continue. 

d. If the derivation is to continue in G', then the current state of A in G' cannot 
be qempty 

e. p2 G Tsj and/or p2 G IV, in G and p2 can be used at this point in the 
derivation. 

f. Ts2 ^ 0 in G, so y can continue to be processed in G. 

g. By the induction assumption, S =>* w [pi] => y \p2] in G. 

Hence, if S =>m+1 y [p2,t2] in G', 5 =>* y [p2] in G. Therefore, the if part of the 
induction holds. 

Claim 2: S =>* t, t G T* in G if and only if 5 =>t, * € T* in G'. 
Claim 2 follows from Claim 1. Consider the case when S =>* w [p] in G where 

w 6 T* (p is the label of the last production applied in the derivation). From 
Claim 1, we know that S =>* w [p,i] in G', w G T* and [p,t] is the label of the last 
production applied. Thus, w G L(G). Since all states, excluding go, of A are final 
states the control word [po.^o] • • -[p,t] G L(A) and w G L(G'). 

Hence, L(G) = L(G'). • 

Corollary 4 (Normal Form of Regularly Controlled Grammars). For each 
L G £( /?£) , t h e r e ^ s t s G G RC, G = (N, T, P, S, C, K), such that: 

(0 L = L(G); 

(ii) if x 6 C, then every (nonempty) prefix of x is also from C. 

Corollary 5. L = L(G) for some G G UTPR if and only if L = L(G') for some 
G' £RC, and tf = FG<. 

Proof . //: See Corollary 2. 

ora/z/ ./: This can be established by analogy with the method of the proof of Theorem 
4 (we only take [t, \]-[t,2] for all I G FQ and omit from P' every production for 
which the right side is equal to B). • 

The following corollary follows from Theorems 3 and 4. 
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C o r o l l a r y 6 . For every L € C{RE) : M(RC, L) < Af(M, L) + 2. 

(Received October 17, 1989.) 
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