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KYBERNETIKA — VOLUME 27 (1985), NUMBER 5

NORMAL FORMS IN THE TYPED i-CALCULUS
WITH TUPLE TYPES

JIRT ZLATUSKA

A modified typed A-calculus with types containing, in addition to function types, also product
types is studied. A notion of reduction, including bijective tuple and projection operations, is
introduced and it is shown that it is both strongly normalizing and Church-Rosser.

INTRODUCTION

It is well-known that the A-calculus has the Church-Rosser property [3] and that,
if we restrict the terms to those of the typed A-calculus, a unique normal form exists
to every couple of convertible terms [4] This makes the typed A-calculus a good
notational formalism. In order to achieve better means of expression of the typed
A-calculus (e.g. for [10]), it is useful to generalize the types corresponding to functions
[2] to their cartesian products as can be found ¢.g. in [7]. Such a generalized calculus
has been shown to be in very close correspondence with the cartesian closed categories
[8]. In the present paper we shall present a notion of reduction in the calculus with
tuple types (A*-calculus) that is Church-Rosser with unique normal forms and
contains bijective pairing.

TYPES AND TERMS

First, let us introduce our type structure. By a base we shall mean a set of pairwise
different symbols.

Let B be a base. The set TYP(B) of the types over the base B is inductively defined
as follows:

(1) B = Typ{B)

(2) if &, ne Typ(B), then (#¢) e Typ(B)

(3) if &y, ..., & € Typ(B), then (&4, ..., &,) € Typ(B)

The semantics of the type symbols from Typ(B) is given by the values (some sets
or, according to [7], some domains) of an interpretation # at the types from the
base B (the so-called base types). We inductively define the interpretation S(n&)
of the function types of the form (&) as a set of functions from F¢ to 1 (.8
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F(né) = Fn)*¥) and the interpretation S(&y, ..., &) of the tuple types as the
cartesian product of J¢,, ..., ZE, (ie. FE&, .. &) = FE x ... x SFE,). To avoid
tiresome conversions in the notation, with respect to the defined semantics of the
tuple types we shall assume the associativity of the cartesian product and, therefore,
identify, at the level of type symbols, any type ¢ € Typ{B) with the corresponding
one-tuple (£). The inner parentheses in the tuple types are of no importance, e.g. if
we take & = ({}, ..., §), then (&, ..., &, ..., &,) is considered to be identical with
(Eioos Cimts oo G Eits oo f,,).

The identification of certain tuple types can be made formally correct in the fol-
lowing way: We can define a reduction --* of type symbols as a transitive closure of
relation + defined by:

if &€=(&,...,¢&) and & = ({4, ..., {y), then &+,

where y = (‘:15 v i G G S s f,,);

if € =(&,...,&) and &+, then &4y,

where 71 = (&g v Eimps & Eings oo &)
Clearly, -—* is Church-Rosser and every reduction sequence has only a finite number
of steps; consequently, there exists a unique normal form for every (tuple) type
symbol. Factorizing the type symbols using the equivalence relation induced by +*,
we can use unique representations for every type symbol — we call them normal
type symbols (or normal types for short).

The 2*-terms of the calculus are defined as words over the alphabet of variables
(where we assume infinite number of variables for every type) and auxiliary symbols
()52 1y 2) 31 -++ (ny -+~ (subscripts for every integer number) as follows:

(i) The set of 2*-terms (over the base B) of the type ¢ is inductively defined as the
least set AZ satisfying:

(a) if v° is a variable of a type & e Typ(B), then v° € AF;

(b) if XeAg, Ye AL, then (YX)eAL;

(c) if x3, ..., x;* are mutually different variables of respective types &y, ..., ¢,

from Typ(B) and Ye 4B, then Ax, ... x,(Y) € A%ye, ey

(d)if X, €43 . €43, then (X,,...X,)e A% .

(e) if X €AY, s> Where (&4, ..., &) is a normal type, then X ;) € A§,, for every i,

1<ign
(ii) The set A® of all typed terms (over the base B) is A% = U A3
&Typ(8)

In the definition above, (a)—{c) correspond to the common notation of typed
A-terms, (d) represents the “tuple-forming” operation which is a generalization of the
sometimes used pairing symbol (note that we do not introduce special symbols for
the operation; instead we use it in the same way as it is usual to use the abstraction
(c)), and (e) represents the “projections” from tuples (the condition (¢4, ..., &,) being
normal makes the projection unambiguous because no ¢&; is a tuple type) into their
components.
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Remark. The pairing symbol, P, of type («;, &;) %, can be expressed by
P = x"y (%, )

The corresponding projection symbols, I, of type ey, o,), 1 < k <2, can be
expressed by
MT = Ax@x,

provided that («;, @) is normal. If (e, o,) is not normal, say «, = (B, §,), then
similarly, without great difficulties,

M= 2xPP20D (xy, x0)) 5 M1 = Ax0P00 g,
etc.
Note, moreover, that the subscripts for the projections contain only fixed numbers
they are, in fact, improper symbols) and, therefore, it is clearly impossible to “com-
pute” their values in A*-terms — they must be given when one writes 1™ -term.

For the sake of notational convenience, we shall omit tiresome parenthesing
whenever it is possible to do so without confusion. Particularly, we shall omit
outermost parentheses in applications and we shall, moreover, assume implicit paren-
thesing with association to the left if no other parenthesing is implied from the type
context.

The notions of free and bound variables as well as the standard conventions
avoiding confusions of free and bound variables (espccially in abstractions) are
supposed. To avoid unnecessary troubles with renaming of variables, we assume
A%-terms modulo a-conversion (renaming of bound variables) — cf. [1], App. C.

Convention, Whenever it is possible, without causing any confusion or misunder-
standing, we shall omit the corresponding type symbols (then we assume any admis-
sible typing), or we shall indicate types only in the defining occurrences of 1*-terms
or variables.

REDUCTIONS

We define the following notions of reduction expressing natural transformations
of A*-terms:
B (... xin . A) BEvot o A[x1[Biys -+ Xuf By,
provided that (£, ..., £,) is normal type;
A%y X, A(xy, LX) o A,
provided that x;, 1 < i < n, do not occur free in A4;
n: (Ai’, cee A:’:")“) — A
provided that (¢, ..., &,) is normal type;
T8 AXy L XEU X A = Ay X YL YRy X,
. A[xil(yip ) Yi,()],
provided that y;, 1 £ j £ k, do not occur in 4;
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a: (4, ..., ARt A,) - (Ays oo Ai_ g, Ay +oos Asgr Aiv 1 - os A)s
provided that (¢4, ..., &) is normal type;

b (A oo A) = 4G5,
provided that (&,, ..., £,) is normal type.

Remark. The notation N[x,/L,, ..., x,/L;] represents simultaneuous substitution
of Ly, ..., L, for the (pairwise different) variables x,, ..., x,, respectively. To be exact:
y[x[L] = y iff y is a variable, y % x
yx[L]=Liff y =x
(MN) [x/L] = (M[x]L]) (V[x/L)
(i .o ya - M)[x[L] = 2y; ... p,. M[x|L] (herc we assume, according to the
standard conventions, the variable x being different from each of yy, ..., y,)
(Ny, .., N [x/L] = (Ny[x/L], ..., N[x/L])
(Ne) [x/L] = (N[x/L])o
By an easy induction the substitution lemma holds:
M[x/N][y[L] = M[y[L] [x/N[y/L]], provided that x % y and x does not occur
free in L.
According to the substitution lemma it follows:
M[x/{N]{y/L] = M[y/L] [x/N], provided that x % y and neither x occurs free
in Lnor y occurs free in N;
therefore we can write in such a case M[x/N, y/L] instead of M[x/N][y/L] and,
straight away, we have the notation M[x,/Ny, ..., x;/N,], or, for short, only M[X/N]
(if the number of the components is clear), provided that x; # x;, i % j, and x; does
not occur free in any Ny, i + j.

One step reductions are formed from fu U n U TU g U u (we shall abbreviate
this notion of reduction by I') as the compatible closure, i.e.

M->M =ZM - ZM'

M->M=MZ->MZ

MM =lx. M- 1x.M

M;=» M= (M, ..o My ooy M) > (My, .., Ml .y M,)

M- M = Mg~ Mg

General reductions, —*, are generated as the reflexive and transitive closure
of - [1].

For the study of the equality of 1*-terms constructed as the equivalence reiation
generated by —*, the reduction relation —* should have certain good properties,
especially to be Church-Rosser and (as we have our calculus typed) strongly nor-
malising:

A notion of reduction is said to be Church-Rosser (CR) iff whenever A —* B and
A —* C then there exists D such that B —* D and C »* D.

A notion of reduction is strongly normalizing (SN)iff for any A*-term A there is
no infinite reduction sequence 4 — 4; — ....
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An important property is the existence of normal forms with respect to a notion
of reduction which is both CR and SN: Term A is said to be in normal form iff
B = A follows from A —»* B. Morcover, if two terms A, B are equivalent in the
equivalence relation generated by —»* and —* is CR and SN, then there exists a unique
term C in the normal form such that A —»* C and B —* C. Any reduction sequence
starting with 4 or B terminates in this term C.

Remark. The following lemma is useful for work with reductions.

M —>*N = M[x,/L,, ..., x,/L,] >* N[x,/Ly, ..., /L] (i.e. I is substitutive).
It is quite sufficient to check the substitutivity for the relation —»; the substitutivity
of —* follows by simple induction on the definition of —* (Cf. [1], Prop. 3.1.15).

The proof of the substitutivity of -» follows by simple induction on the definition
of —.

In the following we shall prove the Church-Rosser property and the strong nor-
malization of I' in our calculus,

First, we shall prove the weak Church-Rosser property (WCR) (i.e. whenever
A — B, A — C, then there exists D such that B »* D and C —»* D). Then, the strong
normalization will be proved using the method shown in [5] (in which a strongly
normalizing notion of reduction is studied; however, it does not contain the bijective
pairing rule # — it contains only the rules analogous to our rules 8 and 7). SN
together with WCR suffices for the validation of CR (Cf. [6]).

(WEAK) CHURCH-ROSSER PROPERTY

Lemma. I' is WCR.
Proof. In order to prove that I' is WCR it suffices to chase the diagram

M—————»f\]/lz

e —
X

M»]_ ~~~~~~~~ -—-*M3
Suppose M - M, and M — M, to be direct consequences (through the com-
patible closure) of 4, — A4 and 4, — 4, (4; are redex occurrences and 4; contractum

occurrences in the considered A*-terms). The possible relationships between the
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occurrences 4, and 4, are listed in the following table:

() d;,nd, =0

(2) 4, = 4,

(3) 4, < 4,

(4) 4, > 4,
In the case (1), the diagram is clearly satisfied for every couple of reductions f, 7, m,
T, 0, i, because if we have

M N P
M, = A,
M, = Ay,
we can take
My=...4]...45....

In the remaining situations (2)—(4) we must tediously try the possible cases for the
of reductions 4; — A} and 4, — 45:
Take p-reduction: 4; = (Ix; ... x,. P') 0,
4y = Px[00, .. X,/ Q0]-
Case ff: 4, = (Ayq ... ¥m . P?) Q%
45 = Pz[)’l,”Q(zl)s S Ym,/Q(zn.;]
Subcase (2): Then M, = M, and therefore we can take My = M.
Subcase (3): (a) 4, = P?, then
M = ... (Ayy ...yl 4y..)) Q. where .. 4, ... = P?,
M= (Ayy ooyl 41 00) Q% s,
(e e ) D@y o Yl Qo] 5

(e ) [94] QCys s Yl Qi ] -
and the result follows from the substitutivity of I".
(b) 4, = Q% then

M =...(Ay; .. yw. P4, ..., where ... 4,...= 0%
Mi=.. (Ayyooym - PO 400,
My= Py (o Ay Yy oo Yl Ay Y] e
take
My = Py 45 )y oo V(o 4T )] -

and the result follows from the compatibility of I'.
Subcase (4) is analogous to (3).
Case fn: 4, = 2Ayy oo Y- P2(V1s --os Yu); 45 = P2
Subcase (2): impossible
Subcase (3): then 4, = P*:
M= .3y V(oo dy ) (P15 V) oo., Where .4y ... = P,

My=(Ayi Y (o AL ) (P s V) oo
My=...(.dy )




take
My=..(..47..)...
and the result is clear.
Subcase (4) (a) 4, = P1

M- = Ax}..v. N Q... where ... 4,...= P,
MlE ~(- )[thm’-“ o Qo] -
M, =. <(;{’C1 ( A2~~))Q1-~-;
take
MSE ..(.‘.A;_‘..)[XI/Q(HJ,...,xn/Q(ln)]...

and the result follows from the substitutivity of I'.
(b) 4, = Ax, ... x,,.P‘(x,, AN then

M =..(xy ... %, . PY(xy, ..., x,)) Q
M, = (P /X1a~ ,x)) [xs/Qliys v Q(vn]
M,=..P0Q".
take
My =M,
and the result follows from M, = ... PX(Ql, ..., Q) .. (because P' does not

contain any free occurrence of xy, ..., x") using g-reduction.
(c) 4, = Q, then

M = ... (Axy...x,. P (...4;5..)..., where mAZ... = 0,
My= . P xfi.. 4, )(1)’ ~~’x( A, )m]
My = (Ax;...x, . PY(...45..) ...

take

My = P Ay )y e Xaf (o 452 Y] oo
and the result is clear from the compatibility of I'.
Case pn: A, = (P%, ..., P}, 45 = P,
Subcase (2): impossible.
Subcase (3): (a) 4, = P}, j # i, then

M = ..(P4. (4.0, .. P2y ..., where ... 4, ... = P}
My =... (P (.4, .) .. Pq...,
M,==..P;...;

2 — 2
v Py ..., where ... 4, ... = P,

PR

2
B T <4
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take
1\43 = ( A', )
and the result is clear (from the compatibility of F).
Subcase (4): similarly to 88 (4).
Case ft: dy = Ay, ...y Ly, . P

=y W v PPl s i)
Subcase (2): impossible.

Subcase (3): M = ... Ay, ... Yi.o Yuloo 41 ..) oon, Where . 4, ... =
My=. . Aygyiopmlo 4y ).,
My = o 2y e 3 Sl Ao D0 )]
take

My= . Ayg o Vip oo Vig oo Yk A1 Y i oo i)

and the result is clear (from compatibility of I').

Subcase (4): similarly to Bf4).
Case fo: 4, = (P}, ..., P}, ..., P}),

4y = (P, . Phyys oo Phigys -y PR

Subcase (2): impossible.

Subcase (3): 4, < P}, j + i (j = i is clearly impossible!),
then

M =.. (P} .. (..4y..),..., P}, .., P}) ..., where ... 4, ...
M= (PL.. (. 40.),  PL P,

My= .. (Phon (o 4y Py Plgs o0 PR s
take

My=.. (P (. 450, Py oo Plags o PR

l

and the result is clear from the compatibility.
Subcase (4): similarly to BB(4).

Case pu: 4, = (P, ...s Pgy 45 = P2
Subcase (2): impossible.

= P!

P2

i

Subcase (3): 4; = P, (remember that 4’s are particular occurrences of redexes!),

then
M = (Pl (o di Y oo PGy) oo s Where L 4y ... =
My = (Pl (a4 )y o0 Plg) s
M,=..P*. .,
take
My=..(..4;..)...

and the result is clear from ... 4, ... = P? using compatibility of I.

Subcase (4): similarly to SB(4).
Take #-reduction: 4, = Ax; ... x,. PY(xy, ..., x,),
4, = PL,

i

PZ
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Caseny: 4y =291 oo Y« P(V1s ooy V), 45 = P2
Subcase (2): 4, = 4,, ie.

e X P Xy X)) s

trivially M3 = M, = M,.
Subcase (3): 4, = P?, then

M =0y .yl 4y ) (v s ) e, where L4y L= PR
M=y val( A0 ) (s s V) s
M, = ( A0,
take
My=..(..47..)...
and the result is clear. .
Subcase (4): similarly to (3). '

Case g 4, = (P, ..., P2)y, 45 = P}
Subcase (2): impossible.
Subcase (4): similarly to fr(3).
Subcase (4): similarly to #{4).

Case nt: A, = 21 ... Yien Yo P2,
Ay = AY1 e Vig oo Vi oo Vo P20 -0 73]

Subcase (2): M = ... Ay; ... Vi oo Vol P (Vg5 s Yis oo V) oo s
M,=..P'...,
My = Ay Vi Vi VP i o Vi oo ) e 5
take
My=..P'..

and the result follows using ¢, = and # reductions to the A*-term M,.
Subcase (3): similarly to fz(3).
Subcase (4): similarly to nn{4).
Case no: 4, = (P},..., P}, ..., PL),
Ay = (P} o P2y s Plgys oo PR).
Subcase (2): impossible.
Subcase (3): similarly to Bo(3).
Subcase (4): similarly to #n(4).
Case nu: A, = (Ply, ..., Phy)s 45 = P2
Subcase (2): impossible. ’
Subcase (3): similarly to Bu(3).
Subcase {4): similarly to #y(4).
Take n-reduction: 4; = (Pi, ..., Pt} 41 = P}.
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Case nn: 4, = (P, ..., Pl 45 = PL.
Subcase (2): then M; = M, and so we can take M; = M,.
Subcase 3): (a) 4, < P}, i + k, then

M =..(P}..,(..4,..), .. PD)yy ..., where ... 4, ... = P},
My= . (P ( 4 ) Py e
M,=..P:...;
take
M, =M,

and the result is clear.
(b) 4, = P, then
M =..(P},.. (. 4y..) .. Pl)ay-.., where ...d4;...=P?,
M= (P () Py s
My=...(..4,..)...;
take
My=...(..4..)..
and the result follows using one reduction.
Subcase (4): similarly to (3).
Casent: Ay = Ay .o yiee Y- P2,
Ay = Ay Vi Vi Yo P (0 -0 23]
Subcase (3): impossible.
Subcase (3): similarly to B(3).
Subcase (4): similarly to nn{4).
Case na: 4, = (P},.... P}, .., P}),
Ay = (P}, ..., Plyys .oy Plyys s P
Subcase (2): impossible.
Subcase (3): similarly to fo(3).
Subcase (4): similarly to n7{4).
Case mu: A, = (P, .o Ply)s 45 = P
Subcase (2): impossible.
Subcase (3): similarly to fu(3).
Subcase (4): (a) 4, = P; similarly to nn(4).
(b) 4y = 4y, then
M= (P Py

p— 2
M, =..P...,
— 2 .
My=..P}...;

take My = M, = M, and the result is clear.
Take t-reduction: 4; = x; ... X;... x,. Py,
Ay =X X X e X PG (g x5
Case 11 Ay = 2Py .- Yieer Y- P2
Ay = Aps Vi Vi Yo PP - i)
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Subcase (2): 4, = 4,:

M = ,./le...xi.,.xj...x,,(P‘)...,

My= . dxgoox o X e X x (PG 0 X )] -

My = Axg Xy X e X 5(PUx (R o x)]) e
take

My = A% Xgy e Xgyeen Xy X %P (0 x0),

X% e x50]) -
and the result follows using substitution lemma (or, in case of i = j, as a trivial
M; =M, =M,).

Subcase (3): similarly to ##(3) using substitutivity of I'.

Subcase (4): similarly to (3).
Caseta: 4, = (P},..., P}, .., P}), -

4, = (Pf, e P,-Z(,), oo P,.Z(k), e P:,)

Subcase (2): impossible.

Subcase (3): similarly to So(3).

Subcase (4): similarly to 71(4).
Case tu: 4, = (P(21>, wu PL), 45 = PR

Subcase (2): impossible.

Subcase (3): similarly to Bu(3).

Subcase (4): similarly to 77(4).
Take o-reduction: 4, = (P, ..., P}, ..., P}),

A7 = (P}, .., Phyys o Pl oo P
Case 002 4, = (P},..., P}, ..., Pl),
Ay = (P}, ..., Pl s Ply ooy PL).

Subcase (2): clear, abalogously to 77(2).

Subcase (3): similarly to Bo(3).

Subcase (4): similarly to (3).
Case Bu: 4, = (P, ..., Pl,), 45 = P2

Subcase (2): impossible (type restrictions!).

Subcase (3): similarly to fu(3).

Subcase (4): similarly to oo(4).
Take preduction: 4, = (PYy), ..., P(,), 47 = PL. .
We have the last pu: 4, = (P}, ..., PG,), 45 = P2

Subcase (2): then M; = M, and we can take M; = M; = M,.

Subcase (3): similarly to Su(3).

Subcase (4): similarly to (3). [m]
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STRONG NORMALIZATION

Lemma. I is SV.
Proof. To prove the lemma, we shall use a generalization of the elegant method
shown in [5]. The method uses monotonocity of A I-terms.

Remark. 1*I-terms are defined as subset of A® satisfying:
(i) variables are 1*I-terms;

(ii) if X, Yare 2*I-terms, then (XY) is A*I-term;

(iii) if X is A*I-term with free occurrences of variables x,, ..., x,, then Ax; ... x, . X
is A*I-term;

(iv) if Xy, ..., X, are A*I-terms with the same sets of free variables, then
(Xys..0r X,) is A I-term;

(v) if X is A*I-term, then X, is A™I-term;

(vi) if Xy, ..., X, are A*I-terms such that 2*-term (X, ..., X,)) is of normal type
(&4, .- &) and Y is 2*Isterm [of type ((...(n&,)...) &)], then Y(X, ...
v Xy oo (Xqy ooty X)my B8 A7 I-term.

Suppose the base B = {o,,...,0,}. Let us interpret every member of the base
assigning to o; a set T, = .#(o;) ordered by orderings <,, 1 < i < n. Let us define

collections H, (for normal types «) of hereditarily monotonic members of the type
structure in the following way:

(Hu,s <0,’) = (Ta,’ <o,

H,, = {feTy:Va,a’eH, . facH; A (a <,a’ =Tfa <,fa’)}

for f,geHy:f<pg iff VaeH,.fa<,ga
AAAAA X ... x H,

@y, - 8) <y, (@1, oo 8y) 0ff a, <, a; foralli, 12ign.
[5] contains the proof that under any interpretation of free variables of A*I-term N
by values in H’s, the value of N in the interpretation is monotonic and is contained
in H,, where 7 is the type of N (onc only needs to extend the proof also to the case
(vi) of our definition of 1*I-terms; however, it is sufficient to note that if the value
of (Xy,...,X,) is some (aj,...,a,), then the A*-terms (Xy, ..., X,)q ..
oy (X450, X,)om will have their denotations aj,..., a,, respcctively). Therefore,
we can use the orderings <, for the A*I-terms if we assume their symbols to be in-
terpreted only by values from H’s. Using 1 *I-terms, we shall not consider p-reduction
in order to make standard arguments about the ™ I-calculus possible. Assuming that
every numerical term has a numerical valve (the assumption we can take from the
ordinary typed A-calculus, cf. e.g. [9], 2.2), it is possible to introduce such a mapping
of A*-terms into A*I-terms in which the image of a redex will be greater than that
of the corresponding contractum. Let us remark that the exclusion of the y-reduction
from the 2*I-calculus makes no problems because the norms of the A*-terms will
be constructed in such a way that they will not contain u-redexes.
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Choose numerical type o from the base B. Let us have symbols 0° S,, +, for
zero (of the type o), successor (of the type o) and addition (of the type {00) o).

Define +I-calculus by extending our 1*I-calculus by these A*I-terms 0°, S,, +,
and the 2*I-terms defined by

Sp, = AP Ix* . Sy(fx)

Staram = A2 (S, (2), ..., S, (2(), where {«y, ..., 2,,) is normal type

e = agPagh i (1) +4(03)

F gy = IO IR ) e Vs oo Xy Fan Vi) WitD (e, . )

being normal type.

Morcover, define A*I-terms L(of normal types only) by

Hr=0
(i) "= 2x°. x
(iii) L = Aff= 16 fI2
(iv) L= = Jx* . ap" (%) +, (%) .
(v) LFvom) = Jg@mm) (L0700 4+ 0M2,)
(vid) Levemf = QP (1Fy, L, IPy).
It is shown in [5] that all these terms belong to H's.

Now, we shall define a transformation embedding A*-terms into --I-terms in
such a way that redexes have their images greater than those of contracta. Extending
the concepts from [5], we define

A xi MP = axy x, .
CSHM 45 Sy SUICE I N L s 5)on)
LA
k-times

where k is the total number of the occurrences of embedded tuple types contained
in oy, ... 0, and (o, ..oy 0,) = (74, ... ¥m) (Where the right hand side is a normal
type). First, define the transformation  of the type symbols as follows:

&* = o iff £ is a member of the base

(12 = (7€)

(Eo e &) = (&0 &)
and further assume that every type symbol has been transformed using such a trans-

formation .
Now define transformation * from i*-terms into +I-terms as

x* = x iff x is a variable

(MN)* = M*N*

(Axg..ox,  M)* = A%x ... x, . M¥

(M) = (M*)(,-)

(M1 M) = (Sp o S, (OF o (P00 MDY
R

(k+1)-times

e (MY, M)y o My e (LGP DB (Y M)y
e AM o MDY )), -
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cos Sp e Sp ((MT g (EC-Pm20MTE, L M)y

(k+1)-times

e (M, M), o M g (IGO0, MY,

(MT: ] M:‘)(m)))(m])) where (061, [ERT] O!") = \(ﬂla [RRZ] ﬁm) (thre
the right hand side is a normal type) and k is the total number
of embedded tuple types contained in oy, ..., o

e

Using 1.4 of [5], to prove strong normalization of I it is sufficient to show that
whenever

M, - M,,
then
MY > M3
(because then L, (M%) > L,(M3) by monotonicity of L's) for each reduction of
pon, 1,0,
f-case: All = <)'x1 eos Xy o P) Q’ M2 = P[xl/Q(l)’ cen xn/,Q("):l;
M* = (I, ... x, . P¥) Q% =
= (3%, .. %, . S(P* + Lx; ... x,)) 0% =
= S(P*[M/’Qﬁ): ) xu/Q(’:x)] + LQTx) Q(t)
M; = P*[XI/Q(*l)y cees xn/’szn)]
and M} > M3 follows from the monotonicity of -+I-terms.
n-case: My = Ax; ... x,. P(xy, ..., X,), M, = P;
MY = 2%xp X, PHS (g + LOxy o X))y oo (K0 e Xy)gmys -0 X +
F Lx o X)) o (X oo Xadandiys - oo0 S0 A+ L(x1, s X)) o
e (X0 e Xy o er X+ LAX G s Xa) 1) o (X oo Xndomdom) =
= 2xp e X, S(PHS H(oey + L(xps oo X1y o (X1 ooes Xidmys + o0 X +
+ Lixys . xn)(l) e (x5, xn)(m))up cees Skﬂ((-‘ﬁ + L{xy .oy xn)(l)
e (e Xy oo X LX gy s Xy - (X - X)om) ) F
+ SELIx g e Xy e (X0 e X))
M3 = p*
and M7T > M3 because for any ay,...a,eH; x...x H, we have
Mi(ay, ..., a,) = S(P*(S***ay + L(...)), ..., 8*"Y(a, + LL..)) + SHL(L.) >
> P*(al, ce @) = M;k(a,, cees am) from the monotonicity of P*.
n-case: My = ((Py, ..., P))w) Mz = Py
“\/I? = (Pl’ e Pu)zki) =
= (S(P} + LPY ... P}),....S/P} + LP} ... P}, =
S(PY + LPY ... P})
M3} = P}
and M} > M follows.

i
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T-case: M,
My = Axg o Yig e Yigoos X P00 v0) 15
M} = 2*x, ... X, . P* =
= AXg e Xgoen Xy S(P* + SHLUXq, oy Xpy ooy X)a) -
e (Xgs ey Xy s X))
MY = 2%y oo iy e Vipoes X - (PLXi[2is s v )] =
= %1 o Yiyoee Yiy oo X SPLx(yis oo vi)IF +
+ Sl(Lf\xl, s Vigsoees Vigp v x,,)m (xl, s Vigs oo Vigp ooos x,,)(m))),
and M7 > M3 follows from k > I and x} > (y;, .--, ;,)* according to the type
restrictions in the rule 7.
o-case: M, = (Py,..., P, ..., P,),
M, = (Pys oo Pigtys ooy Pijyy o35 P “
M} = (S((Pf + LMy ... MY o P+ LMYy o M) -
o SH(PY + LMy ... MY s ., PY + LMy, o M0 )om)
M3 = (SN(PE + LMy oo My oo Py + LME oo ME o, o PR+
+ LM3y o M3 oo PE + LM300y . M)ty -
o SY(PY + LM3 ... M3, o PRyy + LM3 oy oo M3, o0, PR+
+ LM3 sy - Mg o Pr+ LM301y .. M3 00 )my)
and M} > M5 follows from k > [ (type restrictions!) and the comparison of
the corresponding projections M3, ..., MY, and M3, ..., M3,
p-case: My = (Pyy, ..., Py), My = P;
MY = (S(Py + LPGy ... P4)s s S(Poy + LPE L PG)
M; = P* = (P(*l): “"P(*ro)v
and MY > M} follows.
Therefore, according to the properties of %, reductions from I' cannot create an
infinite sequence. m]

CONCLUSION

Theorem. The notion of reduction I' is Church-Rosser and strongly normalizing.
The proof follows from the lemmata above and from WCR A SN = CR (cf., e.g.,
[1], 3.1.25).

Corollary. The 1*-calculus has the well-known pleasant properties implied by CR
and SN, e.g..
(i) to every A*-term of the calculus with tuple types there exists a uniquely deter-
mined normal form;
(ii) the normal form of any A*-term is reached after a finite number of reductions;
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(iii) any reduction strategy leads to the normal form;

(iv) two A*-terms are equal in the theory induced by I' iff they have identical normal
forms;

(v) the equality of A*-terms in the theory induced by I' is decidable.

Example. Suppose U, ¥ are terms of respective types (o, oy, o3) and (o, ¢z, o3),
with (ay, a5, «3) being normal. Let us show how A*-term
T = (2xy ™  V(y, x)) (Uisy Uny), Uay) »
(where, as it is easy to see, ordinary f-reduction cannot be performed because im-
meadiate substitutions are not deﬁned) will be transformed using our reductions;
T (Axy . V(y, Uy Un)ar Uap Undoy Uay) —*
"fmz (Axyi'yse. V((y,, J’z)5 x)) (U(s): Uiy U(z)) =%
= rex 2xy1y2  V(¥1 ¥2, %)) (U Ugryy Upzy) =
s V(Ue Uy Uy (Uisy Uiy Uap)ear (Uisy Uty U))) *
e V(U Uay Ugs) =, VUL

Clearly, our reductions enable to transform the 1”-terms in the naive way, just as
one expects.
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