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KYBERNETIKA —VOLUME IS (1979), NUMBER 5 

On Finitary Linear Systems 

EDUARDO D. SONTAG* 

An abstract operator approach is introduced, permitting a unified study of discrete- and 
continuous-time linear systems. As an application, an algorithm is given for deciding if a linear 
system can be built from any fixed linear component. Finally, a criterion is given for reachability 
of the abstract systems introduced, giving thus a unified proof of known reachability results for 
discrete-time, continuous-time, and delay-differential systems. 

INTRODUCTION 

We give in this paper an abstract operator approach which permits a unified study 
of some problems, like realization, for various kinds of linear systems. This approach 
improves the one presented in Sontag [7]. 

Systems will be defined as interconnections of a basic system Q — e.g., an integrator, 
unit delay, or any fixed linear system — with coefficients in a fixed operator ring -
representing themselves lumped or distributed elements. A general realization theo­
rem: "finitely realizable = 'rational' " is proved in this context. 

Assuming that both a desired linear behavior (input/output map) / and a fixed 
system I are given, a natural question is: can / be realized using I as a basic com­
ponent? We give in Section B.2 an algorithm which serves to answer this question. 

Refining the definition of systems allows the explicit consideration of "time" and 
"pointwise states". We prove in such a context a general criterion of pointwise 
reachability. 

The problems in this paper are directly related to the theory of linear systems over 
commutative rings; for instance, the characterization of finitely realizable behaviors 

* This research was supported in part by US Army Research Grant DA-ARO-D-31-124-72-
G114 and by US Air Force Grant 72-2268 through the Center for Mathematical System Theory, 
University of Florida, Gainesville, FL 32611, USA. 



as rational implies the possibility of effectively constructing realizations, e.g. via 
Hankel-matrix techniques. See Sontag [8] for a survey of the topic of systems over 
rings, and Kamen [5] for previous work on the application of systems over rings 
to the study of distributed systems. 

A. ADMISSIBLE TRIPLES 

1. Definitions and Elementary Properties 

(1.1) Definition. A triple (A, B, Q), where B is a commutative ring, A is a B-module 
and q is a B-endomorphism of A, is called admissible if the following conditions 
hold: 

(a) Q is transcendental (over B), i.e., for all b0, ..., b„ in B, £fr;g' 4= 0 in EndB A. 

(b) Given any bu . . . , b„mB and any u in A, there is one and only one y in A satisfying 

y + b^y + ... + b„Q"y = QU . 

Assume (A, B, Q) is admissible. Denote by QA the image of Q; it is clearly a B-
module. The restriction of Q (which we shall denote also by Q) is a B-endomorphism 
of QA. It follows from uniqueness in (b) above that (QA, B, Q) is also admissible. 
The smallest subring of EndB (A) containing Q is (isomorphic to) the polynomial 
ring in Q, and we denote it by B[Q\. By restriction, we also write B\Q\ for the cor­
responding subring of EndB (QA). 

(1.2) Lemma. Assume that B is a commutative ring, A is a B-module and Q is 
a transcendental B-endomorphism of A. Then the following statements are equi­
valent: 

(a) (A, B, Q) is admissible. 

(b) For all n in N, all F in Bnx", and all v in A", the equation 

X = Q(FX + v) 

has a unique solution X in A", where Q : A" -* A" is the coordinatewise extension 
of Q. 

(c) There is a subring B[(g)] of EndB (QA), containing B\_Q], which can be naturally 
identified to the ring of rational power series in Q. 

Proof, (a) => (c). Observe that condition (b) in ( l . l ) asserts that all polynomials 
in Q having the identity as independent term are bijective on QA. Indeed, given v = QU 
in A, there is a unique y in A with y + b^y + ... + b„Qny = v; but y = Q(U — 
— bty — ... — b„Qn~ly)e QA, so unique solutions exist in QA. The meaning as 
a map of rational series p\q with p, q in B\Q\ and q(0) = unit is then clear. 



(c) => (b). The given equation is equivalent to finding X in (I — QF) X = QV e 
6 (QA)". AS det (7 - QF) is invertible in #[(e)]> it is a unit in EndB (QA). SO I — QF 
is an invertible matrix and there is a unique solution, as wanted. 

(b) => (a). As in ordinary differential equations, given the equation y + ... 
... + b„Q"y = QU, solve for y\ in the simultaneous equations 

>'i = Q.(-b^y^ - ... - bny„ + u), 

yi = Qy\ , 

)'n = Qy„-i • • 

The elements of #[(fi)] will be called rational maps. 

(1.3) Definition. The subring of B[(Q)~ corresponding to those power series of 
order > 0 will be called the ring of causal rational endomorphisms. It will be denoted 
by Bl(e)]. 

(1.4) Observation. Causal rational maps s are then those which admit a factoriza­
tion s = pq~x, with p(0) = 0, q(0) = unit. Also, any such s admits a factorization 
Sj o Q, with Si a rational map. But then, we can define an s in EndB (A) by the same 
formula (where now Q : A -» QA), and s clearly extends s. By abuse of notation, 
we shall identify s and s, and hence think also of 5c[(e)] as a subring of EndB (A), 
the precise meaning being clear from the context. Accordingly, a 5-homomorphism 
/ : Am -* A' will be called causal rational when each coordinate map belongs to 
(the set of extensions of) Bc[(e)]-

2. Substitution of Rational Maps 

We shall assume throughout this section that B is an integral domain. By (A, B, Q) 
we shall denote always an arbitrary admissible triple. 

Given s = btQ + b2Q
2 + ... in Bc[(e)] and p = a0 + atQ + ... + a„o" in 

B[Q] C EndB(gA), denote by ps := a0 + ass + ... + a„s" the substitution of s in p. 
Observe that p(0) = a0 = ps(0), so (in Bc[(e)]) p is invertible if and only if ps is 
a unit. Given an arbitrary/ = pq~x in B[(Q)~\, define / , := psq~\ It is easy to see 
thatif/ = a0 + atQ + a2Q

2 + ... t h e n / = a0 + ayb^Q + ( a ^ j + a2b\) Q2 + .... 
The assignment a :f i->L is a ring endomorphism of B[(e)]. In fact, it is injective, 
because B has no zero divisors. Moreover, if / is in jSc[(e)], / , is also causal, so a 
induces an endomorphism of £c[({?)]- I f / : A"1 -* A" is causal rational, define / , 
by substituting in each coordinate. 



(2.1) Lemma. Assume s is in -Bc[(e)]- Then (A, B, s) is an admissible triple. 

Proof. Algebraic independence of s is clear. Let now p in B[@] be such that the 
element p(0) is a unit. Then (b) in (1.1) amounts to proving that for every u in A 
there is a unique y with psy = sw. But this follows from the fact that SM is in QA 
and ps is an isomorphism in EndB (QA). • 

(2.2) Definition. Given j in BC[(Q)~], define the rank of f, r(f), as the smallest of 
the numbers max {deg p, deg a} for all possible factorizations j = pq~x with p, q 
in BIQ], p(0) = 0. 

If B is a unique factorization domain, then the above minimum can be found 
directly from an irreducible factorization of j . 

(2.3) Observation. Assume now that j = pq~Y e Bc[(e)], with p = a„Qn + ... 
... + atQ and q = bmQm + . . . + 1, a„bm + 0. Given u = rs'1 with r(0) = 0, 
s(0) = 1, define P := a„rnsk~" + ... + a^s^1 and Q := bmrmsk-m + ... + sk, 
where k is the greatest of m and n. It is clear tha tL = PQ'1, and a simple calculation 
shows that max {deg P, deg Q] = k . max {deg r, deg s}. 

We have proved then that r(j„) g r(j) r(u). Actually, more is true in an important 
special case: 

(2.4) Proposition. Suppose B is a field. Then, for any f, u in Bc[(e)], r(fu) = 
-<f)r(u). 

Proof. The result will follow if we prove that for p, q, r, s as in (2.3), if (p, q) = 
= (r, s) = 1 then also (P, Q) = 1. Assume on the contrary that there is some poly­
nomial t dividing both P and Q. Let K be an algebraic extension of B containing 
a root a of t. Then P(a) = Q(a) = 0. 

Claim: s(a) + 0. Indeed, assume s(a) = 0 and suppose that m > n. Then Q = 
= bmrm + s(bm-1r

m~1 +...), so 0 = Q(a) = bm r(a)m and r(a) = 0. But (r, s) = 1 
implies that they can not have common roots on any extension. A contradiction is also 
arrived at if n > m. 

Write b := r(a)ls(a)eK. Then 0 = P(a) = s(a)k p(b), so p(b) = 0. Also, 0 = 
= Q(a) = s(a)k q(b), so q(b) = 0. As before, this contradicts the fact that (p, q) = 1. 

• 
The main result is: 

(2.5) Theorem. Assume that B is a field. Given (say, as quotients of polynomials) 
j : Am ->• A" and s : A -> A both causal rational, there is an algorithm which will 
either find a g : Am -> A" causal rational satisfying j = gs, or it will decide that no 
such g exists. 



Proof. It is enough to prove the theorem for m = p = 1. Observe also that if g 353 
as above exists, then it is unique: indeed, this is merely another way of saying that the 
map h -> hs is injective. Denote m := r(f), n := r(s); both numbers are calculated 
by standard methods from the representations of / and 5. Denote k := m\n. From 
(2.4) it follows that, if a g exists, we must have r(g) = k. 

Assume/ = Xc,e\ s - YdjSJ- W e a r e t r v ing t 0 n n d 9 = YxiQl satisfying 

(•) c1 = xjd. , 

c2 = X!d2 + x2d\ , 

Denote by C the column vector with the entries cu . •., c2m and by D the (triangular) 
matrix for the corresponding dh so that the 2m first rows of (*) correspond to the 
equation C = DX, with X a 2m-vector. 

Claim: g exists if and only if both (a) there is a solution X of C = DX, and (b) 
this solution satisfies rank H„ 

H, , = 

= rank Hmm = k, where 

xi+j-i 

Proof of necessity. If there is such a g, then condition (a) is obviously satisfied; 
(b) follows from the fact that the rank of Hkk is k £ m, and is equal to the rank of 
the (infinite) Hankel matrix of g. 

Sufficiency. Assume there is an X satisfying (a) and (b). By Kalman, Falb and 
Arbib [3, p. 331], there is (and one can construct) a (unique) g of rank k with first 2m 
coefficients equal, to xu ..., x2m. We are only left to prove t ha t / = gs. But r(gs) = 
= kn = m = /•(/), and from C = DX it follows that the first 2m terms of gs and / 
coincide. Equality is then a consequence of well-known facts from realization theory 
over fields. Q 

It is not claimed, of course, that the previous algorithm is efficient, but only that 
it gives the required answer. 

(2.6) Corollary. Theorem (2.5) holds for B an arbitrary completely integrally 
closed domain. 

Proof. If K is the field of fractions of B, view/, s as elements of i£c[(e)] and solve 
for a g via (2.5). Then there will be a solution in £c[(e)] if and only if g itself is in 
5C[(£>)], by uniqueness. 

From Eilenberg [2, Th. 12.2], it is easy to show that this will happen if and only 
if the coefficients of the minimal polynomial of g (over k) and the entries of X are 
all in B. • 



3. Examples 

(3.1) Finite dimensional constant linear systems. In this case let A consist of all 
locally integrable functions j : [0, co) -» R with j(0) = 0. For any such j , let g(f) 
in A be given by Q(f) (t) = J0 j(s)ds. Then, with the pointwise R-space structure 
for A, it follows from basic theorems in differential equations that (A, R, Q) is admis­
sible. This example shows the improvement over the setup in Sontag [7], where C+ 
had to be used for A. 

(3.2) Variations of (3.1). It might be wanted to allow for impulses as inputs, but 
still essentially use functions for the states. For example, in the context of Mikusinski's 
operational calculus, define C := the convolution algebra of continuous real (or 
complex)-valued functions with domain [0, oo). Define Q := s~' (the "integration" 
operator), and A := s2C. Observe that the elements of QA can be identified with 
(equivalence classes of) piecewise continuous locally integrable functions. Admis­
sibility is well-known (see for example Brand [ l , p. 545]). 

(3.3) Compositions of a fixed Volterra operator. Here define A as in (3.1). Assume 
k(s, t) is a (fixed) continuous real valued function for all 0 £ t g s. Define Q by 
(QX) (S) := J0 k(s, t) x(t) At, for all x in A. We claim that (A, R, Q) is admissible. 
As B is here a field, we only need to check (b) in (1.1). Write H := — (b1Q + ... 
... + b„Qn), then it is known that H is also a Volterra operator, say with kernel h(s, t). 
Given u in A, let v : = QU; then v is continuous. The conclusion in (1.1.6) is equivalent 
to proving that, for all positive a, there is a unique solution, in C[0, a\, of the equa­
tion y(s) - J0 h(s, t) y(t) dt = v(s). But this last fact follows from Taylor [9, p. 168]. 

(3.4) Certain infinite dimensional systems. Let I b e a real Banach space, and B 
a commutative algebra of linear bounded operators X -> X. Define A as the additive 
group of locally Bochner-integrable functions [0, oo) -> X (see Ladas, Lakshmikan-
than [4, p. 10]). Let Q be the operator j H-» J 0 / (s ) ds. Admissibility follows from 
local existence of solutions of differential equations plus the fact that QA consists 
entirely of (strongly) continuous functions. 

(3.5) All the examples (discrete-time, cellular, delay-differential, etc.) in Sontag 
[7], with Q here corresponding to Q'1 there. For instance, retarded delay-differential 
equations are introduced as follows. Let A consist of all locally integrable functions 
j : R ~* R with support bounded to the left, i.e. with j(T> = 0 for all T sufficiently 
small. Let g(f) (t) := J L ^ j ^ ) dr, aa := a-second shift operator aa u(t) := u(t - a), 
and let B := R[ffni, ..., <r0J, for some fixed set of positive rationally independent 
real numbers a . , . . . , ar. Admissibility is a consequence of the theory of delay 
equations; note that the definition of A is equivalent to setting initial conditions 
equal to zero in a suitably chosen interval. 



B. FINITARY LINEAR SYSTEMS 

1. Definitions and Realization Theorem 

We shall assume throughout that (A, B, Q) is a fixed (but arbitrary) admissible 
triple. 

(1.1) Definition. An (A, B, Q)-system I is given by a triple of B-matrices (F, G, H) 
of dimensions n x n, n x m and p x n respectively. The input map L: Am -> A" 
is the group homomorphism which assigns to each u in Am the unique solution x 
in A" of the equation x = Q(FX + Gu). The result is j z : = H 0 L: Am -> Ap. 

We can interpret Z as given by an interconnection of "black boxes" with input-
output functions o (for example, integrators), interconnected via adders and operators 
in B (e.g. amplifiers or delays). The inputs act via similar connections, and outputs 
of Z are obtained by forming suitable combinations of the outputs of these "black 
boxes". Other very different interpretations are possible in the case of "cellular 
systems", etc. 

(1.2) Definition. The rank of Z, r(Z) is, by definition, the integer n. A system Z is 
said to be of minimal rank when it has smallest rank among all Z with the same 
result. 

(1.3) Theorem. Assume j : Am -* A". Then j is the result of some (A, B, o)-system 
if and only ifjis causal rational. 

Proof. The problem is that of proving there is a one-to-one correspondence 
between elements of fic[(o)]pXm and maps of the form 

£H(I-QF)-1QG= Y.HF"GQ" + 1 . 
n & 0 n g 0 

But the results in realization theory for discrete-time B-systems give the theorem. • 

2. Substitution of Systems 

Given an (A, B, o)-system Z, we want to define the substitution of a scalar (i.e. 
m — P — 1) system Zt into I as that system obtained by replacing all "black boxes" 
marked "o" in Z by copies of Z.. In other words, Z should consist of suitable con­
nections of the basic system Zx. For simplicity, we shall assume m = p = l jor all 
systems in this section. 

(2.1) Definition. If Z. = (F, G, H) and Z = (U, V, W) are two (A, B, o)-systems, 
the (A, B, e)-system Z(Zt) = (C, D, E), of rank = r(Z). r(Zt), is defined as follows. 



356 For notational convenience, let the indices run over all pairs (i, j) with 1 ^ i g K~̂ i)> 
1 ;S j <; r(2;). Then, let 

C(iJ)(r,s):= G ; U ; r H s if . + r , 

: = G^Ufl-H. + F, s if i = r . 

:= W,ff,. 
IЛ..Л 
£„ n 

(2.2) Lemma. Le t / be the result of I and s the result of It. Then the result of 1(2:.) 
i s / , - W ( l - sU ) _ 1 sK 

Proof. Assume u is in A; we want to find the output of 1(1,) given that the input 
is u. By definition of 2'(2:1), for each (i,j) we have for x = Lu: 

xa,j) = e( Z G((j)(M)%.») + IW>") = 
(r,s) 

= e(ZF,sx(;,s) + Gy(Xtl^+K;U)), 

where we have denoted zr : = XIIpC(,.,s) = Hx r and xr is the column vector in A", 

n = r(-u)> w i t n entries x ( r 4 ) , . . . , x(r,n). With the further notation u( := XU i rzr + 
+ KjM, the equations above can be written: 

x ; = Q(FXI + Gv) . 

Solving for xt, we have x ; = (/ - £>E)_1 QGvt, hence for every i, z. = Hx ; = svt. 
Denote by z the column vector in Aq, q = r(l), with entries zu ..., zq. Then it follows 
from the definition of the vt that z satisfies the equation z = s(Uz + Vu), so z = 
= (I - sU)'1 sVu. The output of 2:(2'1) is then 

>> = Ex = X E(i,y)x((J) = ZW&HjXvjd = 
(ij) i J 

= £>y.Z( = Wz = Pf(Z - SU)_1 SVM = L U , 

as wanted. • 

(2.3) Theorem. Assume that B is a field and that I, II are minimal rank (A, B, g)-

systems. Then, £(£i) is also minimal. 

Proof. It is well known that minimality for any system I over a field is equivalent 
to the relation r(E) = r(fE). But, by definition of Z(Zi), we have 

r(Z(Z1)) = r(Z)r(Z1) = r(f)r(s) = r(fs) 
using (A.2.4). ' • 

(2.4) Theorem. Assume B is a completely integrally closed domain. Given the 
(A, B, e)-systems Zv E2, there is an algorithm which either constructs a Z such that 
Z(Zt) has the same input/output behavior as Z2

 o r decides that no such Z exists. 



Proof. A direct consequence of Corollary (A.2.6): if g is found, any realization 357 
algorithm gives a I with/^ = g. • 

(2.5) Observation. In some cases, we might want a stronger result. For example, 
take the delay-differential case, where B is a finitely generated algebra over a field K 
(here, the reals). From (2.4) we know how to decide if a given delay-differential 
system E2 can be "simulated" by the use of a system El and connections in B, i.e. 
admitting other delays. But we might want to ask whether the same result can be 
achieved using only scalar interconnections (i.e. amplifiers). This is readily solved: 
from the fact that a field is (trivially) completely integrally closed, it must only be 
checked that the g found is in ^ c[(g)] , and for this it is enough to check its minimal 
polynomial. • 

C. TIME-SYSTEMS 

The system descriptions in the previous sections do not allow explicit consideration 
of time, so many properties, like reachability, cannot be even defined in that generality. 
We show now one way of introducing time into our framework. 

(1.1) Definition. A monoid T has left common divisors iff for each t, t' in T there 
are a T in Tand a, b in Tsuch that t = xa, t' = xb. 

(1.2) Examples, (i) T: = any group. 

(ii) T:= any A-semilattice, with xy := x A y; in particular any totally-ordered 
set T, like the reals or the integers. 

In what follows, T is an arbitrary but fixed monoid as above, and k is a fixed 
field. Let kT denote the set of all functions T-> k; this set has a natural /<[T]-module 
structure, namely, each t in Tacts as a shift o, : a,(w)(a) := w(at). 

(1.3) Definition. (A, B, Q) is a time triple iff it is admissible and A is a /c[T]-sub-
module of kT and B[Q] is a subring of Endft£r] (A). 

The above is of course just a way of stating that Q and all operators in B are shift-
invariant. We fix now (A, B, Q) as above. 

(1.4) Definition. Given an (A, B, Q) system I - (F, G, H), let 

REACH £ := {x in k", x = (L,(w) (t), w in A'", t in T} . 

E is pointwise reachable iff REACHS = k". 

(1.5) Lemma. REACH^ is a subspace of k". 

Proof. Let x = L(w) (t), y = L(w') (?). Choose x, a, b as in (1.1). Then rx + y = 
= L(ra0(w) + ob(w')) (x), for any r in k. 



(1.6) Theorem. 27 is pointwise reachable if and only if there is no v in k" such that 

(*) v'[G,FG,...,F"-iG]=0. 

Proof. Assume that REACHr =f= k". Then there exists a v in k" such that 
REACHI S ker f, when v is regarded as a map k" -> fe. Let t> be the constant 
function f, i.e. i»: A" ~* A, (t>x) (f) := v x(t). Then 

(**) 0 = v'L = v'(I - QF)-1QG. 

Expanding (J — QF)'1 in powers of Q'1 gives the result (*). 

The converse is equally clear, since (*) implies (**) via the Cayley-Hamilton 

Theorem. • 

(1.7) Applications. The above theorem gives a unified proof of the well-known 
reachability criteria for both continuous- and discrete-time finite-dimensional linear 
systems. In the delay-differential case, introduced in example A.3.5, F and G are 
polynomial matrices. Since a polynomial is zero iff each of its coefficients is zero, (*) 
can also be expressed — in a rather involved way! — as a rank condition on constant 
real matrices. In the latter form, a special case (r = 1, only one delay in F, and no 
delays in G) was known before; see Kirillova and Cjirakova [6]. The general result 
was announced with an outline of its proof in Sontag [7]. 

(Received November 6, 1978.) 
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