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KYBERNETIKA — VOLUME I5 (1979), NUMBER 5§

Simultaneous Channels Decomposable
into Memoryless Components 11

FraNTIEK RuUBLfK

The problem of asymptotic behaviour of the maximum length of e-codes is studied in this
paper for a special class of channels, which we introduce in Definition 1, the Section 1. The main
result of this paper is Theorem on e-Capacity.

‘We remark that the double numbered references are related to [1] and most of the basic nota-
tions are defined in the Section 2 in [1].

1. BASIC PROPERTIES OF SIMULTANEOUS CHANNELS

Let W bz the set of all probability matrices and &y, b2 the o-algebra of Borel sets
in W gznerated by the metric

o o(w, w*) = |w — wr| = max|w(j| i) = we(j[ )| .

i
Let (G, &, &) be a probability spacz and t: G - W bz an & —~%, measurable
mapping, i.e. t”'(F)e & for each F e #,. Similarly as in the Section 1 in [1] we

shall use notations 1, or w,_ instead of t(«). We see that if y € B, then there exists uni-
que probability w,(. | y) on subsets of A" satisfying

) wix|y) = j ) n wo( | 1) dé(e)

for each x € A". Hence if 1 & B', then there exists unique probability w,(- | ) defined
on J , such that

(3) w{{xedsx = juk=1..,n}[n)=wl{iJic: | {m}i-1),



where the right-hand side is defined by (2). In order to introduce the definition
of a simultaneous channel put

(4) To={t:G-> W andis & — &, measurable}

and denote R, (p) the transmission rate of the matrix w, with respect to the vector p

(cf. (1.6)).

Definition 1. Let T < T, be a non-empty set satisfying for every vector p € Pthe
following conditions.

1. The function ¢(, p) = inf {R, (p); 7 € T} is measurable.
2. If ¢ > 0, then there exists such s € T'that the inequality

o(e, p) = R, (p) £ o(e, p) + &
holds for every x € G.
The family of probabilities {w(- | n); n.€ B', t e T} which are defined by (3) will
be called a simultaneous channel decomposable into memoryless components and
will be denoted C = (B, 4, ¢, T).

Definition 2. Let C = (B, 4, ¢, T) be a simultancous channel. An n-dimensional
code {Q(»)},er (cf. [2] p. 116) will be called (n, N, &) code for C, if the length of this
code is N and (cf. (2))

w0 9) = 3 wilx| ) > 1~

(¥)
for every ye Y, te T.

If T = {t} i.e. T contains only element ¢, then (B, 4, £, T) is a channel decompos-
able into memoryless components (cf. [3]); a more complicated example of the
simultaneous channel is given in Proposition 1.

We see that in the general case described in Definition 1 the simultaneous channel
is a family of channels {C}.r> C, = (B, 4, &, {t}). The reason for such a definition
can be that we want to construct an g-code for a channel C,, and our only knowledge
about ¢, is that ¢, belongs to T.

To prove the mext assertions, we shall need the following notations. If {F.}i,
is a partition of a set F and {wk},’c": 1 are probability matrices, then by the symbol

(5) t= ;WkXFk

we shall mean the mapping ¢ : F — W such that #(a) = w, for every a e F,, k =
=1,...,m;if C,, C, are disjoint sets and ¢, : C; » W, then

(6) t=1tXc, + takc,
is the mapping ¢ : C, U C, - Wsatisfying t | C; = 1, i = 1,2.
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Proposition 1. Let t,e Ty and h: G —» (0, 1) be a measurable function. If we
denote (cf. (1), (4))

(7 T = {te Ty; o), to()) < h(a) for every «e G},
then the set T satisfies the assumptions of Definition 1.

Proof. At first we prove measurability of the function ¢(., p). Let us denote W,
the set of all matrices w & W such that w(j | i) is an integer multiple of n™" for each
ieB, je A and put

O(w*) = {we W; o(w, w*} < d*n"'}, d = max{a, b} ;

the sets {O(w*); w* € W,} cover Wby Lemma 2.4. If § & (0, 1) then there exists a finite

measurable partition €, = {C{"}i, of the set G, = {x e G; h(x) = 6} satisfying
for k =1, ..., m, the conditions

1. there exists w, € W, such that o(to(a), ) < d*n™* for every w € C{;
2. if o, e C, then |h(x) — h(B)| < d*n~".

This means that for each n > n, = nl(d, 6) there exists a mapping s, with values
in W, such that (cf. (5))

(8) Sy = lekaCk("’

and o(to(®), s,(2)) < d?/n < 6 whenever o € G,. Hence if we denote

W(n, k) = {we W,; o(w, to(2)) < h(x) forevery aeC},

T, = {Z"Wklck("); W € W(”’ k)} , "=UT,
T

n=ny

then these sets are non-empty. Since the set TV is countable, it is sufficient to prove
the relation

) o(a, p) xe,(2) = inf {R,(p); 1€ T} .

Let « € G, and y be a positive number. Since the set T is convex, the inequality
(2.16) implies that there is a matrix w* e W satisfying

@(o p) = Rue(p) < 9 p) + 7,
o(w*, to(@)) < h(x).
If n > ng is such that the inequalities
(10) R,{p) < oo, p) + y — 8d*n™ V2,
o(w*, to(2)) < h(e) — 4d*[n



hold, we choose w: € W, so that
(11) o(w*, w¥) < d*[n
and put (cf. (8))

sy _ o S(B) BECE.,
() NwF  pec?,

where C{” is the set belonging to %, which contains «. Taking into account (8), (10),
(11) and the second property of %,, we see that sy € T/ and (9) can be easily proved
by means of (2.16).

The next step is to prove that the condition 2 in Definition 1 is fulfilled. For ¢ > 0
there is an 6 > 0 such that (cf. (2.16))

[Ru(p) = Ru(p)] <&

whenever o(w, w¥) < 8. Let 9, = {D{®}i, be a measurable partition of the set
Gy = h™(<0, 1) satisfying

(12) W) = W(B)| < 6]n. |o(x. p) = @(B, )| < &/4,
e(to(®) 10(8)) < O/n

for each o, fe DI, k =1, ..., m,. We choose 4 (2n"*, d®n"') and for every k

we find o € D{™, t, € Tso that

(13) o2 ) = Ryaofp)| < /4.

Denoting w, = Ato(e) + (1 — 4) 1) and putting
Sn =kZIWkXDk("1 + loXG-Go»

we obtain a mapping belonging to T and (2.16), (13) and (12) complete the proof.

Let us define for a simultaneous channel C = (B, 4, ¢, T) quantile functions
by the formulas

(14) re) = sup inf iélole,p) Sy} 26},

’

r'(e) = su}P sup {y; &{os o(o, p) Z ¥} 2 1 — &} .
pe

These functions have properties similar to that proved in [2].
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Lemma 1. Let us denote &, the family of all sets which have { measure at least .

M (e) = max inf (esssup o p) xal")) »
(15) () = max sup (essinf @(., p) z(-)) >

peP Ay

where essinffy, = sup {y; ¢{oe o f(x) < ¥} = 0}, esssup f= [£] = inf {;
Eas flo) 2 v} = 0}.

(IT) The functions r, r' are non-decreasing on (0,1), r < r' and r'(e,) £ r(s,)
whenever g, < g,.

(IIT) 7 is left continuous, " is right continuous and r(z+) = r(s), r'(e—) = r(z).

(IV) The number ¢ e((), 1) is a point of continuity of functions r, " if and only
if it is a point of continuity of one of them, which is equivalent to r(g) = r'(e).

Proof. (I) Making use of (2.17) we can check that the function
B(p) = inf {[|@(- p) 7.(-)

is continuous on P, which together with
H(e) = sup {B(2); p < P}

completes the proof of the first equality in (15). The second one can be proved
similarly.

(1) 1f pe P and

(16) F(») = &0 0(w, p) £ ¥},
then for &, < &, belonging to (0, 1)

s A EL)

a7 rie) = sug sup {y; F(y) £ &,} su},) sup {y; F(y) < &5} = 1(e;).
pe pe

(III) Now we prove that 7’ is right continuous. If ¢, \ ¢, by I and II of this lemma
we obtain

(18) r'(e) S infr'(e,) .
nz1
Let y, be an arbitrary number smaller than the right hand side of (18). We can choose

a sequence {p,},-1 of elements of P such that (cf. (14))

vo<sup{y;&los (e, p) 2y} 21 -2}, n=12...

and compactness of the set P allows us to assume that the sequence {p,} converges
to a vector p € P. Denoting

¥a = sup {lo(x p) — ol p,)|; xe G}



we see that
(19) 1—g =2 gk{a; oz, p) + ¥, 2 yo}]-

Since lim ¢, = 0 by (2.17), letting k tend to infinity we obtain from (19)
vo £ 7).

This means that the sign of equality may be written in (18). The rest of the proof
is obvious.

Continuity of the quantile functions plays an important role in studying the
asymptotic behaviour of the maximum length of e-codes. Sufficient conditions
for this continuity are given in the following proposition concerning the channel
determined by (7).

Proposition 2. Let G be a connected metric space, & be the g-algebra of Borel
sets, 5(U) be positive for every non-empty open set U and let T be theset described
by (7) If the functions t,, h are continuous, then the quantile functions (14) are also
continuous.

Proof. Let us assume we know that for every pe P
¢, (@) = inf R, (p)
teT
is a continuous function of the variable . If we dencte (cf. (16))

co = sup {y; F,(y) < e}, ¢ =sup{y; F,(y) < ¢},

then ¢, = ¢; whenever ¢ (0, 1). Suppose this is false; then we can find numbers
d, < d, such that :

(20) F(do) = Fy(d,) = 5.

If dy < d§ < d¥ < d,, then the set ¢, '(d}, d}) is either empty or non-empty and
open, both possibilities yielding a contradiction with the assumptions. Now when
we know that ¢, = ¢,, the expression of the functions r, ' in the way described in
(17) yields r(&) = #(¢). But the last equality, by (IV) of the preceding lemma, means
that the functions r, r’ are continuous.

Now we want to prove the mentioned continuity of ¢,(.). Before doing this we
remark that

&) ,(2) = inf {R,(p); (1, to(«)) = ()} -

If h(x) is positive and «, — @, then there is a sequence {w,} of matrices belonging
to W such that

(22) 0w tol0n)) = h(en) > Ry (p) = @0y p) + 07"
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Since w, — w for some increasing sequence of integers, Lemma 2.6 and relations
(21), (22) imply
o(x, p) < liminf ¢(a,,, p) .
Kzt

The rest of the proof is obvious.

2. THE ASYMPTOTIC BEHAVIOUR OF THE LENGTH OF ¢CODES

Let C = (B, 4, &, T) be a simultancous channel, t € Tand &(«/) > 0. In accordance
with (2) and [2] we put

=~—1~« w, (X o
wade ) = s [ e |9 ),

where w, (x l y) is defined by means of the matrix w,, by (1.1). If y € B"and Q(y) < 4
then we put

(23) Wy Q)] ¥) =xe§y)wd"(x [).

If we denote for pe P, £€(0, 1) by S}(s, C,, p) the maximum length of n-dimen-
sional codes ({Q(y)},er (cf. [2], p. 116) which satisfy

(24) Y contains only p-sequences ,
wae(Q()|y)>1—¢ forevery yeY,teT

then the following assertion holds.

Lemma 2. (I) If &' €(0, &) and n > 1024d%(¢’)"* is such that (cf. (2.19)) & — 5, >

> ¢, then (cf. (15))
@) =
n

where (cf. (3.4))
filn, e, &, d)=f(n,e — 6,,¢,d) + 84°n~ %,

log S¥(e, Co, p) > essinf o., p) xo(-) ~ n7Y2 fi(n, e, ¢, d) »

(1) Ife"e(0,1 — g) and n > d is such that 1 — (s + n 26,)> > €', then
(26) L log S¥(e Cu ) < e555up (e, P) 2a(e) + 1™ g (1, 5. 6%, Eo0), d) ,
n

where (cf. (3.13))
gi(n e ¢, &), d) = g(n,e + 6, + n™%¢", &) n=3%, d) + 9d*n=312



Proof. Let n > d and W, be the set described by (3.1) and (3.2). If t€ T, then
by Lemma 2.4 there are matrices {w,};_, and a measurable partition {C/}7., of &
into sets of positive measure such that the mapping (cf. (5))

(27 t* o= ,Z: Wice
satisfies the inequality m £ exp, (4d*) and the relation
(28) o(t*(a), (o)) < d®n™*,
¢ amost everywhere on /.

(1) If we denote W = U t*(s#), then by Theorem 3.1 there is an n-dimensional
code {Q(»)},er such tha!tETY contains only p-sequences, the inequality (cf. (2.19))
(29) w(Q(y)[y) <1 -(2~3)

is satisfied forall y e Y, w e Vand

(30) L logcard Y > inf R,(p) — n ** f(n, e — §,, ¢, d).
n

wel

Taking into account (29), Lemma 2.7 and (27) we see that

we {QY) | ¥) > 1 —¢

for every te T, y € Y. Since the numbers {&(C,)} are positive, Lemma 2.6, the way
in which * was constructed and (30) imply (25).

(1) Let {Q(¥)},er be an n-dimensional code satistying (24). By the second assump-
tion in Definition 1 there is a mapping t € T such that the inequality

(31) R, (p) < oo, p) + d®n™?

holds for every a € G. To prove (26) we shall modify the mapping r* (cf. (27), (28)).
Let L= {ke{l, ..., m}; &C,) < exp, (~5d%) &«£)} and C = | C,. Since
keL

(32) EC) < n™ " (7)),
we can choose ko € {1, ..., m} — L. Let us denote D = C,, u C and put

=73 wike, + Weolp »
keL’
where L' = {1, ..., m} — ({ko} L L). Making use of (32) and Lemma 2.7 we obtain
(33) wr Q) | ) = (er)-1 [ '[ w00 | y) dé(e) — 5((:)] >
o

>~ (e+4,+n%).
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Further, taking into account that the numbers {£(Cy)} are positive, we easily obtain
from the definition of r*, (2.16) and (31) that

max R, (p) £ 94172 + esssup o(., p) A4(-),
k

which together with (3.13) completes the proof.

The following theorem gives bounds for the length of e-codes for channels, des-
cribed in Definitions 1 and 2.

1. Theorem on Estimation of the Maximum Length of ¢-Codes. Let C = (B, AL, T)
be a simultaneous channel decomposable into memoryless components, ee((), 1)
and-S,(¢, C) be the maximum length of n-dimensional e-codes for C (cf. also (1.7)).
If 6" € (0, €) and 6" e (&, 1), then there exist positive constants M(e, §'), L(z, ") such
that the inequalities (cf. (14))

1 log S,(&, C) > r'(8") — M(e, ) n™ "2,
n

L log S,(e, C) < r(6") + L(e, 0") n™ % logn

n
hold for every n. These constants can be chosen so that they would depend on the
channel C only through d = max {a, b}.

Proof. The first step is to prove the first inequality. We shall use the fact that
if é(o/) 2 1 — 0" and {Q(y)},er is an n-dimensional code satisfying for every te T
the inequality (cf. (23))

Wa Q)| ¥) > 1 —e+ 0,
then (cf. (2))

w0 | ) = j w(0) | ) dé() > 1 — ¢,

o

which means that (cf. (24))

(34) L log S,(z, C) = 1 log S¥e — 0, Ca4. p)
n n

Hence if we choose p € P, o € &, _,, such that (cf. (15))

(35) #(0) < n~! + essinf o(-, p) xu() »

then the preceding Lemma, (34) and (35) imply the existence of the sought constant M.



(1) Let {Q()},ey be an (n, N, &) code for C. Let us denote P, the set of all vectors
whose coordinates are integer multiples of n™* and put (cf. (2.1) in [2])

Y,={yeViN(i|y)=np, i=1,...,b}.
If &(o/) = 0", then similarly as in [2], p. 127

wa Q)| y) > 1 = &0
and (cf. (24))

(36) 1 log card Y, £ %log Sn(g]0”, C.ys D).
n

Denoting ¢” = 27!(1 — &/6”) and choosing & € &, such that (cf. (15))
r(07) > —n~! + esssup (., p) xa(-)

we see that (36) together with Lemma 2 implies existence of the sought constant L.
The results of the last theorem may be strengthened in some special cases. This is
done in the following theorem.

2. Theorem on Estimation of the Maximum Length of ¢-Codes for Channels De-
composable into Finitely Many Components. Let C = (B, A&, T) be the simulta-
neous channel described in Definition 1.1. If e € (0, 1), then there exist positive con-
stants M(g), L(¢) such that the inequalities (cf. (1.7))

L log S,(&, C) > r(e) — M(e) n™ 12,

n

1 log S,(e, C) < r'(e) + L(e)n™"* logn
n

hold forevery n. These constants can be chosen so that they would depend on C only
through ¢ and the number d = max {a, b}. Moreover, if the channel C is non-singular
(cf. (3.10)), we can find a positive constant L,(e) such that the inequality

L log S,(e, C) < r'(e) + L(e) n™/*
n

holds for every n and L, (&) depends on C only through d, %(C) and the vector &.

Proof. Since the functions r, r’ are constant on intervals containing no points
of the set {¢(s£); o < {1, ..., m}}, existence of constants M, Lfollows from Theo-
rem 1 and Lemma 1. Further, let us suppose that the channel is non-singular. We shall
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use notations from II of the proof of the preceding theorem and suppose pe P,
is such that the set Y, is non-empty. If &/ € . satisfies (cf. (15))

r(e) = r(60") > —n~! + maxinfR,(p),
aesd  teT

then we see that the existence follows from (36) and Theorem 3.2 (II).

3. Theorem on Codes with Errors Tending to Zero. If C is a simultaneous channel
and y (0, 1), then

fim log S,(n”%, C) =F,

n—o N

where (cf. Definition 1 and (15))

F = sup ess inf o(., p) .
peP
Proof. Similarly as in the first part of the proof of Theorem 1 one can prove by
means of (25) that

lim infl log S,(n”7, C) 2 ess inf ¢(., p)

nzt R

for every vector p € P. Further, the inequality (cf. Lemma 1 (IT))

lim sup L log S,(n7% C) < lim r(e)
21 B £~0

can be again proved analogically as in Theorem 1 and we see that it is sufficient
to show that

lim r(e) = F.

=0
The last relation can be proved by applying the method of the proof of the conti-
nuity of 7' from the right (cf. the proof of Lemma 1 (III}).

If & is a continuity point of the function r, then by Lemma 1 the equality r(¢) =

= r'(g) holds. This means that the Theorem on Estimation of the Maximum Length
of &-Codes implies

4. Theorem on ¢-Capacity. Let C = (B, A, €&, T) be a simultaneous channel de-
composable into memoryless components. If ¢ & (0, 1) is a continuity point of the
function r(e), then

(37 tim < log S(e, €) = r(e) .

n~o N



Thus, if the assumptions in Proposition 2 are fulfilled, T'is the set described by (7),
C = (B, 4, T) and £€(0, 1), then the limit (37) exists. If C is a simultaneous
channel decomposable into finitely many memoryless components and ¢ e (0, 1)
does not belong to the finite set {&(s#); & < {1, ..., m}}, then ¢ is a continuity
point of » by Lemma 1 and the limit in (37) exists. In the general case, the quantile
functions are monotone i.e. the set of their discontinuity points is countable, so we
have obtained for such a channel that limit (37) exists at least except for this countable
set.

{Received October 28, 1977.)
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