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PREFACE 

This work provides a new algebraic theory of optimal control for discrete linear constant 
systems. The author has developed the essentials of this approach in a series of recent papers 
dealing with single-variable systems. Here is a natural but nontrivial generalization to multi-
variable systems. 

The subject is divided into six chapters. In Chapter 1 (Preliminaries) the author builds a new 
mathematical machinery for analysis and synthesis of discrete linear constant systems. It is 
essentially the polynomial algebra and algebra of polynomial matrices. Further, a matrix linear 
Diophantine equation is introduced, the solvability criterion established, and an algorithm to 
find its general solution is presented. It will turn out that all problems of optimal control and 
stabilization will reduce to solving such an equation. 

In Chapter 2 (Systems) we shall define, in an axiomatic way, a finite dimensional, linear, 
discrete, constant system over an arbitrary field and give the relations to its input-output de­
scription by a transfer function matrix. Further some important factorizations of polynomials 
and matrices, needed in the sequel, are defined and the associated computational aspects are 
briefly discussed. 

Chapter 3 (Open-Loop Control) is devoted to the simplest and basic problem of control. The 
open-loop configuration is defined and optimal control problems in the sense of minimum transfer 
time and least squares of the error are posed and solved. The solution is complete, contains the 
existence condition, and is not restricted to stable systems. 

Chapter 4 (Closed-Loop Stability) contains the basic preliminary material for synthesizing 
closed-loop systems. The explicit formulas for the characteristic and invariant polynomials of the 
closed-loop system are established. They make it possible to formulate and solve the problem of 
assigning desired invariant polynomials (and hence a characteristic polynomial) to the closed-loop 
system by dynamical output feedback. The main result is the fundamental necessary and sufficient 
condition of stability for the closed-loop system. This condition takes on the form of two coupled 
linear Diophantine equations and it is indispensable in the closed-loop system theory. 

In Chapter 5 (Closed-Loop Control) we discuss the most common control problem. The usual 
closed-loop configuration is considered and optimal control problems are posed and solved in 
the sense of min imum transfer time and least squares of the error. A particular emphasis is placed 
on stability of the closed-loop system. The solution is complete, contains the existence condition, 
and it is not restricted to stable systems. 

In Chapter 6 (Dzcoupling a Multivariable System) we focus our attention on some problems 
intrinsically relevant to multivariable systems. We first discuss the invertibility of a system, find 
a minimum-delay inverse of minimal dimension, and then pose and solve the stable decoupling 
problem. The ultimate purpose of decoupling is to control the system and hence all usual control 
problems are solved for the decoupled system. 

For the sake of better orientation we s^all summarize here some notation conventions. 
Throughout the paper, unless otherwise stated, the following notation is used: 

rings, fields &, %, d\, . . . 
numbers (in a field) )., ip, . . . 
matrices over numbers A, 0, . .. 
polynomials, integers a, b, . . ., n, . . . 
polynomial matrices A, B, . . . 
rational functions s, r, . . . 
rational matrices S, R, . . . 
state vectors x, z. . . . 
state matrices A, B. C, . . . 
systems, S2ts S^, 01, ..., X, . . . 



REFERENCES 

[1] Ackermann J.: Abtastregelung. Springer, Bгrlin 1972. 
[2] Åström K. J.: Introduction to Stochastic Control Theory. Academic Press, New York 1970. 
[3] Åström K. J., Jury E. J., Agniel R. G.: A numerical method for the evaluation of complex 

integrals. IEEE Trans. Automatic Control AC-15 (1970), 4, 468 — 471. 
[4] Barnet S.: Matrices, polynomials, and Iinear time-invariant systems. IEEE Trans. Automatic 

Control AC-18 (1973), 1, 1 -10 . 
[5] Bourbaki N.: Algèbre, Chapter 5. Hermann & Cie, Paris 1956. 
[6] Bourbaki N.: Algèbre, Chapter 8. Hermann & Cie, Paris 1966. 
[7] Bourbaki N.: Algèbre Commutative. Hermann & Cie, Paris 1961. 
[8] Brockett R. W.: Finite Dimensional Linear Systems. Wiley, New York 1970. 
[9] Chang S. S. L.: Synthesis of Optimum Control Systems. McGraw-HІП, New York 1961. 

[10] Chen C. T.: Representation of linear time-invariant composite systems. IEEE Trans. Autom-
atic Control AC-13 (1968), 3, 277-283. 

[11] Davison E. J.: On pole assignment in linear systems with incomplete state feedback. IEEE 
Trans. Automatic Control AC-16 (1970), 3, 348 — 350. 

[12] Гaнтмaxep Ф. P.: Teopия мaтpиц. Гocтexиздaт, Mocквa 1953. 
[13] Hardy G. H., Wright E. M.: An Introduction to the Theory of Numbers. Clarendon Press, 

Oxford 1960. 
[14] Heymann M.: Comment on pole assignment in multi-input linear systems. IEEE Trans. 

Automatic Control AC-13 (1968), 6, 748-749. 
[15] Янyшeвcкий P. T.: Teopия линeйныx мнoгocвязныx cиcтeм yпpaвлeния. Hayкa, Mocквa 

1973. 
[16] Johnson C. D.: Stabilization of linear dynamical systems with output feedback. Proc. 5th 

IFAC Congress, Paris 1972. 
[17] Kalman R. E.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5 

(1960), 102-119. 
[18] Kalman R. E.: On the general theory of control systems. Proc. lst IFAC Congress, Moscow 

1960. 
[19] Kalman R. E.: Mathematical description of linear dynamícal systems. SIAM J. Control / 

(1963), 152-192. 
[20] Kalman R. E.: Irreducible realizations and the degree of a rational matrix. SIAM J. Control 

75(1965), 2, 520-544. 
[21] Kalman R. E.: Algebraic theory of linear systems. Proc. Зrd Allerton Conference on Circuit 

and System Theory, IIlinois 1965, 563-577. 
[22] Kalman R. E.: Lectures on Controllability and Observability. Centro Internazionale Mate-

matico Estivo 1968. 
[23] Kalman R. E., Falb P. L., Arbib M. A.: Topics in Mathematical System Theory. McGraw-

Hill, New York 1969. 
[24] Kalman R. E., Bertram J. E.: A unified approach to the theory of samplingsystems. Joumal 

of the Franklin Institute 267 (1959), 5, 405-436. 
[25] Kučera V.: The discrete Riccati equation of optimal control. Kybernetika 8 (1972), 5, 

430-447. 
[26] Kučera V.: A contribution to matrix quadгatic equations. IEEE Trans. Automatic Contгol 

AC-17 (1972), 3,344-347. 
[27] Kučera V.: On nonnegative definite solutions of matrix quadratic equations. Proc. 5th 

IFAC Congгess, Paris 1972. 
[28] Kučera V.: On nonegative definite solutions of matrix quadгatic equations. Automatica 8 

(1972), 4, 413-423. 



[29] Kucera V.: A review of the matrix Riccati equation. Kybernetika 9 (1973), 1, 4 2 - 6 1 . 
[30] Kucera V.: Algebraic theory of discrete optimal control for single-variable systems I — 

Preliminaries. Kybernatika 9 (1973), 2, 94—107. 
[31] Kucera V.: Algebraic theory of discrete optimal control for single-variable systems II — 

Open-loop control. Kybernatika 9 (1973), 3, 206—221. 
[32] Kucera V.: Algebraic theory of discrete optimal control for single-variable systems III — 

Closed-loop control. Kybernetika 9 (1973), 4, 291-312. 
[33] Kucera V.: Closed-loop stability of discrete linear single-variable systems. Kybernetika 10 

(1974), 2, 162-187. 

[34] Kucera V.: Constrained optimal control — The algebraic approach. Kybernetika 10 
(1974), 4, 317-349. 

[35] Kucera V.: Algebraic approach to discrete optimal control. To appear in IEEE Trans. 
Automatic Control. 

[36] Kucera V.: On the minimal order inverses for linear time-invariant discrete systems. Proc. 
Joint Automatic Control Conference, St. Louis 1971, 312 — 318. 

[37] Kucera V.: The pole assignment in linear systems. Proc. International Conference on Systems 
and Control, Coimbatore, India, 1973. 

[38] Kuros A. G : Kapitoly z obecne algebry. Academia, Prague 1968. 
[39] Lambek J.: Lectures on Rings and Modules. Blaisdell, Waltham, Mass. 1966. 
[40] Lang S.: Algebra. Addison-Wesley, Reading, Mass. 1965. 
[41] MacLane S., Birghoff G.: Algebra. Macmillan, New York 1967. 
[42] MnxejiOBH4 III. X.: Teopua inceji. Bbicuiaa niKOJia, MocKBa 1967. 
[43] Mitter S. K., Foulkes R.: Controllability and pole assignment for discrete-time linear systems 

defined over arbitrary fislds. SIAM J. Control 9 (1971), 1, 1 - 8 . 
[44] Mordell L. J.: Diophantine Equations. Academic Press, London 1969. 
[45] Morse A. S., Wonham W. M.: Decoupling and pole assignment by dynamic compensation. 

SIAM J. Control 8 (1970), 3, 317-337. 
[46] Nekolny J.: Numericka interpolace a nahrada analytickych funkci. Report No. 357, UTIA 

CSAV, Prague 1971. 
[47] Peterka V., Halouskova A.: Tally estimate of Astrom model for stochastic systems. Identi­

fication and Process Parameter Estimation, 2nd Prague IFAC Symposium, 1970. 
[48] Peterka V.: On steady-state minimum variance control strategy. Kybernetika 8 (1972), 3, 

219-232 . 
[49] Rosenbrock H. H.: State Space and Multivariate Theory. Wiley, New York 1970. 
[50] Roth W. E.: The equations AX — YB = C and AX— XB = C in matrices. Proc. Amer. 

Math. Soc. 3(1952), 390-396. 
[51] Sage A. P.: Optimum Systems Control. Prentice-Hall, Englewood Cliffs, N. J. 1968. 
[52] Sain M. K., Massey J. L.: Invertibility of linear time-invariant systems. IEEE Trans. Autom­

atic Control AC-14 (1969), 2, 141 — 149. 
[53] Silverman L. M.: Inversion of multivariable linear systems. IEEE Trans. Automatic Control 

AC-14 (1969), 3, 270-276. 
[54] Silverman L. M., Payne H. J.: Input-output structure of linear systems with application to the 

decoupling problem. SIAM J. Control 9 (1971), 2, 199-233 . 
[55] Strejc V. et al.: Synteza regulacnich obvodu s cislicovym pocitacem. NCSAV, Prague 1965. 
[56] Tou J. T.: Digital and Sampled-data Control Systems. McGraw-Hill, New York 1959. 
[57] van der Waerden B. L.: Moderne Algebra, vol. I. Springer, Berlin 1930. 
[58] Vostry Z.: HyMepniecKHH MeToa cneKTpanbHoii 4>aKTopn3au,HH nojiHHOMOB. Kybernetika 8 

(1972), 4, 323 -332 . 
[59] Vostry Z.: A numerical method of matrix spectral factorization. Kybernetika 8 (1972), 5, 

448-470 . 



[60] Vostrý Z.: Syntéza lineárního diskrétního řízení podle kvadratického kritéria pro soustavy 
s nestejným počtem vstupů a výstupů. C.Sc. Thesis, ÚTIA ČSAV, Prague 1973. 

[61] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable 
systems. IEEE Trans. Automatic Control AC-18 (1973), 3, 220—225. 

[62] Wonham W. M.: On pole assignment in multi-input controllable linear systems. IEEE 
Trans. Automatic Control AC-12 (1967), 6, 660 — 665. 

[63] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable 
systems — A geometric approach. SIAM J. Control 8 (1970), 1, 1 — 18. 

[64] Youla D. C : On the factorization of rational matrices. IRE Trans. Information Theory 
IT-17 (1961), 3, 172-189. 

[65] Zadeh L. A., Desoer C. A.: Linear Systems Theory — The State Space Approach. McGraw-
Hill, New York 1963. 

[66] Zariski O , Samuel P.: Commutative Algebra, vols. I and II. Van Nostrand, Princeton, 
N . J . 1958. 

1. PRELIMINARIES 

1.1. Introduction 

There are two major approaches to the analysis and synthesis of control systems. 
It is the complex-domain approach and the time-domain approach. Either methods 
has its own advantages and objections and its own fields of applications. An attempt 
to compare the two methods has been made in [29, 33]. 

In the former approach [9, 15, 48, 55, 56, 60] we transform the problem into the 
language of functions of a complex variable. This simplifies and visualizes the manipu­
lations but requires a rather advanced mathematical tool (the theory of analytic 
functions, contour integration, the residue theorem, the principle of argument, 
the Z-transform theory, etc.) to lend mathematical respectability to those methods. 
Moreover, we are not able to give a rigorous definition of a system within this frame­
work since we are confined to input-output properties. This usually leads to con­
sidering stable systems only. Further, this theory does not apply to systems defined 
over arbitrary fields and is limited to linear constant systems. From the engineering 
point of view, a great advantage of this method consists in the fact that it requires 
just the available output information to implement the optimal control. However, 
the computations associated with obtaining the optimal control are burdensome and 
not suited for machine processing. 

On the other hand, the latter approach [ l , 8,17,18,19, 23,24,49, 51, 65] introduces 
the idea of state thus making an exact definition of a system possible. It works with 
the notion of state space and profits from the theory of recursive equations in matrix 
form. Finite automata and related systems become a special part of the theory. This 
approach is particularly useful for nonconstant or nonlinear systems. However, 
a control engineer may be disappointed. The state of a system is in general an abstract 
entity and frequently not accessible in a real system. In applications the state must be, 



therefore, recovered by an observer [23] and the overall system becomes unnecessarily 
complex. Another objection involves computational aspects. Though the computa­
tions can easily be algorithmized, the use of matrices leads to superfluous operations 
[25, 26, 27, 28, 29]. 

The new algebraic approach reflects the most recent trend in linear system theory 
[21, 22, 23], To find the optimal control for single-variable systems [30, 31, 32, 33, 
34, 35] we work with the input-output responses viewed as ratios of two abstract 
polynomials. The whole theory is based on polynomial algebra and the synthesis 
procedure reduces to solving linear Diophantine equations in polynomials. This is 
conceptually simple, requires no advanced mathematical background, applies to 
systems defined over an arbitrary field no matter they are stable or unstable, and 
yields effective and unified computational algorithms. The algebraic approach also 
retains the advantage of utilizing only the available output information for control. 
However, the method does not seem to generalize for nonconstant or nonlinear 
systems. 

The input-output response of a multivariable system is a matrix, not a single 
function, and hence it should be viewed as a product of a polynomial matrix and the 
inverse of another polynomial matrix in order that the algebraic approach may be 
applicable. Once this is appropriately done, the multivariable theory becomes a natural 
generalization of the single-variable theory. Even though the generalization is natural, 
it is by no means trivial. Matrix multiplication is not commutative unlike the multi­
plication of polynomials and hence the order in which a signal enters two systems 
in cascade is essential. Another complication stems from the fact that matrices often 
contain some degrees of freedom in their structure and hence the solution is, as 
a rule, not unique. This is a double-edged property. It makes the synthesis procedure 
depend upon somewhat arbitrary choices and, therefore, more complicated and less 
suited for machine processing. On the other hand, it leaves more room for the 
engineer to realize .the optimal system according to additional requirements. 

1.2. Rings and fields 

In [30] we have defined a commutative ring as a basic algebraic structure relevant 
to the description of single-variable systems. To develop an adequate mathematical 
machinery for multivariable systems, we shall need the following more general 
concepts [5, 6, 7, 12, 38, 39, 40, 41, 66]. 

A set (£ in which two laws of composition are given, the first written additively 
and the second multiplicatively, is called a (noncommutative) ring if the following 
axioms hold. 

A0 (closedness): a, b e (£ implies a + b e (£, 
Ax (associativity): a, b, c e (£ implies a + (b + c) = (a + b) + c, 
A2 (commutativity): a, b e (£ implies a + b = b + a, 



A3 (zero element): a e (£, there exists 0 6 (£ such that 0 + a = a, 
A4 (additive inverse): a e (£, there exists — a e (£ such that —a + a = 0, 
M0 (closedness): a, b e (£ implies aZ> e (£, 
M, (associativity): a, b, c e (£ implies a(Z>c) = (a/>) c, 
M2 (identity element): a e (£, there exists 1 e £ such that la = a l = a, 
D (distributivity): a , ( ) , c £ 6 implies a(/> + c) = ab + ac and 

(a + b) c = ac + be. 

We do not exclude the possibility that 0 = 1 . Then for any a e (£ we have a = 
= la = 0a = 0 so that the ring contains just the element 0. 

If an element e e (£ has a multiplicative inverse, i.e. an element e _ 1 e (£ exists 
such that ee"1 = e_ 1e = 1, we call e a unit of (£. 

If every nonzero element of (£ has a multiplicative inverse, if multiplication is 
commutative, and if 0 + 1 we call (£ afield. 

Consider elements a, b e (£. If a = Z?e2, where e2 is a unit of (£, the elements a 
and b are called Ha/ii" associates in © and if a = exb where e% is a unit of (£, the a 
and Z? are called left associates in (£. If a = e3Z>e4, where e3, e4 are units of (£, the a 
and Z? are called simply associates in (£. 

It is seen that a ring is not closed under division. Consider elements a, b e (£, 
6 + 0. We say that b divides a on the left if there exists an element c2 e (£ such that 
a = 6c2 and we say that Z? divides a on the right if there exists an element ct e (£ 
such that 0 = ^ 6 . Finally, we simply say that b divides a and write b | a, if there exist 
elements c3, c4 e (£ such that a = c^c^. The 6 is called respectively a Ze// divisor, 
a r/g/r/ divisor, and a divisor of a. 

An element a e (£ is a divisor of zero if there exists a b e (£, Z? + 0 such that either 
ab = 0 or ba = 0. 

Consider elements a, b e (&. A greatest common left divisor of a and b is element 
d t e © such that 

(a) dj divides both a and Z> on the left, 

(b) Cj e (£, CJL divides both a and b on the left implies that cx divides dx on the left. 

A greatest common right divisor of a and b is an element d2 e (£ such that 

(a) d2 divides both a and b on the right, 
(b) c2 e (£, c2 divides both a and Z? on the right implies that c2 divides d2 on the right. 

Finally, a greatest common divisor of a and b is an element d e (£, denoted by (a, Z>), 
such that 

(a) d | a, d | 6, 
(b) c e (£, c | a, c | b implies c | d. 

It is to be noted that if d is a greatest common (left, right) divisor of a, b e (£ then 
all (left, right) divisors of a and Z> are (right, left) associates of d in (£. 

Consider elements a, b e (£. If all greatest common left divisors of a and Z? are 
units of (£, the a and b are said to be left coprime in (£. If all greatest common right 



divisors of a and b are units of (£, the a and b are said to be right coprime in (£. 
If all greatest common divisors of a and b are units of (£, i.e. when (a, b) = 1 up to 
a unit of (£, the a and ft are said to be coprime in (£. 

A nonzero, nonunit element p e (£ is pn'me in (£ if a | p implies that a is either 
a unit of (£ or an associate of p. 

For example, the set 3 of integers constitute a commutative ring. The units of 3 
are + 1 , the only divisor of zero is 0, and the primes of 3 a r e prime numbers. The 
rationals Q, algebraic numbers 2(, reals % and complex numbers £ all form fields. 
The set 3„ of residue classes of integers modulo an integer n is an example of a finite 
ring. To recall, u, v e 3 belong to the same residue class modulo n if n | u — v, which 
is written as u = v mod n. Each residue class contains exactly one element less than n. 
Hence the 3 n is (as a s e t ) isomophic with the set of integers {0, 1 , . . . , n — l} . The 
units o f 3 n a r e integers coprime with n while the divisors of zero are integers not 
coprime with n. If n = p, a prime integer, the 3 P becomes a (finite) field. 

We shall give further examples of commutative rings. Given a field g, the poly­
nomials 

a = u0 + atz + ... + anz", ak e g , n < oo 

over g in the indeterminate z with the usual definition of addition and multiplication 
constitute a ring g [z ] , s e e [30]. If an 4= 0 the n is the degree of a, denoted as da. 
By convention, 50 = — oo. If a„ = 1 then the a is a monic polynomial. The units 
of 3[z] are polynomials of zero degree (which are viewed as isomorphic with g), the 
only divisor of zero is 0, and the primes of g[z] a r e polynomials irreducible in 5[z] . 

The set g [ z ] a of residue classes of polynomials of g [z ] modulo a polynomial 
a e g[z] is also a ring. To recall, two polynomials u,ve g [z ] belong to the same 
residue class modulo a if a | u — v, which is written as u = v mod a. In each residue 
class there is exactly one polynomial with degree less than da. Hence the 5[ z ]„ is 
(as a set) isomorphic with the set of all polynomials of g[z] with degree less than da. 
The units of g [z ] a are polynomials coprime with a, while the divisors of zero are 
polynomials not coprime with a. If a = p, a polynomial prime in 3f[z], the 5 [ z ] p 

is a field. 
It is well-known that the field Q of rationals is the quotient field of the ring 3 

of integers, i.e. the set of all ratios qjp, where q e 3 , P ~ 3 — {0}- Similarly, denote 
gf(z_1) the quotient field of g[z].Tt is called the field of rational functions over g 
and its elements have the form 

a - - - . « e g [ 2 ] , p e 5 [ z ] - { 0 } 
P 

or 
a = <x„z""" + a„+ 1z~ ("+ 1 ) + ..., a t e g , ne3, 

which is obtained by formal long division qjp into ascending powers of z - 1 . If 
a„ + 0 the n is the order of a, denoted as (Qa. In fact, <Sa = dp — dq. 



Now consider the set of rational functions over ft with nonnegative order. They 
form a ring denoted by ft{z-1} with elements of the form 

(1.1) « = - , dq g dp 

(1.2) a = a0 + axz
 x + a2z

 2 + ..., ak e ft . 

The ftlz"1} is sometimes called the ring of realizable rational functions. The units 
of ft{z-1} are elements of order 0, the only divisor of zero is 0, and the only prime 
of ft{z-1} is z"1. All elements of ft{z-1} having the same order are associates. 

Further consider a subset of ft{z~x} consisting of elements (1.2) such that the 
sequence {a0, a., a2, ...} converges to zero. They constitute a ring of stable realizable 
rational functions, which will be denoted as ft + { z - 1 } . 

This motivates the following fundamental definition. A polynomial a e ft[z] 
is said to be stable if l/a e ft+{z-1}. Then we can characterize the units of ft+{z-1} 
as elements ( l . l ) for which 0a = 0 and q is stable. 

Of course, ft[z] is a subring of ft + {z""1} and ft+{z-1} is a subring of ft{z-1} 
which, in turn, is contained in the field ft(z_1). 

1.3. Matrix polynomials and rational functions 

Given a field ft, the set ftm,„, of m x m matrices over ft is an example of a non-
commutative ring if m > 1. For m = 1 the ft1;1 is viewed as isomorphic with ft. 
The identity and zero elements of the ring ft„,,m are respectively the identity matrix 
Im and the zero matrix 0m. A matrix A is a unit of ft,„,„, if det A + 0 (such an A is said 
to be nonsingular) and it is a divisor of zero in ftmm if det A = 0 (such an A is called 
singular). On the other hand, the set ft,,m of / x m matrices over ft is not a ring since 
the product of two / x m matrices is not defined whenever / + m and hence axiom 
M0 is not satisfied. 

Given a field ft, consider the set ft;,m[z] of / x m matrices over the ring ft[z]. 
These polynomial matrices are not a ring, either, unless / = m. The identity and zero 
elements of the ring ftm,m[z] are the Im and 0„„ respectively. A matrix A e ftm,m[z] 
is a unit of ftm,m[z] i f and o n l y i f d e t A i s a U l l i t o f &[z]> i-e- i f d e t Ae%,det A + 0. 
On the other hand, the A is a divisor of zero in ftm,m[z] if and only if det A is a divisor 
of zero in ft[z], i.e. if det A = 0. 

A polynomial matrix A e fti,,„[z] m a y a l s 0 b e viewed as a polynomial 

A = A0 + Axz + ... + A„z", A,-eft.,m, n < co 

10 



o v e r 5/,,„ in the indeterminate z, called a matrix polynomial. For example, 

A = 1 - z 

0 

0 = 11 0 
0 1 
0 0 

Г-i o" z + "0 -0] 
1 0 0 - 1 
0 0 0 1J 

If A„ 4= 0 the n is the degree of A, denoted as 3A. We define d0 = — oo. If I = m 
and det An + 0, then the A is said to be a regular matrix polynomial. Observe the 
following property: if A, Be $mim[z~], then 3AB <, 3A + 3B the equality holding 
if and only if A and/or B is a regular matrix polynomial. 

We can say that a matrix polynomial is the same thing as a polynomial matrix. This 
interpretation of polynomial matrices makes it obvious that essentially the same math­
ematical machinery is being used for both multivariable and single-variable systems. 

Even though the ?f/,mH i s n o t a ring, many concepts can be defined similarly. 
Consider matrices A, B e g ( , m [z]. If A = BE2 where E2 is a unit of 5 m , m [z], the A 
and B are called right associates and if A = EtB, where El is a unit of 5/,([z], the A 
and B are called left associates. If A = E3BE4, where E3 is a unit of 5 J , J [ Z ] and 
E4 is a unit of 5m m H > t n e ^ a n a - B a re called simply associates. 

If A e g ( , m [z], E e 8f,JV], B + 0 we say that B divides A on the left if there 
exists a matrix C2 e 8\,,m[z] such that A = BC2. If A e 3f.,M[z], £ e 5„,m[z], B * ° 
we say that J? divides A on the right if there exists a matrix Ct e 5 / , pH such that 
A = CXE. If A 6 g / . m H B e 5p,«H> E * 0 we say that B divides A, and write 
fi | A, if there exist matrices C3 e g (>p[z] and C4 6 3\,,m[z] such that A = C3BC4. 

Given matrices A e 5<,,„H> 5 e 5/,?[
z]> o, greatest common left divisor of A and B 

is a matrix Dj e g M [ z ] such that 

(a) £>! divides both A and E on the left, 
(b) Ci e 8fj,iH» ei divides both A and B on the left implies that Cl divides Dl 

on the left. 

Given matrices A'e g,m[z]> I* e 5/>,m[z]> a greatest common right divisor of A 
and £ is a matrix D2 6 t$fm>m[z] s u c n that 

(a) D2 divides both A and £ on the right, 
(b) C2 e 5m,mH» ^2 divides both A and £ on the right implies that C, divides 

D2 on the right. 

Given matrices A, Be g m m [ z ] , a greatest common divisor of A and B is a matrix 

D e gm>m[z]> denoted by (A, B), such that 

(a) Z>|A ,Z>|B, 

(b) C e g,„,m[z], C | A, C\B implies C | £>. 

If all greatest common left divisors of A e 5/,,„[z] and B e 3f/,<j[z] a r e u n i t s of 
5/,/[z], the A and B are said to be left coprime. If all greatest common right 
divisors of A e 5/,m[z] and B e 3v,m[z] are units of 3fm,m[z]> the A and B are said 
to be right coprime. If, finally, all greatest common divisors of A, B e 5m.m[z] a r e 

units of j5m,m[z], the A and B are said to be coprime. 
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For convenience, given a polynomial b e 5 [z ] and a matrix A e 5;,m[z] w i t n 

elements au e 3 [z ] , we define b | A if and only if b | axj, i = 1, 2, ..., / and j = 
= 1,2 m. Also(fc,A) = (Z>, (an,a12, ..., aZm)). 

In [30] we have applied the well-known division algorithm in S[z] , viz. given 
a, be 5 [z ] , polynomials q, r exist in g[z] such that 

a = bq + r 

and they are uniquely determined by dr < db. In a like manner, given matrices 
A e 5;,m[z] and B e 5i,i[z], B regular, we can perform the left division algorithm 

A = BQ, + Rx , 

where matrices Qu Rt e 5i,m[z] a r e uniquely determined by BR, < dB. Similarly, 
given matrices A e 5;,m[z] a n d B e g m m [ z ] , B regular, we can perform the right 
division algorithm 

A = Q2B + R2, 

where matrices Q2, I*2 e 5(,m[z] a r e uniquely determined by <3R2 < dB. See [12] for 
proofs and further details. 

Unfortunately, the euclidean algorithm is not defined over 5/,m[z] s i n c e repeated 
left or right division may not be executable (the divisor may not be regular) [4]. 

The structure of polynomial matrices is given by the classical invariant-factor 
theorem [12]. An arbitrary matrix A e 5,,ra[z] is associated with a matrix 

diag{fl„fl2, ..., a.,0. ...,0}eg,,J>] 

all of whose elements are zero except those on the main diagonal, which are au 

a2, ..., aT, possibly followed by zeros. 
The at, a2, ...,ar belong to g[z] and ak \ak+u k = 1, 2, ..., r - 1. They are 

uniquely determined by A to within units of g [z ] and are called the invariant poly­
nomials of A. The integer ?• is the rank of A. 

The ak may be computed directly as 

o t - - - - - - , k=l,2, ..., r 

where 

d0 = 1 by convention, 

dk = greatest common divisor of all k x k minors of A. 

The representation 

(1.3) A = £ 1 d iag{a 1 , a2, ..., ar,0, ...,0} E2 

is called the canonical representation of A. Not only are the units £ t e g, ,[z] and 
I^2 e 5m,m[z] n o t unique, but they may be of arbitrarily high degree. 
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Example: 

ptnrar? 
The largest monic invariant polynomial ar of A is called the minimal polynomial 

of A and is denoted by mpA. 
It is instructive to describe an algorithm for obtaining representation (3). The 

algorithm is based on the elementary matrix transformations [12] of the following 
three types. 
(a) Multiplying the j'th row (jth column) by a unit e of $[2]- It is effected by premul-

tiplying A by the (diagonal) matrix 

(postmultiplying A by the matrix 

"1 

.jth row). 

(b) Interchanging the ith and jth rows (columns). This is effected by premultiplying 
(postmultiplying) A by the matrix 

(c) Adding the ith row (column) multiplied by a polynomial q e g[z] to the jth 
row (column). This is effected by premultiplying A by the matrix 
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(postmultiplying A by the matrix 

. . / t h ГOW 

. Jth row). 

Denoting the ith row jth column element of A as aiS, the canonical representation 

of A is obtained as follows. Among all nonzero elements of A take the one having 

least degree and make it a u by reordering the rows and columns of A. Carry out the 

divisions 
an = <?uaii + '";t . 8ril<da11, i — 2, 3, . . . , / , 

and 

« u = aula + rtJ, drlj<da11, j = 2, 3, . . . , m . 

If at least one of the r n ' s or r u ' s , say the rlk, is nonzero add the first column 

multiplied by — qlk to the feth column in order to replace the alk by the element rlk 

with smaller degree. Now we can again reduce the upper left-hand corner element by 

locating there an element of A with least degree. 

If all the r u ' s and r u ' s are zero we add the first row multiplied by — qn to the ith 

row, i = 1,2, ..., /, and the first column multiplied by — qXi to the jth column, 

j = 1,2, ..., m, to bring A on the form 

(1.4) 0 0 

0 a\ 

Should not some a\V be divisible by alt we add the respective column to the first 

column and again we can start reducing the degree of alt. 
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After a finite number of steps we shall obtain the matrix 

a, 0 . . . 0 
0 a2

2
2> . . . a(

2
2
m> 

0 a(2) . . . a\2J 

in which ax divides all the remaining elements. If at least one a(2> is nonzero, we can 
repeat the whole process for the rows i = 2,3, ...,l and the columns j = 2,3, ..., m 
to bring A on the form 

"a! 0 0 . . . 0 
0 a2 0 . . . 0 
0 0 a(

3
33> . . . a\ 

0 0 a\V . . . fl. 

where ax divides a2 and a2 divides all the remaining elements. Continuing the process 
we shall finally arrive at the matrix 

diag{a l 5 a2, ..., ar, 0, ..., 0} . 

Using (a) we can scale the coefficients of the invariant polynomials and make them 
monic. 

Representing each step of the algorithm by the corresponding elementary matrix 
we get 

E,AEr = diag{ax, ..., ar, 0, ..., 0} , 

where E, is the product of all left elementary transformations and Er is the product 
of all right elementary transformations. As determinants of the elementary matrices 
are units of S[z] , the same is true of E, and Er. Consequently, Et = E,_1 and 
E2 = E;1. 

Example 1.1. Compute a canonical representa'ion for the matrix 

A = -Z + Z3 0 
1 - z 3 1 - 2 

- Z 2 + Z3 + Z5 z + Z* 

over the field SR. 
First ws put 1 — z2 to the upper left-hand corner by means of the elementary matrices 

E(I> = "0 1 o" 
1 0 0 
0 0 1 

• £ ; !>t;] 
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1 - z 2 1 - z 3 

0 -z + zъ 

z + z 4 - z 2 + zъ + z5 

Since 

we obtain 

by applying 

+ z 4 = ( - l - z 2 ) ( l - z 2 ) + 1 + z , 

1 - z 2 1 - z 
0 -z + z 
1 + z 1 

£3> = 1 0 o" 
0 1 0 

1 + z2 0 1 

Now we make 1 into the upper left-hand corner element by using 

£<4> = "o o Г 
0 1 0 
1 0 0 

"-[Ï.T 
Thus we get 

Since 

1 1 + Z 
-z + zъ 0 

1 - z 3 1 - z2 

- z + z 3 = ( - - + z 3 ) l + 0 , 

1 - z 3 = (1 - z 3) 1 + 0 , 

1 + z = (1 + z) 1 + 0 , 

the transformations 

E<6> = 

will bring A on the form 

1 0 0" 
z — Z 3 1 0 

- 1 + Z 3 0 1 

f , t "Г] 
o i 

0 z + z^ - z^ - z^ 

0 - z - z 2 + z 3 + z4 

As 1 divides the other elements, we can start operating exclusively on them. We have 

-z - z2 + z3 + z 4 = ( - l ) ( z + z 2 - z 3 - z 4) + 0 
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yields the final form 

£<8 ) = 1 0 0 
0 1 0 
0 1 1 

1 0 
0 z + z 2 _ z 3 _ z 4 

0 0 

fl! = 1 , 

a2 = z + z2 - z3 - z4 . 
Therefore, 

£ , = £<8 )£< б )£<4 )£<3 )£<1 ) = 

£ r = £<2 )£<5 )£<7 ) = ГО 

0 1 + z2 

1 z - z 5 

1 
z - z 3 

1 z - z 2 + z3 - 1 + z 

C - î -J 
and, in turn, 

£. = Er1 = - z + z3 1 0 
1 - z3 - 1 1 

- z 2 + z3 + z5 1 + z2 - 1 - z2 

£, = E:1 = 

Example 1.2. Given 

• - C + , . J 

L.":+J A = гi -

over the field Q, find a canonical representation. 

We are already given A in the form (1.4) but 1 — z does not divide 1 + z. Therefore, we add 
the second column to the first one using 

£<x) = n o" 

Since 

[l + z 1 + zj 

1 + z = ( - ! ) ( ! - z) + 2, 
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on applying 

Now 

yields 

and, since 

ГU 
EÍ"=П 
E<3) = ГO 11 

LюJ 

1 - 2 = (ł - łz) 2 + 0, 

1 + z = 2(ł + łz) + 0, 

ES4) = [ 1 01, £^5) = ri - i - i -
L-i + ^ 

will successively bring A on the form 

[-4+Л T П 

Lo - ł + ł*2J 
Using 

E<6) = f i 0 

we can scale the leading coefficients of the invariant polynomials to unity. Therefore, 

a, = z 2 - 1 
аnd 

It follows that 
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£, = EІ4)EÍ3)E[2) = Г l 1 1 , 
Lł + łz - ł + łzj 

Er = E^EľЩV = Гł - 1 - z l . 

£i = [ ł - ł - П , 

Lł + łz - i j 



E, = П -

lгi+>] 
In view of the invariant factor theorem a matrix A e g,„,„,[z] is a unit of g m m [ z ] 

if and only if all invariant polynomials of A are units of 5[z] , and the A is a divisor 

of zero in t5m,m[z] if a n d o n l y if van^- A < m. 

Further matrices A, Be t5;,,„[z] a r e associates if and only if the invariant poly­

nomials ak of A and bk of B are associates in t5[z]> k = 1,2,... . Otherwise speaking, 

ak = bk, k — 1,2,... modulo units of 5 [z] . 

Given matrices A e 5i,,„[z] and B e t5^,9[z], we have B | A if and only if bk \ ak, 

k = 1,2,... where ak and bk are invariant polynomials of A and B respectively [22]. 

A matrix Dx e t5f;,;[z] is a greatest common left divisor of A e ^itm\2\ and B e 

6 t5;,g[
z] if and only if the matrices 

[A 5 ] and [D1 0] 

are right associates; a matrix D2 e t5m,m[z] is a greatest common right divisor of 

A e t5;,,„[z] and B e g P , m [ z ] if and only if the matrices 

й шd [őä] 
are left associates. A matrix D e t5m,m[z] is a greatest common divisor of A, Be 
e t$f„,,m[z] if and only if the matrices 

diag {(at, bx), (a2, b2), ..., (am, bm)} and D 
are associates. 

If follows that matrices A e g,,,„[z] and B e gj,9[z] are left coprime if and only if 
the matrices 

[A B~] and [Jz 0] 

are associates, matrices A e ty;,,„[z] and B e t5P,m[z] a r e "ght coprime if and only if 
the matrices 

ГA"| and ГJ„ 

ЬJ Lo 
are associates, and matrices A, B e t5„,,m[z] are coprime if and only if ak and bk are 

coprime in 5 [ z ] . 

At last, given a polynomial b e g[z] and a matrix A e t5;,,„[z], we have b | A if 

and only if b | at. It follows that (b, A) = (fc, at). 

Given a field g, we can also consider the set 5 / , m ( z l ) of / x m matrices over 

g ( z - 1 ) . They are called rational matrices and they can be written in the form 

> - - = - • Q 6 5;,m[ z] , P e 3f[z] - {0} 
p 
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or in the form 

A = A„z-"+ A„+1z-(n + 1> + . . . , A,e~fI>m, ne3. 

If An 4= 0 then n is called the order of A, denoted as 6A. In fact, (9A = dp - dQ. 
The ~f(>m(z- x) is not a field and it is not even a ring unless / = m. A matrix A is a unit 
of the ring ~fm>m(z~J) if a n d only if det A + 0 and it is a divisor of zero in ~fm>m(z~X) 
if and only if det A = 0. 

The set of / x m matrices over ~f{z_1} will be denoted by ~f(>m{z-1} and its 
elements can be written in the form 

A = ^ , dQ % dp 
P 

or in the form 

A = A0 + Axz
-1 + A2z

-2 + . . . , Ak e ~f(>m . 

The ~fi>m{z-1} is sometimes called the set of realizable rational matrices and it is 
not a ring unless / = m. A matrix 

A=A0 + AlZ
-1 + ...e5m,m{z~1} 

is a unit in ~fm>m{z_1} if and only if A0 is a unit in g;m>m. 

Similarly ~f+
m{z-1} denotes the set of / x m matrices over ~f+{z - 1}, called stable 

realizable rational matrices. They can again be written in the form 

A = - , dQ ^ dp, p stable . 
P 

The ~f(
+

m{z-1} is not a ring unless / = m. An element 

A= ^ = A0 + A1z
-1 + . . . e g +

m { z - 1 } 
P 

is a unit in ~fm>m{z-1} if and only if A0 is a unit in ~;m>m and det Q is a stable poly­
nomial. 

Of course, ~fm>m[z] is a subring of ~fm>m{z-1} and ~fm>m{z-1} is a subring of 
~fmm{z -1} which, in turn, is a subring of ~fm>m(z_1). 

It is to be emphasized that we regard a polynomial or rational matrix as an 
algebraic object, not as a function of a complex variable z or z - 1 . They are simply 
an alternate way of viewing finite or infinite sequences in ~f(/m, the indeterminate z 
or z - 1 being just a position-marker. 
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1.4. Matrix linear Diophantine Equations 

Consider the equation 

(1.5) AX + YB = C, 

where A e 5;,P[Z]> B e 5\,,m[z], c e 5;,m[z] a r e given matrices and X e 5P,m[z]> 

Ye $/,,[z] a r e unknown matrices. By analogy with a similar equation in integers 

[13, 42, 44] or polynomials [30, 35] we shall call (1.5) a matrix linear Diophantine 

equation. 

Any pair X, Y satisfying (1.5) will be called a solution. It is not a simple task to 

obtain a solution of (1.5), in general. The approach presented here is based on 

elementary transformations [50], thereby converting equation (1.5) to a set of 

linear Diophantine equations over g [z ] . ' 

Theorem 1.1. Equation (1.5) has a solution if and only if the matrices 

(1.6) VA CI and VA 01 

[0 B\ LO B\ 

are associates in 8 ; + g , P + m [ z ] -

Proof. Necessity: If X, Yis a solution of (1.5), we have 

VA C I = VA AX + YB1 = p . Y1 TA 01 Vlp XI. 

Lo B\ LO B \ Lo IJ Lo B\ LO im\ 
Since 

det [7; Yl = 1, det Vlp X~\ = 1 , 

Б'3-1' T З 
matrices (1.6) are associates in 3i+«,p + m[z]-

Sufficiency: Assuming that matrices (1.6) are associates we are to prove the 

existence of a solution for (1.5). 

Let 

(1.7) A = E1A diag {a., a2,..., a„ 0,..., 0} E2A , 

B = E1B diag {bu b2, ..., b„ 0, ..., 0} E2B 

be the canonical representations. Then equation (1.5) is equivalent to the equation 

(1.8) diag {a., ..., ar, 0, ...,0}X + Ydiag {bu ..., bs, 0,..., 0} = C, 

where 

0-9) X = E;A

lXE2B, Y=E1AYE1B

i, 

C = E1ACE2B, 
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and also denote 

r A 01 = fE1A 0 1 M VE2A 0 1 , 

Lo B \ LO EÍB\ LO E2B\ 

A Cl = VElÁ 0 1 N VE2A 0 1 , 

o B \ LO EÍB\ LO E2B\ 
where 

M = rdiag{a„ .... ar, 0, ..., 0} 0 
L 0 diag{&1,...,fes,0,...,0}. 

JV= rdiag{fl1,...,a„0,...,0} C 1 . 
L 0 diag{bj,..., &s,0, ...,0}J 

The M and N are associates by hypothesis. 

Denote c ;, the elements of C. In view of equation (1.8) we are to prove that 
elements xtJ of X and ytJ of Y exist in $r[z] and satisfy the equations 

(110) a.Xy + ytJbj = c ;, 

for i = 1,2,..., r and j = 1, 2, ..., s; the equations 

(1.11) atxu = c ;, 

for .' = 1,2, ..., r a n d j = s + 1, ..., m; the equations 

(1.12) ?tJbj = Cy 

for i = r + 1, ..., I and j = 1, 2, ..., s; and that the remaining elements c ;, for i = 
= r + 1, ..., / and j" = s + 1, . . . , m are identically zero. 

To prove the existence of x;, and ytJ in (1.10) we shall show that (a;, b,) | c,,. 
Indeed, let w be any polynomial prime in 5 [ z ] which is common to ar and bs. Then 
the invariant polynomials of A and B are 

a, = w/'a';, 0 ^ / t = / 2 % ... g L , 

bj~w»ib'j, 0 = g, ^ a 2 = ••• ^ o s , 

respectively, where a';, fcj- e g [z ] are coprime with w. Consequently the invariant 
polynomials of M (of N) are 

m t = w
H"m'k , 0 = h, S h2 ^ ... g h,+s, 

where hk's is a permutation of the exponents/; and g, in nondescending order, and 
where m'k e 5 [ z ] ' s coprime with w. 
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Further let dk stand for a greatest common divisor of all k X k minors of M (and 
i+j-i 

of N). Then di+J_1 = FJ whkm'k. It contains the factor wfi of a ; or the factor w9j 

k = i 

of &,• for in forming the sequence {h„ h2, ..., hi+j_,} either a l l / 1 , j 2 , ••-,fi or all 
gu g2, ..., gj must be taken in order to get its i + j — 1 terms. On the other hand, 
both wfi and w9j cannot be factors of d;+;-i for both j ; and gj cannot occur in the 
sequence {h,, h2, ..., h;+J-_1} which has only i + j — 1 terms. Hence hu, the lesser 
of L and gj, is in the sequence and di + j_, must contain whiJ. 

Now let M° and N° be the matrices obtained from M and JV respectively by deleting 
their (th and (/ + j)th rows and ith and (p + j)th columns, and let d° be their greatest 
common divisor of all minors of order k. Note that d°i + j_2 will not contain wh'J 

because the rows and columns containing a ; and bj were deleted in forming M° 
and N° but it will contain as factors all the remaining powers of w that occur in di+;_ v 

Now cijd°i+j_2 is a minor of order i + j — 1 of N and as a consequence it is a mul-
i+j-i 

tiple of j~J whk, a factor of di + j_,. Therefore c,7 must be a multiple of whiJ, the 
k = i 

highest power of w which is common to a ; and bj. Since w is any polynomial prime 
in 5 [ z ] a n d common to ar and bs, it follows that (a;, bj) I c,7. 

To prove the existence of x,7 in (1.11) we shall show that a, | c,7. Indeed, dr+s = 
= EI ak EI bt m u s t divide c,7 J~J ak Yl ak Yl b„ a minor of order r + s of JV. It 

k=l ( = 1 k=l k=i+l r = l 

follows that ai | cy . 
To prove the existence of ytj in (1.12) we shall show that b} I c,7. Indeed, dr+s = 

r s r j - l s 

= J7 afc LI bt m u s t divide c,7 f j a4 f j i , ]1 b„ another minor of order r + s of N. 
k=l 1=1 k=l 1=1 ( = j + l 

It follows that bj \ ctJ. 
Finally, if anyc,7, i = r + I, ..., 1 and j = s + 1, ..., m were not identically zero, 

N would have the nonzero minor c,7 J\ ak f ] bt of order r + s + 1, which is impos-
k=i i = i 

sible. Hence these cu are zero and the remaining elements xu and yu, which are not 
coupled by equation (1.8), may be chosen arbitrarily within g[z]-

The existence of a solution X, Yto (1.5) has been proved. • 
As a consequence of Theorem 1.1, a particular solution of equation (1.5) reads 

(i.i3) x0 = EIX rx0jl] X0,12"| E2B e 5P,m[z] , 
Lo o J 

Yo = EiA [Yo.ii 01 Er/e&Jz], 

L^o,2i o j 

where the elements 5c0,,7 o f l 0 , n e 5 r , s[
z] a " d the elements y04j of F0 ,n e &, s[z] 

are particular solutions of (1.10), the elements x0 , ; j of X0,12 e «5r,,„-s[z] are particular 
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solutions of (1.11), and the elements y0,ij of Yo,21 6 5._ r,s[z] are particular solutions 
of (1.12). 

An effective method of finding x0JJ and yoij is presented in [30]. 

Theorem 1.2. IfX0, Y0 is a particular solution of equation (1.5) then all solutions 

are of the form 

(1.14) 

where 

X = X0 + E^TE2B, 

Y = Yo — EÍASE1B , 

T = гTц o - ] , s = г s i : S12"|. 
lт2í T22J Lo s 2 2 J 

The elements of T1X e g r , s[z] are f./[&//(a., &,)] and (he elements of S u e 3fr,s[z] 
are [a,-/(a;, by)] f,., where f,_. is an arbitrary polynomial of 3f[z]. The matrices 
T21 e _J,- r fJ>], T22 £ Ofp-r,m_s[z] and S1 2 e g r , ,_ . [z] , S 2 2 €g ,_ r , , _ s [ z ] are ar­
bitrary polynomial matrices. 

Proof. Equation (1.5) can be converted into the set of equations (1.10), ( l .U) and 
(1.12). The general solutions of (1.10) read 

h 
xiJ = X0,ij + hj 

(a.Ьj) 

yij - yo.u - -, r^ xu > 
(at, bj) 

where ttj are arbitrary elements of $ [ z ] , the general solutions of (1.11) read 

xij — x0,i. 

and the general solutions of (1.12) become 

y>j = y0,ij = - 1 • 

The remaining elements xu and yi}, if any, can be chosen arbitrarily within 5 [ z ] . 

Hence our claim follows by virtue of (1.9). • 

To illustrate how the above theorems work we compute several examples. 

Example 1.3. Consider equation (1.5) over the field SR, where 

A = 1 0 1 
0 z - 1 0 

1 0 1 

B = [0 z - 1 ] , C = "1 0 
0 z -- 1 
1 z -- 1 
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The canonical representations of A and B are 

A = [ Ì 0 0" 
0 1 0 

|_1 0 1 

1 0 0 "1 0 l"| 
0 z -- 1 0 0 1 0 
0 0 0 0 0 1 

r = 2 , 

B = [z - 1 0] Г0 П , 

CІJ 
s = 1 . 

X = 1 0 - 1 
0 1 0 
0 0 1 

X 

Cìł Y = г l 0 o" 
0 1 0 

L l 0 1 

= 1, 

to obtain the set of equations 

(1.15) -!__ + ytl(z - 1) - 0 , 

(z - 1) x2l + ?2_(z - 1) = z - 1 , (z - 1) 5c22 = 0 . 

? 3 1 (z - 1) = z - 1 , 

It is seen that equations (1.15) are solvable, which is equivalent to saying that matrices (1.6) 
are associates, and hence our equation has a solution. 

By solving (1.15) we obtain 

X = 0 + ( z - l ) ř n 1 
1 + ř 2 1 0 

Ui u 

Y = Гo-- tll" 

0 - - "21 

l_l 
where /__, /2 1 e 3t[z] are arbitrary polynomials generating the general solutions of (1.15) and 
t31, t32 e Sft[z] are arbitrary polynomials which do not appear in (1.15). 

Hence 

by (1.13) and since 

т = 

X0 
1 0 
0 1 
0 0 

^0 = 0 

0 
1 

(--- l ) ř u 0 i , s = " t l 

"21 0 t2 

tзi t32 0 

we end up with the general solution 

X = ~i o" + 
0 1 
0 0 

- t з 
0 
U 

( z - l ) ř n - ř з i 

t21 
Ux 
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"o" - tu 
0 t21 

1 tu 

Y = 

Jn synthesizing the optimal systems we shall frequently encounter a special case of 
equation (1.5), viz. 

(1.16) AX + Yb = C , 

where i e g , , p [ z ] , be%[z], C e j y u [ z ] and I e J ? P ! , [ 4 Ye3-U[z]. That is 
m = q — 1. We write 

A = Ef diag {au ..., ar, 0, ..., 0} E2 . 

Then equation (1.16) is equivalent to the equation 

diag {au ..., ar,0,..., 0} X + Yb = C , 

where 

Z = EJ1X, Y=E!Y, C = E2C, 

and which, in turn, yields the set of polynomial equations 

(1.17) fl;x; + j;fo = c ; , i = 1,2, ..., r , 

and 

(1.18) y;b = c f , i = r + I , . . . , / . 

A particular solution X0, Y0 of (1.16) is then obtained as 

X0 = E2 

Yo =E 

where the elements x0 j i of X0>1 e 3 r , i [z] a n d the elements y0_; of Y0>1 e 3 r , i [z] are 
particular solutions of (1.17), and the elements y0j of Y0 2 G 3 . - r , i [z ] are particular 
solutions of (1.18). 

The general solution of (1.16) then reads 

(1.19) X =X0 + D-'Tb, 

Y = Y0 - AD'lT, 
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where 

(1.20) D = diag {(au b), ..., (ar, b), (0, b),..., (0, b)} E2 e g p > p[z] 

and Tis an arbitrary matrix of 5 P , i [ z ]-

In applications we often seek for a particular solution X°, Y° of (1A6) such that 

the degree of one matrix polynomial, say Y°, is minimal. 

Unfortunately, no general algorithm to solve for X°, Y° is available at present. If, 

however, the AD-1 is a regular matrix polynomial, we can use the left division 

algorith. Write 

Y= Y0 - AD_1T, 

Y0 = AD~lQ0 + R0 , dR0 < dAD-1 . 

Then 

and evidently, 

Y = R0 + AD~\Q0 - T) 

Y° = R0, X^Xo + D-^Qob 

is uniquely determined on setting T = Q0. The solution is not unique is general, 

however. 

Sometimes the solution X°, Y° satisfying dY° < dA is useful. The two solutions 

are identical whenever D is a unit of <5P l P[z]-

Example 1.4. We are to solve equation (1.16), where 

A = Tz2 z z 2"l, b = [1] , C = 

[ Г : П [::n 
are matrices over 9t[z], for a solution X°, Y° such that 8Y° — min. 

The canonical representation of A is 

A = ("z - l i p 0 01 
Li Oj Lo z(z - 1) Oj 

1 1 1 

0 1 0 

0 0 1 

and since matrices (1.6) are associates our equation has a solution. Setting 

X = Ì - 1 -1 

0 1 0 
0 0 1 

x , Y = G T 
we are to solve equations 

(1.21) z xt + ўi = z + 1 , 

z(z - 1) x2 + ӯ2 = 1 
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obtaining 

X = í + h 
0 + ł2 

u 

Y = П + Ztt ] . 
Ll+z(z- l ) íJ 

Here tlt t2 £ 9R[z] are arbitrary polynomials generating the general solutions of (1.21) and t3 e 

6 5R[z] is arbitrary due to its absence in (1.21). 

Further 

D = " 1 0 0 "1 1 1 = "1 1 Г 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

and, therefore, the general solution reads 

X = Ì - 1 - 1 " Һ 
0 1 0 U 
0 0 1 Һ 

Y = Гz - n -Mlfíf] 1 - l " tl 
1 0 t2 

0 1 tз 

on using (1.19). 

The solution X°, Y° satisfying 8Y° = min (and also 8Y° < 8A) is obtained by an appropri­
ate choice of tt and t2. It is seen that any tt = t2 = r 0 e JR will yield 8Y° = 1 regardless of t3 

and no other choice will give Y° of less degree. Therefore 

x° = 1 - t з 

*o 

y ° - г - i + (i-тo) [ГЛг)г] 
Note that this solution is not unique and that it cannot be obtain via the left division algorithm. 

As far as the linear Diophantine equation 

(1.22) ax + by = c 

over 3f[z] is concerned, it may be thought a special case of (1.5) for / = m = p — 

— q a- 1. Then the solvability condition of Theorem 1.1 reduces to the condition 

(a, b) | c, derived in [30]. Indeed, in this case 

M = [a 01, N = fa cl 
[o b\ [o b\ 

and the greatest common divisors d™ and d™ of all k x k minors of M and JV respec­

tively are 
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dlA = l, dN

0 = l, 

df = (a,b), d» = ((a,b),c), 

df = ab, d^ = ab. 

The d™ and d™, k = 1,2 are associates if and only if (a, b) = ((a, b), c) i.e. when 

(a, b) | c. 

Also the general solution of (1.22) can be obtained, for instance, via (1.19). In this 

case D = (a, b) and (1.19) becomes 

b 

(a,b) 

a 
y = yQ - — — (. 

(a,b) 

If the matrices appearing in (1.5) are not matrices over g[z] but, more generally, 

over 5 { z _ 1 } or g + { z _ 1 } , all results remain valid with gf[z] replaced by 3 { z - 1 } 

or g + { z - 1 } . Consider, for instance, the following example. 

Example 1.5. Find the general solution of equation (1.22) where 

a = l-0-5z~1, b = z'1 - 0-5z-2 , c = l 

are elements of g + { z - 1 } . 
First of all (a, b) = 1 — 0-5z - 1 which is a unit of g + { z - 1 } and as such it divides c. As a result, 

our equation has a solution. 

A particular solution is evidently 

1 

1 - 0-5z" 

y0 = 0 

and, therefore, the general solution becomes 

1 

1 - 0-5z~ 

>- = -t 

+ z~Ч, 

for arbitrary t e $ + {z 1}. 

2. SYSTEMS 

2.1. System Description 

For a rigorous treatment of optimal control problems we cannot do with the intui­

tive engineering notion of a system. We shall give an axiomatic definition of the class 
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of systems to be dealt with in the paper. It is understood that in this way we define 
a mathematical model of a physical system and, therefore, the optimal control theory 
deals with such models rather than with the actual physical systems [19; 23]. 

Following [22; 23; 30], let 

y = time set = 3 = (ordered) set of integers, 
"U = input values = gm = vector space of m-tuples over a field 5 , 
<& = output values = g', 
y = state space = 5". 

Then a. finite dimensional, discrete, constant, linear, m-input, l-output system y 
over afield 5 is a quadruple {A, B, C, D} of linear maps 

A:3F-+SF, 

B : <% -> X, 

c-.y -+<w, 

D:W -><2/ . 

The n is dimension of y. 

We think of the quadruple {A, B, C, D} as defining the dynamical equations 

x4 + i = Axk + B u k , 

yk = Cxk + D u k , 

where fce3,xef,uef,andy6f. 

We shall usually not make a distinction between A, B, C, and D as linear maps or 
as matrices representing these maps with respect to a given basis. 

The definition covers a fairly large class of systems. In particular, if 5 = 9t we have 
a real sampled-data or intrinsically discrete linear system. If $ = 3P

 o r a n algebraic 
extension of 3P>

 w e have a linear finite automaton. If I = m = 1 we have a single-
input single-output system. 

The above definition gives the internal description of y, it is not confined to the 
external behavior of the system. 

The matrix 

(2.1) , s = C(zl„ - A ) - 1 B + D e gfj.Jz"1} 

is called the impulse response matrix of y. It reflects just the input-output properties 
of the system. 

Conversely, any quadruple {A, B, C, D} satisfying (2.1) is called a realization 
of s. Apparently, there are many realizations of s. A realization {A, B, C, D} is 
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said to be completely reachable and completely observable, or equivalently, to be 
a minimal realization of s, if 

(2.2) rank [BAB . . . An _ 1B] = n, 

rank C 
CA 

CA" 

The minimal realization has least dimension among all realizations of s and it is 
unique up to a coordinatization of its state space, see [20; 23]. We recall that there is 
a one-to-one correspondence between s and its realization if and only if the realiza­
tion is minimal. Otherwise speaking, nonminimal realizations contain certain parts 
which have no relation to s. That is why the notion of minimal realization is of 
fundamental importance in the mathematical system theory. 

The monic polynomials det (zl„ — A) e 3[z] and mp (zl„ — A) e 5[z] are called 
the characteristic and minimal polynomials of Sf, respectively. We have n = 
= d det (zl„ - A). Further, the £f is defined to be stable if det (zl„ - A) is stable, or 
equivalently, if mp (zl„ - A) is stable. 

Defining 

I 0 = D , 

Ik = C A l l B , k = 1 ,2, . . . , 

we can write 

s= I0 + Г І Z " 1 + X2z~2 + . . . , 2 ľ , є 5 , i m . 

This is just another way of writing the impulse response matrix. The order of s can 

be interpreted as the discrete-time delay of $". 

Since se 5(, m { z _ 1 }, it c a n D e written as the ratio 

(2.3) s=*, 

where B e 3,,m[z] and a e g [z] satisfy 

(d, B) = 1 , 

8B g da 

and where a is the least common denominator of all elements of s. 

The expression (2.3), however, tells very little about the structure and dynamical 

behavior of Sf. We have to refine (2.3) as follows. Let 

B = .8. diag {£., 02, ...,<?r,0, . . . , 0 } £ 2 
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be the canonical representation of B and let 

- - A k=\,2,...,r, 
a ak 

after cancelling common factors, i.e. (dk, bk) = 1 up to a unit of 5 [ z ] . Then 

* = EldiagA h, . . A , 0,...,0JE2 

a (a! a2 ar J 

and defining the matrices 

(2.4) E, = Et diag {6., b2, ..., fi„ 0, ..., 0} e %i,M . 
A2 = EJ1 diag {a,, a2, ..., dr, 1, ..., 1} e 5m,m[z] , 

A, = diag {a1; a2, ..., ar, 1, ..., 1} Er1 eS5.,.[z] , 

E2 = diag {«$., B2, ..., S„ 0, ..., 0} E2 e gI>m[z] , 

we can write 

(2.5) s=B1A2-
1 =A1

iB2. 

These factorizations of the rational matrix s into two polynomial matrices are 
fundamental ones and play the role analogous to the expression s = bjd for single-
input single-output systems [30; 33]. The factorizations (2.5) enjoy the following 
properties. 

(2.6) A, and B2 are left coprime 

while 

E] and A2 are right coprime. 

(2.7) The a., a2, ..., ar and bu B2, ..., Br are uniquely determined by s modulo 
units of 5 [ z ] and bk | Bk+U dk+l \ dk, k = 1, 2, ..., r — 1. 

(2.8) By construction, the du d2,..., dr and the nonunit invariant polynomials of 
the matrix zl„ — A e 5n,n[z] a r e associates in 5 [ z ] provided A belongs to 
a minimal realization of s. If the du d2,..., dr are chosen to be monic poly­
nomials, they are called the invariant polynomials of Sf. 

The degree of a rational matrix sis defined as 

5 s = £ ddk = 8 det Ax « d det A2 . 
t = i 

There are other ways to define 5s ; however, they are all equivalent [20]. 
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All these properties justify the following terminology: 

_fj = left matrix numerator of s 
A"2 = right matrix denominator of s 
A! = left matrix denominator of s 
B2 = right matrix numerator of s. 

The characteristic and minimal polynomials of y have been defined as det (zl„ — 
— A) and mp (zl„ — A) respectively. If y is a minimal realization of s, then, by 
(2.4) and (2.8), 

det (zl„ - A) = det Ax = det A2 , 

mp (zl„ — A) = a = at 

modulo units of $ [z ] . Further, let clk be the least common denominator of all minors 
of s = C(zl„ - A ) - 1 B + D with order less than or equal to k. Then [10] 

det (zl„ - A) = _*, = _m , 

mp (zl„ — A) = t?i 

modulo units of t5[z_- It is to be noted that the two polynomials are different, in 
general, and both are also different from the denominator of det s (if s is a square 
matrix). Example: 

S = " z - 1 0" , 
z - 0-5 z - 0-5 

_0 - - - _ 
det (zl„ -" A) = (z - 0 - 5 ) (2 - 1 ) . 

dets = . 

While the degree of the characteristic polynomial determines the dimension of the 
system, it is the minimal polynomial that determines the dynamical behavior of the 
system. Example: 

s = ri r 

o -

det (zl„ - A) = z2 , 

mp (zl„ - A) = z , 

and, indeed, no dynamical mode that would correspond to z2 can be excited in the 
system. 
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It will be instructive to make the relation between the impulse response matrix s 
and its minimal realization {A, B, C, D} explicit. 

Given a quadruple {A, B, C, D}, the s can be determined simply by computing 
(2.1). The converse problem is much more difficult, however. Given an s, a minimal 
realization (A, B, C, D} of scan be obtained as follows [20; 23]. 

Consider the decomposition 

defined in (2.3) and let 

That is, 

(2.9) 

s=* 

B = B° mod â . 

= B° + áD, ÔB° < Õâ 

for a suitable matrix D e 5/,m-

Compute a canonical representation of B°, 

(2.10) 

Let 

and let 

F = ^ d i a g { £ o , ^ , . . . , # o , 0 , . . . , 0 } E o . 

âk = (â,i°k), k = l,2,...,r 

a = dk3k, 

g°k= m. 
It is necessary to choose 3k so that the dk be a monic polynomial. 

To each invariant polynomial 

dk = a ? ' + a « z + . . . + <x^1z
n--i + z"*, k = 1, 2, 

we choose a cyclic matrix Ak such that det (zl„k — Ak) = dk e.g. 

Ak = 0 1 
0 1 

.-< -- « ? » . . . 
1 

- ( Y ( t ) 

We recall that a matrix A e g„;„ is said to be cyclic if the polynomials det (zl„ - A) 
and mp (zl„ — A) are identical. It means that the invariant polynomials of zl„ — A 
are 

d1 = a2 = ... = a„_! = 1 , d„ = det (zl„ — A) . 

By convention, a system whose matrix A is cyclic is called cyclic. 
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Write 

Elk =_ fcth column of E° . fc = 1,2,..., / , 

£ifc = fcth row of E° , fc = 1, 2, ..., m . 

In view of our choice of Afc, let us introduce the vectors 

e<k.i[-]> 

\% = [«<*> + ... + alt'-i--"-2 + ^ - ' , - . -^-i + z, 1] 6 &fc,iH , 

and observe that 

(2.11) dk(zl„k - A, ) - 1 = VkWk mod _ t . 

Consider the system of equations 

(2.12) CkVk = Elkb°k mod ak, k = 1, 2, ..., r , 

WkBk = E2fc mod dk, k = 1, 2 , . . . , r , 

for Bfc e g„t,„, and Cfc e g,,„t. 
Since the right-hand sides of (2.12) can be taken to satisfy 

d(Elkb°k) < dak, dE'2k < cdk, fc = 1, 2, ..., r , 

and since the elements of Vk and •%' are linearly independent over g, equations (2.12) 
have unique solutions Bfc and Ck. 

We get 

£ik$k&2k = dk(Elkb°E'2k) = 

= ak(CkVkWkBk) mod dfc4 

by virtue of (2.12) and 

-W_-?__ = dk[dkCk(zI„k - A,)" 1 B»] mod dkdk = 

= d\Ck(zl„k- A,)" 1 B,] mod a 

on using (2.11). Hence, by (2.10), 

B* = ^ElkfkE'2kmoda = 

= á£C t (z I n f c -Aj -^modá . 
fc=i 
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Since dB° < da, we have equality not only mod a but also in the ordinary sense. 
Using (2.9) we have 

B = ă^Ck(zl„k-Ak)-1Bk + âЂ 

and hence 

S=YJCk(zl„k-Ak)-1Bk + -D. 
k=l 

Therefore, the quadruple {A, B, C, D} with 

A = A. B = 

C * = [ C . . . . C r ] 

and D given by (2.9) is a realization of S; by construction, it is minimal. The dimension 
of the minimal realization is given by 

n = E "k = Z Mk = 5s • 
k = i * = 1 

If I = m = 1 (single-input single-output system), we have 

s = -e5{z-}, 
a 

where a is a monic polynomial, and the problem of minimal realization greatly 

simplifies. We write 

b = b° mod a , 

that is, 

5 = 5° + ad, 88° < da 

for a suitable d e 5 and hence 

(2.13) D = [d] . 

There is just one invariant polynomial, 

a = a 0 + oijz + ... + a „ _ i z " _ 1 + z", 

and we choose 

(2.14) A = 0 1 
0 1 

-afí - oe, . . . - a„_i 
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Equations (2.12) simplify to 

CV, =b0 = p0
0 + P°z + ... + P0

n^z"-\ 

W[B = 1 , 

the solution being 

15) C = [ß° ß ~ . . . ß ° я - í - , в = 

The above quadruple {A, B, C, D} is a minimal realization of s. 

It is to be noted that the minimal realization has been obtained as a direct sum of 
cyclic subsystems, each subsystem being generated by one invariant polynomial of 
the impulse response matrix. This procedure makes clear the significance of the in­
variant polynomials. They fully describe the structure as well as dynamical behavior 
of the system and show how the system can be decomposed into a direct sum of 
subsystems which behave like single-input single-output systems. 

Example 2.1. Find a minimal realization over 9, of the impulse response matrix 

z + 1 z - 1 
z2 + 2z + 1 - 1 
1 z - \ 

S = 

Computing a canonical representation of B we obtain 

£? = z + 1 - z + 1 0-5 
2z + 1 - 2 z + 1 1 
1 0 0 

É?_ = l , 9. 

, Ê°2 = 

We have 

~г + 1 z - f = " 2 + 1 Z - f + z2 "o 0 
z2 + 2- + 1 - 1 2z + 1 - 1 1 0 
1 z - l j 1 z - 1 0 0 

and hence 

B° = " z + 1 
2z + 1 

z - f 
- 1 

, D = ~o o" 
1 0 

1 z -- 1 _° 0 

CГľ 
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5? = ì , ь°2 = 1 , 

á. = z 2 , đ, = z . 

Therefore, we take 

A, = A2 = [0] . -Ciľ 
V1=ГП, Wl = [ z l ] . 

Then Cj and Bj are given by 

Ct "1 = " z + l" 

Z j 2z + 1 
1 

mod z2 , 

[z 1] Bx = [1 z - 1] mod z2 , 

which are also equalities in the ordinary sense and 

c.= 1 1 
1 2 
2 0 

Further write 

Then C 2 and B 2 are given by 

, B, = Г0 Г . 

Ь -i. 

^- = [1], ^ ' = [1]. 

C2 [1] = [ - z 
- 2 z + 1 

0 

[1] B2 = [0 1] mod z , 

mod z , 

which yields the equalities 

C 2 [ l ] = 

[1] B2 = [0 1] 
in the ordinary sense, and 

C, = I, B2 = [0 1 ] . 
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Therefore, a minimal realization of 5 is given as {A, B, C, D} where 

A = 

C = 

"0 1 | 0" , в = "0 Г 
o o ! o 1 - i 

_öT~э_ õ~ ~T_ 
l 1 1 г , D = "0 o" 
1 2 ! 1 1 0 
1 0 0 0 0 

This realization is shown in Fig. 1. Its dimension is n = 3 and it is exhibited as the direct sum 
of two cyclic subsystems _^j and S?2. 

T i ž - T j ^ J ^ ^ L 
V u - . 

Ц-ÏEH 
L___J 

y3k Fig. 1. A minimal realization 
° of the system in Example 2.1. 

Example 2.2. Find a minimal realization over Q of the impulse response 

s = 

Since 

z - 1 

S = z'1 + z~2 + 2z~3 + 3 z - 4 + 5z~5 + 8 z " 6 + 1 3 z " 7 + . . . , 

we may think of this problem as of realizing the Fibonacci sequence {ffjt}Jt°=0, where 

c 0 = 0 , a1 = 1 , ak = <rk-2 + °k-i , fc = 2 , 3 , . . . . 

b = z , „ = z 2 - z - 1 

db < da, 

We have 

and since 

the quadruple {A, B, C, D} with 

A - ca- "_c_-
C = [0 1] , D = [0] 

is a minimal realization of _ by virtue of (2.14) and (2.15), see Fig. 2. 
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Example 2.3. Find a minimal realization of the impulse response matrix 

5 = L 

"1 Z + 1 z 

Z 0 z 
Z + 1 Z + 1 z2 + z 

z(z + 1) 

describing a finite automaton over $2-
We compute 

" 1 z + 1 z 

z 0 z 

z + 1 z + \ 0 

, D = "0 0 0" 
0 0 0 
0 0 1 

Fig. 2. A minimal realization of the Fibonacci 
sequence. 

Г^HZP^ЧZHћ 

The canonical decomposition of B yields 

I- 1 0 0" 

Z 1 0 

z + 1 1 1 

, Ë°2 = 1 z + 1 z 
0 1 1 
0 0 0 

0 2 = 1 , <?2° = z(z + l ) , ^ = 0 
and 

fi? - 1 , ^ = 1 , 

ai = z2 + z , a2 = 1 , 
since r = 2. 

Therefore, the system itself is cyclic with dimension « == 2 and we take 

A, = 

Write 

Then Cj and B, are given by 

c 

V. = 

-cз 
, tfү = [z + 1 1] . 

'H 
z + 1 

mod (z2 + z), 

[z + 1 1] B. = [1 z + 1 z] mod (z2 + z), 
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vhich are also equalities in the ordinary sense and 

c, = 1 0 
0 1 
1 1 

Thus the [A, B, C, D}, where 

, B, = Г0 1 Г . 

Ь o 1_ 

ГO П, в = гo ì л , 
Ь iJ Ь o ij 

A = 

c = 

is a minimal realization of S. It is depicted in Fig. 3. 

___ __Jk 

hk 

1 0" , D = "0 0 0" 

0 1 0 0 0 

1 1 0 0 1 

\t 3k Fig. 3. A minimal realization of the 
+ system in Example 2.3. 

By definition, the impulse response matrix S belongs to g,,m {z ] } . The elements 
of 5i,m{2 _ 1} c a n be written as ratios of two polynomials, but in two different ways. 
If 

S = I0 + Z . z " 1 + X2z~2 + ... 6 g . ^ z - 1 } , 

then 

(2.16) 

where B e &i,m[z], & e 3 [ 2 ] a n d 

as shown in (2.3). But also 

(2.17) 

s = -
â 

(â, Ê) = 1 , 

ÔB __ ðá , 

s= -

where B e _f />m[r_1], a e _f[z ' ] and 

(a,B) = 1 , 

( a , z " 1 ) = l . 
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The above procedure implies that 

(2.18) a = z-sad, 

B = z~aaB 

and a is the least common denominator of all elements of 

S = C z _ 1 ( I „ ~ z _ 1 A ) _ 1 B + D . 

To analyze the structure and dynamics of s we have employed representation 
(2.16). However, it proves more profitable to use representation (2.17) when syn­
thesizing a system. The main advantage of this representation stems from the fact 
that any matrix in 8f.,m[z _ r] can be realized as a system {A, B, C, D}. This is not 
true of matrices in ~^,m[z]- To put it in other words, an impulse response matrix 
in the indeterminate z must be manipulated as a whole, not as a ratio of two poly­
nomials. Otherwise the physical realizability of the synthesized system is at stake. If, 
however, the impulse response matrix is written in the indeterminate z _ 1 , we can 
take full advantage of manipulating the numerator and denominator polynomial 
matrices individually while the physical realizability of the synthesized product is 
inherently guaranteed. As a result, the algebra of rational matrices is reduced to 
much simpler algebra of polynomial matrices. 

The polynomials det (I„ - z - 1 A) 6 g [ z _ 1 ] and mp (l„ - z_ 1A) e 5 [ z _ 1 ] will be 
called the pseudocharacteristic and pseudominimal polynomials of £P, respectively. 

It is to be noted that even though 

det (I„ - z _ 1A) = z - " det (zl„ - A) , 

the pseudocharacteristic (pseudominimal) polynomial may be quite different from 
the characteristic (minimal) polynomial. Example: 

A = 0 1 0 
0 0 0 
0 0 0 

det (zl„ - A) = z3 , det (I„ - z_ 1A) = 1 , 

mp (zl„ - A) = z2 , mp (I„ - z_ 1A) = 1 . 

The notion of stability for the polynomials of S5[z_1] can be defined as follows. 
Any polynomial a e 5 [ z _ 1 ] c a n De written in the form 

a = z~da0, (a^z-1) = 1 

for some integer d ^ 0. Then the a is stable if and only if 

(a) d = 0 , 

(b) d0 = ze°°a0 6 g [z ] is stable. 
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In view of this definition the characteristic polynomial of a system is stable if and 
only if its pseudocharacteristic polynomial is stable. Therefore, the pseudocharacte-
ristic polynomial can be used to check for stability of a system. 

The matrix s = Bja e (y(,m{z_1} c a n a l S 0 be put into the canonical form. Let 

B = Etdia${gt,g2,...,gr,0,...,0}E2 

and let 

- - - - - * , fc=l,2,...,r 
a ak 

after cancelling common factors, i.e. (ak, bk) = 1 up to a unit of ~f[z~ l]. Then 

* = £ . d i a g & A . . . A 0,...,oU 
a {al a2 ar j 

and defining the matrices 

(2.19) Bl =Eldiag{bi,b2,...,br,0,...,0}e<8l_m[z-1'], 

A2 = EJ1 diag{a,, a2, ..., ar, 1, .... 1} e ~v,„,,„[z_1] , 

A, = diag{fl., a2, ..., ar, 1, . . . , 1} E 7 1 e g , , , ^ - 1 ] , 

B2 = diag {6,, b2, ..., br, 0,..., 0} E2 e g(>m[_ " l ] , 

we can write 

(2.20) s= B j A - 1 = At
iB2. 

These factorizations of the rational matrix s are, as a rule, different from those 
obtained in (2.5). However, they are also very important, especially in the synthesis 
of optimum control systems, and play the role similar to the expression s = bja 
for single-input single-output systems [30; 33]. The factorizations (2.20) enjoy 
the following properties. 

(2.21) A, and B2 are left coprime while B, and A2 are right coprime. 

(2.22) The a,, a2, ..., ar and bx, b2, ..., br are uniquely determined by s modulo 

units of ~s"[z-1] and bk | bk+l, ak + 1 | ak, k = 1, 2, ..., r + 1. 

(2.23) By construction, the ax, a2,...,ar and the nonunit invariant polynomials 
of the matrix I„ — z _ 1 A e 5„ „[z _ 1 ] are associates in S D ^ 1 ] provided A 
belongs to a minimal realization of s. The at, a2, ..., ar will be called the 
pseudoinvariant polynomials of S". 
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If Sf is a minimal realization of s, then by (2.19) and (2.23) 

det (I„ - 2 _ 1 A) = det A, = det A2 , 

mp(l„ - z~1A) - a = a t 

modulo units of 5"[z~']. Further, let dk be the least common denominator of all 

minors of s = Cz _ 1 (I„ — z _ 1 A ) _ 1 B + D with order less than or equal to k. Then 

det(I„ - z _ 1 A ) = dt = dm, 

mp(I„ - z - 1 A ) = d. 

modulo units of g [ z - 1 ] . The two polynomials are different, in general, and both are 

also different from the denominator of det s (if s is a square matrix). 

To motivate why the polynomials ak e S [ z ~ : ] have the prefix "pseudo", we note 

that they do not yield structural and dynamical invariants of the system, in general. 

Indeed, 

zB'-ak * dk 

i.e. we cannot compute dk when given ak, and 

dak 4= ddk = nk . 

As a consequence, we cannot find a minimal realization of s by manipulating the 

canonical decomposition of s over 5 [ 2 _ 1 ] in the same way as the canonical decompo­

sition of S over g[z] . Example: 

Л s = Ľ 
z\z - 1) 

ß , = l , 

1 - z" 

= 1 , 

d 1 = z 3 ( z - 1), a2 = z ( z - l ) , 

nx = 4 , n 2 = 2 , n = 6 ; 

bt=z~2, b2 = z~\ 

tij = 1 — z " 1 , a2 = 1 — z _ 1 . 

We shall see, however, that the knowledge of all invariants is unnecessary when 
synthesizing an optimal control system. It is just the information contained in the 
pseudoinvariant polynomials that is needed. 
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2.2. Valuation and Norms 

The ground field g is the first thing to be specified in the definition of a system. 
Roughly speaking, it defines the admissible numbers and the arithmetic operations 
on them. The second thing is to endow the ground field with a metrics so that we may 
investigate how a system response tends to zero, or to tell whether two responses are 
equal or which one is better. This is done by introducing the concept of valuation 
in a field [57; 66]. 

The value in a field g is a mapping ir : g -» sJt which with every element a e g 
associates an element r(a) e 9?, the ordered field of reals, satisfying the axioms 

r(o) = 0, 

r(a) > 0, a 4= 0 , 

r(«p) = r(a) r(p), 

r(a + p) s ^(x) + r(p). 

It immediately follows that 

r(\) = i , 

r(^a) = r(a), 

w n*) 
There is a trivial valuation, viz. 

(2.24) r(o) = 0 . 

r(a) = 1 , a # 0 , 

which is valid in any field g. 

If 5 = 3P
 o r an algebraic extension 3 P [ ; ; ]H. of 3P> where W is a polynomial 

prime in 3 P [ Z ] ' a ' l nonzero elements of g a r e roots of unity [66], i.e. if a e %, a =# 0 
an integer n exists such that a" = 1. Then 

1 =r(a") = rn(a) => r(a) = 1 

and no other valuation but the trivial one exists. 

If g- is a subfield of G, we can always take 

(2.25) r(a) = |a| , 

the ordinary absolute value of possibly complex numbers. It is this valuation that 
is implicitely assumed in most control problems. However, other valuations may be 
taken. 
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Consider the quotient field g (z - 1 ) of the ring 5[z] for any field g. If a e g(z x), 
we can take 

(2.26) r(a) = 0 - ^ 

for any real number g > 1. In particular, 

•r(o) -, £-°° «- o. 

We reiterate that valuation in a field induces a metrics relative to which the system 
behaviour is investigated. A polynomial a e g[z] has been defined stable if 
\\a e g + {z - 1 } , i.e. when the sequence obtained by the formal long division of 1/a 
into ascending powers of z _ 1 is a "zero sequence in g " . 1 ' 1 fact, it should have been 
said "a zero sequence with respect to a valuation "V in g" , since it is the valuation 
"V that determines the convergence of sequences in g. It is quite possible that a se­
quence converges to zero in one valuation and diverges from zero in another, see 
Example 2.9. 

Given a vector space W over g, we define the norm in H" as a mapping of if into 9? 
which with every element a e'V associates an element [|a|| e 9? such that [57], [65] 

|f 0 j[ = 0 , 

||of > 0 , a 4= 0 , 

||aa|| = TT(a) |a| | , a e g , 

||a + b\\ <j I a ll + lj b\ . 

Thus a valuation in g induces a norm in a vector space if>~ over g. 

The set g + { z - 1 } can be viewed as a vector space over g and can be normed as 
follows. Let 

a = a0 + a^-1 + a2z~2 + ... e 5 + {z"1} , 

then 

Ni2 = i>2(2,)-
Jc = 0 

More generally, the set g +
m {z - 1 } is also a vector space over g and it can be normed 

quite analogously. Let 

A = A0 + A^"1 + A 2 r " 2 + . . . e g +
r a { z - 1 } 

and let Ak have elements txiJk, i = 1 ,2 , . . . , / and j = 1,2,..., m. Then 

(2-27) H P - I 5 !*"(««)• 
i = l j = l * = o 
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To distinguish this norm from other possible norms in g +
m { z - 1 } , we shall call 

it the quadratic norm. It will be used to compare system responses in the least 
squares control problems. 

For any field g valuated by (2.24) the norm (2.27) in ^ { z - 1 } can be interpreted 
as the number of nonzero elements in ihe sequences over g;,m-

Now let g be a subfield of the field £ of complex numbers valuated by (2.25). 
If a e & then 

a = complex conjugate of a 

and if 

A = A„z-" + A„ + 1z"(" + 1> + . . . eM"" 1 ) . 
then 

A' = transpose of A , 

tr A = trace of A , 

<A> = A0, the term of A at z° , 

A= = A„z" + A„ + 1z" + 1 + .... 

It can directly be verified that 

(A + B)= = A = + B= , 

(AB)= = A = B= , 

(A)- =A, 

for any two suitably dimensioned matrices A and B over 5(z _ 1 ) . 

The above definitions remain valid in the 'Si,m{z'1}, Sit- i t2"1}' a n d 5 ; , m [ r _ 1 ] 
since they are all subsets of 5;,m(z_1)- In particular, if 

A = A0 + Axz~x + . . . + Anz'"e%lim[z-1] 

and if <3A = n ^ 0, we define the polynomial reciprocal to A as 

(2.28) A~ = z""A= = A0z"" +A 1 z^ ( "- 1 > + ... + I . e S j r - 1 ] 

It follows that 

dA~ g 5 A , 

the equality sign holding if and only if A0 #= 0. 

Since g is a subfield of (£ and valuation (2.25) is taken, we can write 

|a|2 = aa . 
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Then the quadratic norm of A can be written as 

(2.29) HA!2 = t r < A ' = A>. 

Indeed, 

A' = A= ... + (A ' tA0 + A2A! + ...)z + 

+ (A0Ao + A;A! + ...) + 

+ (A0A, + A;A2 + . . . )z~ ] + ..., 
and since 

<A ' = A> = A0Ao + A'lAj + ... 
I m 

tr A'kAk = ~~ I K * | 2 • 
f = i j=i 

we obtain (2.29). In particular, 

UAH2 = <A '=A> 
for any A e g ^ z " 1 } . 

The assumption that A e S",+m{z-1} is essential. If A is not stable, ||A||2 goes to 
infinity while tr <A'=A> may remain finite. Example: 

2 - z _ 1 

A = = 2 + 3Z"1 + 6z~2 + 12z - 3 + ... e 9.{z -1} , 
l - 2 z - 1 l J 

HA I I2 -> 00 . 

-^'•^-(frsrf^^w-1-
2.3. Matrix Factorizations 

Throughout all parts of the paper we shall frequently use the following concepts. 

Given a field 5 with valuation f", consider a nonzero polynomial p e g f z " 1 ] . 

We define the factorization 

P = P+P~ . 

where p+ is the stable (with respect to f") factor of p having highest degree and 
belonging to 3 [ z - 1 ] . Both factors are unique to within a u n i t e 6 g [ z - 1 ] , p = 
= (p+e)0-V). 

It should be noted that the same polynomial viewed over different fields can have 
different factorizations. Example: 

p = 1 - 2 z _ 1 - z - 2 e Q [ z - 1 ] , value (2.25); p+ = 1 . 

p = 1 - 2 z - 1 - z - 2 e 5R[z -1], value (2.25); p+ = 1 - (1 - .j2) z - 1 . 



The same is true of different valuations. Example: 

p = 2 + z" 1 G SH^ - 1 ] , value (2.25); p + = 2 + z - 1 , 

p = 2 + z" 1 e ^ [ z - 1 ] , value (2.24); p + = 1 . 

Given a polynomial matrix P e S ^ m t z 1 ] , P + 0, and let 

P = E, diag {p„ p 2 , . . . , pr, 0, ..., 0} E2 

be the canonical representation of P. Then we define the factorizations 

(2.30) 

where 

P = P^P' = P-.P1 , 

P+ =£ 1 diag{p + ,p + , . . . ,p r
+ , l , . . . , l}egf M [z - 1 ] , 

P" = diag {pr, p j , ..., p ; , 0, ..., 0} E2 6 g , , ^ " 1 ] . 

P- = £, diag {pr, p j , ..., pr", 0, ..., 0} G ^ . J z - 1 ] , 

P + = diag {p + , p + , ..., pr
+, L,.... 1} E2 G ^ [ z " 1 ] . 

Observe that P + and P + are nonsingular matrices by definition and that mp P + = 

= mp P + = (mp P) + up to units of g [ z - 1 ] -

The factors P + , P J and P + , P j - are determined by P uniquely to within their 

left and right associates respectively, 

p = (p1
+E3)(E3-

1p2-) = (P;E;1)(E4P1), 

where E3 is a unit of g/,([z " J ] and E4 is a unit of 5"m,m[z " 1 ] -

Example 2.4. Factorize the polynomial matrix 

P = 

over iR[z J] with valuation (2.25). 

We compute 

P = 0 0 
1 0 

- 1 1 

- z - 1 + z - ' 
1 + 2 z - x - z " 2 

1 0 
0 z - ^ z - 1 - 2) 
0 0 

o i j 
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Pî = 

1 ~ť 

0 
- 2 0 
+ 2 1 

- P~2~- 1 1 
0 z'1 

0 0 

Pï = 1 
_ - l 

0 

z" 

- z " 

Pî = 
[o _ - - - 2 J 

to within left or right associates. 

Now we turn our attention to another sort of matrix factorization, which is 
essential for the least squares optimization. 

Let g be a subfield of the field £ of complex numbers valuated by (2.25). Then 
an element Q e 0fm,m Is sai°- t o De unitary if Q'Q — QQ' = Im. The unitary elements 
in (£mm are m x m unitary matrices while the unitary elements in 9.,„>m are m x m 
orthogonal matrices. In particular, the unitary elements in 5R are ± 1 and the unitary 
elements in (£ are all complex units. 

Given a nonzero polynomial m e S f z " 1 ] , where 5 is a subfield of (£ valuated 
by (2.25), we define the polynomial 

m~ = m m 

which belongs again to g[z J ] and satisfies the relation 

m=m = m + ~m~~m + m~ 

= m + ~(z~dm-m-~) m+(z-Sm-m-~~) 

= (m + m~~)~ (m + m~~) 

= (mm*)- (com*) 

for any unitary element to e g. In particular, if % — 9J, the field of reals, the poly­
nomial m* is the so-called minimum-phase spectral factor of m=m as defined by 
Wiener, see e.g. [55; 58; 60; 64]. It may not always be so over other fields. Example: 

m = 1 - 2 z _ 1 - z - 2 e a [ z _ 1 ] , m* - - 1 - 2 z _ 1 + z~2 

while the minimum-phase spectral factor/ of m~m is 

/ = ± ( l - ( l - V 2 ) z - 1 ) ( z - 1 - ( l + V2))) 

an element of 9?[z - 1 ] . 
It is clear that 

dm* 5= dm 

the equality holding if an only if (m, z"1) = 1. 
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Now consider a nonzero polynomial matrix M e %i,m[z ' ] , where g is a subfield 

of G, and let 

M"M = E'^ diag {PtPu Pi Pz,--->P^P*> °> •••» °) £ i ' 

M M ' = = E2 diag{a!«r, c72<j = , ..., «WS
=. °> •••> °) £2~ 

be the canonical representations of M"M and MM' = . Then we define the matrix 
M * e & , „ [ z - ' ] by 

diag{p*,p*2,...,P:,0,...,0}Ei = ~M*~\ 

and the matrix M* e 5 ; , s [ z _ 1 ] by 

E2diag{«*,.j*,...,«*,0,...,0} = [M* 0 ] . 

It is clear that the M* and M* satisfy the relations 

M' = M = (QlM*)'=(Q1M*), 

MM" = (M*Q2) (M*2Q2)" 

for arbitrary unitary elements £2., Q2 e gSjS. In particular, if g = 9?, the field of reals, 
the M* and M* are the so-called minimum-phase matrix spectral factors of M"M 
and MM" respectively, see [55; 60; 64]. 

It is clear that 

rank M* = s , rank M* = s , 

and 

mp M* = p*, m p M * = q* 

дM* й č>M , ðM* = Ш . 

Example 2.5. Consider the matrix 

M = "1 > И 2 , 1 [ z - 1 ] . 

Шil-z-1)} 
M"M = [ - 2 z + 5 - 2 Z " 1 ] , 

MM" = r = = n V2\(i-z) i -
LV2\.(l-0 2(1 --- ! ) ( ! _Z)J 

P n0lP°lP^ ( 1-z )l 
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s = \ , 

PlPi = - 2 z + 5 - 2 z _ 1 , g l t J " = i 

p* = z " 1 - 2 , c j * = l 

M t = [ z " 1 - 2 ] , M* = fl Lv-\(---_i)J 
to within unitary elements. (Note that square roots are closed in V a n c* \-) 

Example 2.6. Consider the matrix 

M = fl z - 2 l e « 2 , 2 [ z - ' ] . t-г-т 
M' = M = 1 0 1 І 

z2 + 2z3 1 

5 5 J 
- 0 5(-2z + 5 - 2 Z " 1 ] 

z-2 + 2z" : 

MM'= = 1 0 

2 + z"1 1 

2 2 
0 2(-2z'1 + 5 - 2г) 

and 

Hence 

s = 2 , 

PiPi = 5 , g ^ " = 2 , 

p2=p2 = 5(-2z + 5 - 2 z - 1 ) , a2Í/2= = 2 ( - 2 z ~ 1 + 5 - 2z) . 

P* = V5 - «í = V2 . 

p*2=j5\(z->-2), g * - V 2 \ ( z - 1 - 2 ) 
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and 

M* 

м* = 

V5 

0 

2 " " 2 ( 1 + 2z-») 

V5 

z" 1 _ . 2 

v/5 

L V2 
to within unitary elements. 

Observe that SM* = dM while 0 M * < dM. 

v/2 

V2 0 

2 + z~l z'1 - 2 

2.4. Some Computational Aspects 

In the previous section we have defined stable polynomials and certain matrix 
factorization which may be nontrivial to obtain. This section provides an effective 
check for stability and a simple iterative procedure to compute these factorizations 
and, in turn, it demonstrates the power and elegance of the algebraic approach. 

A stable polynomial has been defined via formal long division. This is impractical 
from the computational point of view. There is a well-known check [2; 55] for 
stability of real polynomials. We now state without proof its generalization to 
polynomials defined over an arbitrary field with arbitrary valuation. To this effect 
we introduce the following convention. If a e gf, then 

a = complex conjugate of a if g is a subfield of £ valuated by (2.25), 
= a otherwise, i.e. the macron is a void symbol. 

Given a polynomial a e 5f[z] of degree n _: 0. Introduce polynomials 

+ акЛг + ... + akt„-kz" 

which are defined recursively by 

a0 = a . 

Then the polynomial a is stable with respect to a valuation V in 5 if and only if 

< 1 , k - 0, !,...,«- 1. 
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The above recursive steps can be arranged in a table as follows. 

(2.31) л 0,n " 0 , п ~ l 

a o,o a o ч 

a , „ - , a l „-• 

a „ - l , l «п-l,0 

a „ - l , 0 a n - l , l 

«„n 0 

" 0 , 1 " 0 , 0 

« 0 . л - l a 0 , „ 

a.,o 0 

«i.»-i o 

0 0 

0 0 

0 0 

o 1 _o o 1 

_o j 

a l 
1 

.o ! 

«l.l - 1 ! 

l a „ - l .OІ 

a „ - i , i 1 

Example 2.7. Check whether the polynomials 

m = -2z2 + 2z - 0 . 5 e » [ z ] , 

p = z3 - z + 1 e 9t[z] , 

are stable with respect to valuation (2.25) by the ordinary absolute value. 

Table (2.31) for m becomes 

- 2 2 - { 

~ _ 2 2 i 

—X f 0 

-£_ o 0 

and \\\ < 1, | — j | < 1 implies that HI is stable. 

Table (2.31) for p becomes 

1 0 - 1 1 

1 - 1 O i l 

0 1 - 1 0 

- 1 1 0 0 ? 

and the computations must be stopped. Since | l | -£ 1, however, the/) is not stable. 
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Example 2.8. Check whether the polynomials 

a = 4 - 4Z"1 + z~2en[z~l], 

b = z-1 6 «[--*] , 

are stable with respect to (2.25). 

We can write 

a = z-'a0, 

where 

d = 0 , a 0 = 4 - 4 Z " 1 + z ~ 2 , 

a0 = z 2 a 0 = 1 - 4z + 4z 2 . 

Hence 

4 - 4 1 

1 _ 4 4 i 

i f - 3 0 

fo" ° 0 

implies that a0, and in turn a, is stable. 

We write 

b =z~X, 
where 

d = 1 , &o =- 1 , 

So = z%0 = 1 . 

Since d + 0, i is not stable. 

Example 2.9. Check if the polynomials 

m = z - 0-5 e 9t[2] , 

p = z" e %z\ , n natural, 

which are both stable with respect to valuation (2.25), are stable with respect to valuation (2.24). 
Table (2.31) for m becomes 

1 - 0 - 5 

- 0 - 5 1 - o - 5 

0-75 0 

and since ^"(—0-5) <t 1, the m is not stable. 
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Table (2.31) for^ becomes 

1 0 . . 0 0 

0 0 . . 0 1 0 

1 0 . . 0 0 

0 0 . . 1 0 0 

1 0 . . 0 0 

0 1 . . 0 0 0 

1 0 . . 0 0 

and since ^ (0 ) < 1, the p is stable. 

Example 2.10. Check the polynomial 

a = iz + (1 - i) e (£[z] 

for stability with respect to (2.25). 

Table (2.31) reads 

1 —i 

- i 1 + i 

0 

and since |1 + i| = 2, the a is not stable. 

Example 2.11. Check the polynomial 

a = z 3 + 3 z 6 3 5 [ - ] 

for stability (with respect to (2.24), of course, as no other valuation is possible). 

Table (2.31) yields 

1 3 0 

0 3 1 0 

1 3 0 

3 1 0 3 

2 0 0 

and since ^ ( 3 ) = 1 He 1, the a is not stable. 

Example 2.12. Consider 5 = fR(w~l), the field of rational functions over 3?, and check whether 
the polynomial 

a — z — w~1 e g[z] 

is stable with respect to valuation (2.26). Here 

w _ 1 = 0 + l w - 1 + 0 w ~ 2 + . . . e <R(w _ 1 ) . 
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