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KYBERNETIKA CISLO 2, ROENIK 6/1970

Context-Free Grammars with Regular
Conditions

EmiL NAVRATIL

1t is shown that the ¢-free CF-grammars with regular conditions generate exactly the class of
context-sensitive languages.

If one generates a language by a context-free grammar, the rewriting rules of the
formu — v (u and v denote a symbol and a string resp.) can be applied to whatever
string containing u, without any other restrictions.

However, it is naturally to limit this application by some condition imposed to the
string in consideration. For example, in [1], the application of the rule u — v is
allowed only for such strings in which some prescribed substrings appear and the
others do not. One can show that such conditioris can be well expressed by regular
sets.

In this paper, we shall study therefore such context-free grammars, where each
rule u — v is labelled by the pair of regular sets M, M, and the rule can be applied
only to that strings, whose initial subword to the left from the rewriting symbol u is
a string of the set M, and the terminal subword to the right from u is an element
of M,.

Now, formal definitions follow.

Definition 1. A context-free grammar with conditionsisasystem G = (N, T, P, S,
where N and Tare disjoint finite nonempty sets (nonterminal and terminal alphabets),
S € N (the start symbol), P is a nonempty finite set of rules of the form u — o[ M, M, ],
where u e N, ve (N u T)* and M, M, arc nonempty subsets of the set (N U T)*.

Definition 2. Let a, B be two strings, a e (N U T)* N(N u T)*, fe(N U T)* We
say that o can be immediately rewritten to § (we denote a = ), if there exists a rule
u — o[M,, M,] e P and two such strings o, € M,, w, € M, that « = wuw,, f =
= @;vw,. Wesay that o can be rewritten to 8 (o =G>* B), il either B = a or there exists



a finite sequence of strings (g, ay, ..., ,) that oy = o, o, = o,y for cach i =
=0,1,..,n—1and a, = f. If oy = S, the sequence (x,, o, ..., o,) is called de-
rivation over G of length n.

Definition 3. Language L(G) generated by grammar G is the set {y e T*/S =* y}.
Notation. We shall write shortly u — v instead of u — o[(N U T)* (N T)*].
Let us introduce the following denotation:

Let T" beaset, |T’| = |T|,* T~ T = 0, T' 7 N = . Let ¢ be one-to-one mapping
from Tto T'. Let us define x" = x for xe N, x" = ¢(x) for xe T, ¢’ = ¢ (¢ denotes
theempty word), (fx)’ = f'x’(Be(N U T)*,xe N U T)andfor M = (NU T)* M’ =
= {o'ee M}.

[ Sl

Lemma 1. Let G be a context-free grammar with conditions, G = (N, T, P, S).
Let G' = {N', T, P', S) be the following grammar with conditions: N' = N u T',
P={t>fte T} U {u' - v[M;, My Ju — o[M,, M,] € P}. Then L(G’) = L(G).

(We construct P’ therefore in the following way: we prescribe a new set T” to the
set T, the set of “nonterminal doubles of terminal symbols”. Further, in all rules of P
the occurrences of terminal symbols are substituted by their doubles and the rules
1" — 1 for each symbol t € T are added.)

Proof of Lemma 1. a) Suppose that y € L(G), i.e. there exists a derivation over G
(otg» 0y, +--» @,) such that @, = y (y € T*). We state that then foreachi =0, 1,....n
S=* a; holds. Proof by induction:

1. For i = 0 the statement holds obviously.

2. Foreach i (0 £ i £ n — 1) the relation S z* o] implies S =* aj, ;. To prove
this it is sufficient to show that a; = i+ 1. Since o; 2 oy, there exist according to
Definition 2 the rule u — o[ M,, M,] € P and two such strings w, € My, w, € M,
that o; = w,uw,, o;,, = w,bw,. Therefore u’ — v'[M}, My] e P, w} € M{, wy e M}

’

and of = %, foreach i (0 £ i < n — 1).

=1 =

We have proved S (='_?* o, it remains to show S =*a,. If a, = ¢, it is obvious.
Otherwise @, = x;X, ...x,, x;€ Tfor 1,2, ..., r. Then &, = x{x; ...x; and obviously
o, =* a,, therefore y € L(G").

b) Suppose that y € L(G"), i.e. there exists a derivation (o, @y, ..., &,) over G’ for
which @, = 3, ;e (NU T U T)*for i =0,1,...,n — 1.

Let us introduce the following denotation:
X0 =9 '(x) for xeT, x"=x for xeNUT, & =¢ (x)°=p%" (Be
e(NUT UT)*, xeNUT UT), M = {a°/ue M} for M =« (Nu T u T)~

* If 9% is a finite set, then |IM| denotes the number of its elements.
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We shall prove S = of for i = 0,1, ..., n. It is sufficient to prove that for each i
(0= i< n—1)is either of = a4, or & = afes. A @ g a4y, it s either o; =
= ,f'w, and o;,; = wtw, (teT) and therefore of = afy,, or &, = wju'w),
Upy = 0005, u - [Mi, My]e P, wieMi, wyeM; Then of = wuw,,
#y1 = ,00,, where u — o[M;, My] e P, 0 € My, @, € My; therefore of = of,.,.

We have proved S =* ap, and since af = 3° = 9, y € L(G) holds. Q.E.D.

Corollary 1. If y € L(G'), then S z* y'.

Proof. If y € L(G'), then y € L(G), and according to a) of the proof of the Lemma 1
S ?'* y" holds. Q.E.D.

Note. From the definition of grammar G it follows that in cach derivation (x, a4, ...
..., %) over G' no rule of the form u’ — v'[M{, M}] can be used after any rule of the
form " —-.(Since M; < (N u T')*(i = 1, 2), the rule u’ - v'[ M}, M5] can be ap-
plied only to the strings containing no terminal symbol.) Moreover, not the rule
u’ — v’ but the “conditional” rule v’ —» v'[(N U T")*, (N L T')*] corresponds to the
unconditional rule u — v; the note can be applied even for such rules.

With the above introduced notation for grammars G and G’ we define grammar
G* in the following way: G* = (N*, T, P¥, §*), where N* = N' U {S*} U {#}
(S* and 4 are symbols different from all symbols of N’ U T),

P¥ = {S* - #S4, # sl {r St]|teT}u
U - o [{#). ML, M5 ()]~ oM, M] e P

Then the following lemma holds:

Lemma 2. L(G*) = L(G).
Proof. a) Let y € L(G’), i.e. there exists such a derivation of length n (%o, &y, ..., ,)

over G’ that o, = . But then (S*, Food, Fa#, ..., #a,3, #0, 2,) is the deriva-
tion over G of length n + 3, therefore y € L(G)*).

b) Let y e L(G*), i.e. there exists such a derivation of length n + 3 (n 2 1)
(Bo» B, Bze--ws Buss) over G¥ that B,.5 = y. Obviously fo = S¥, B, = #S#,
Be= FrnFez (1 £ k< n+3), where poe(N U T U T)* and ¥, ,, ¥, mean
either # or &. We shall show that for each k (1 < k < n + 2) is either y, = 7,4 Or
Tk g Vir1- As By = P+ 1, then just one of the following four possibilities takes place:

1. there exist a rule u' — o'[{#} .M, M5 {#}]e P* and strings o] e M},
5 € M5 such that o, = #wiu' @), frey = FoV 0.

2. there exists a rule ¢’ — t (¢t € T)such that f, = x,8'%2, Bxv1 = X1tk

3. ;k,l = ¥, ¥k+1,1 =&

4. ’4¥k,2 = ;» Fre1,20 =&



In cases 1 and 2 obviously 7k 5 Yi+1 in cases 3 and 4 y, = y;+;. From this it 121
follows y, z2* y, for 1 = k S n+3.8incey; =S, Vyez = Purz =V WegetS =%y,
therefore y € L(G'). Q.E.D.

Corollary 2. If y € L(G*) then S* =5y

Proof. Let y e L{(G*), i.e. y € L(G') and according to Corollary 1 S =* 3" holds.
Then, of course, S¥* ;3;' #7"#. QE.D.

Definition 4. A CF-grammar with conditions G = (N, T, P, S) is &-free, if for
each its rule u - o[M,, M,] € P v + & holds.

Definition 5. A CF-grammar with conditions G = (N, T, P, S) is called CF-gram-
mar with regular conditions, if for each rule u — v[M,, M,] e P the sets My, M,
are regular over the alphabet N U T.

Theorem 1. Let G = (N, T, P, S) be an e-free CF-grammar with regular con-
ditions. Then L(G) is a context-sensitive language.

Proof. According to Lemmas 1 and 2 L(G) = L(G*). For cach rule p of the form
u—o[M, M,]ePis w - v'[{#}. M}, M5. {%}] e P*, where the scts M}, M5
are regular over the alphabet N U T". Therefore, there exist finite automata %y ),
A, ) Which accept sets MY, M5. For each pair* (i, p) e {1,2} x P, U, =
= {Ki,py Oip) s?i,p), F(; 5y, where the used symbols have the following meaning:
K — finite nonempty set (of states), §; ,, — mapping from K, ,, x (N U T') to
K p (the transition function), 5§ ,, € K, (the start state), F; ,) = Ky, (the set
of final states).

The sets K(;,) can be choosen so that Ki; ,, N K,y = 0 for each two pairs
(i p) # (4. q), (i. p). (j, @) € {1, 2} x P. Further**

52‘11’)(3(0%11)7 mii) S F(i,p) e u); € Mi .
Let us define the grammar G = (N, T, P, S*) in the following way:

N=N*u U (NuT u{#}) x Ky x {1,2,3,4},

(i,p)e{l,2}x P

* The symbol X denotes the operation of cartesian product. The elemerits of a cartesian
product 4 X B X C will be denoted by [a, b, c].

** 5 py is the mipping from K; ,, X (N*u T')* to' K(i,p) de.ﬁned by the relations Jzk,»d,].
- (51,090 ©) = S(i,py 003,000 (i,pr ax),: 0(:,2)00,1)(5(i,py @, *)» Which hold for whatever S(i,py €
EKippa€(NUTH, xeNUT.
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where

Q, = {S* — #SH4, # »»e},

0, ={~>1teT},
Qs = {# ~[#.50, )peP},
Q. = {[a s 1]- B = [0 50, 1] - [Bs 81 mpScaomy B): 1]

JeeNUT U{#},peNUT, sy €Ky, PEP},
0s = {[xsap 1]t >[5, 1] [0, S(OZ.p)v 2
JxeNUT U{#} s meFup p=u—o[M;,M]eP},
0 = {[w 55 21 B~ [ 5,9 2] - [B 02 (020 B), 11/
[BeNUT, p=u—vo[M,,M,]e P},
Q7 = {[o 5@ 11 B> [0 52,00 1T - [B 82,0502, B): 1]/
Jee NUT,BeNUT,s; €K, PEP},
Qs ={[x5@p 1] % =[50, 3] #faeNU T, s, e Fo, pe P},
05 = {[ s 1] [B stz 3] = [0502. 31 -
[%BEN VT, 52,0, 52,07 € K2y PE P}
Qio = {[W', (2,5 21 - [B: 52,0 31 = [ 582,00 47 - B
IBeNUT, 55 ,eKa . p=u—o[M;, M]eP},
Our = {[w, stapy 2] % = [, 5 41 %
Jp=u-v[M, M) eP si,eFont,

Q12 = {[& 50,0 1] - (v, 5:’24‘)» 4] = [ s 3] - v
JreNOT U{#},54.m€Kiy P =1u~t[M;, M,]eP},

015 = {2 S0 1] [B. 515y 3] = [2 504 0 3 - B/
JeeNOT U{#%}sqm San€KamBeNUT, peP},
010 = {[#. 50,031~ # [pe P}.

The grammar G contains one length-shorting rule, namely the rule # — &. How-
ever, in whatever derivation over G of arbitrary word y € L(G) the rule 3 — & is used
exactly twice and according to [2] (Theorem 3.1), L(G) is context-sensitive language.
By showing L(G) = L(G*), we prove that L(G) is context-sensitive language.

a) Let y € L(G*). According to Corollary 2 $* G:: 4 v ¥ i.e. there exists a de-
rivation (Bo. B ..., Bysy) over G* such that B, = S¥, B, = #S#, B, =#7'#
(n 2 1). Foreach i (1 £ i < n) is therefore f;, = # o'Wy %, fir, = o0 #,
where u’ — v'[{#}. M}, My . {#]}] € P¥, 0} e M}, 03 € M5.



We shall show that f; 2* Bisre

The rewriting f; to fi+1 in G will be provided by succesive application of the fol-
lowing rules:

the rule of @3,

| ]-times the rules of Qg *

the rule of Qs (since w; € M, sy , € F(; , holds and the rule of Q5 can be ap-
plied),

the rule of Qs (if w5 * &), (if w} = e the rule of @y is applied),

|ws| — 1-times the rules of @,

the rule of Qg (if @} # €),

@3] — 1-times the rules of Q,,

the rule of Qy0 (if w3 #* ¢),

the rule of Q,,

‘w’lt—times the rules of Q,; and finally

the rule of Q4.

Thus the required string §;,, is obtained. This completes the proof that S* =G>*
=* 47 # and therefore y € L(G).

b) Let y € L(G). We shall show fisst of all that $* =% 4y #.

Let us introduce the homomorphism t (cf. [3]) by the relation 7(x) = x’ for xe T,
7(x) = x for xeN. According to the assumption there exists such a derivation
(Wo» W1 ... w,) Over G that w, = S* w, = y. From the relation w, = Wiy it follows
that either t(w;} = 1(wi+1) or (w;) 3 ©(w;s,). Hence, wo = 1(wo) 2% o(w,) = 7"

Therefore there exists a derivation (Yo, Yy, .o W -.n ¥) over G such that
Yo =SH. ¥y = FSH ¥ = F Lo Ys1 = T ¥s =7

Let us denote §f; = 4, for I = m + 1. Then (Yo, Yys ooos W Uimwzs - W) IS
the derivation over G. Therefore S* =* 4y We can prove similarly that
S* ?**y':’:_

Let us take the derivation (10, Qg enn aw) over G, where ag = S¥, o, = #S5%, ...

. &, = 7 3. Obviously S* =% 1t is sufficient to prove that foreach k (1 < k <
< w — 1) the following statement holds: if s¥ 3** oy, then there exists [ > k
(2 < I £ w) such that W, =% 0 In this case S* ;—f «,,, further o, 3* ¥, hence
ye L(G¥).

Therefore, let $¥ 3* . Then o, = # 7,4, where 5, € (N U T')*. Further, there
must exist a rule # — [#, 5% ), 1] such that o, ; = [#, s ,), 1) ni#. By deriving
from o, to a,, any rule of @, and @, cannot be obviously applied.

* |w] denotes the Jength of the string @.
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We shall show that there exists z = k 4 1 such that the rewriting o, 3 %, .4 is
realized by the rule [o, 55 ), 1]. 9" = [, 51y, 1] . [, 53,5, 2] Of Q5. Suppose the
contrary is valid. Let lr{,'(l = A. Thenfo reach i (1 <iZ /1) the Tewriting o+ F %+ i+1
is realized by the rule of Q,. (No rule of Q5 can be applied to the symbol # at the
end of the string o, ;, because another rewriting of the formed symbol would be im-
possible.) To the string ;. there can be applied only the rule of Q3 and no rule
can be applied after it, which gives the contradiction.

Let us take the smallest z = k + 1 with above mentioned property. Then o, =
= doiu' 0y %, where ®] = ¢,¢; ... C,_gup (;eNUT,i=12,..,2~(k+ 1),
wy=¢ if z=k+1; wye(Nu T)* Further o4,q4; = 801 .+ EiCivy -

CCom (e U Wy ¥, where & = [#, st,pe 1] and for each j (1£j < i) g

= [e; séimy 1] where s{; » = =8 p(sitpe)i=012...2z~(Fk+1). Furlher

sy = o EomquanUs S0 2] - 03, Since the rule of Qs was applied,
S gD = 6(1_,,,(5(1,,,,, wi) € F(y ,, hence ] € M} (the rule p is fixed).

We shall show that wj € M; and that in mentioned derivation there appears
a member «, (¢ = z + 2) such that o, = &g ... &mgur) - (U, Sy 4] . 05 #. If
@; = &, then rewriting o, ., 3 &, is necessarily realized by the rule of @,y and
therefore s ) € F(3 . i.. €€ M} and the statement holds (g = z + 2). Let thus
0y *e 0y =dd,..d(d;ieNUT,i=1,...f;f=1). Then

%yz =T Comqerny - [ 50,0 2] - [d1s 02 (S d1), 1] - da . dp

(applying the rule of Qg), and obviously

~ 5 0 )
Gyyig =T Emger [0 S0 2] - Ay
where

di=[dosz 1] (=1 .sf)s Shopm = 8au(sih, d)

(using the rules of Q). Then the derivaiion o, +1., F %rzsls necessarily realized
by the rule of Qg. hence sf3 , € F; , and since s§y 5 = 85 (s ), @), w5 & M5
holds. We can show in a similar way that in the mentioned derivation over G there
follows (f — 1)-times applying of the rules of Qo, then one using of the rule of @,
by which the required string a, is generated (¢ = z + 2 + 2f).

Then necessarily tgy = 8o ... &m gz - [Come1y Siag s 3] . v’y 4 (the rule of
Q1) after this z — (I + 1)-times the rules of Q;3 and finally the rule [ %, S{; ,). 3] =
— 4 must be applied. In this way the member «; = 3 w)v'w, 4 appears in the de-
rivation. However, since o, = #oju'oy#, w; e Mi, wye M and u' — v'[M],
My]eP, % =2 % holds and the Theorem is established.

Theorem 2. Each contexi-sensitive language can be generated by an &-free CF-
grammar with regular conditions.



Proof. Let G be a CS-grammar G = {N, T, P, S), where P is finite set of rules of
the form z;xz, — z,¥2; (X€N; y, z;, z, € (N U T)*, y # ¢). Let us form the CF-
grammar with regular conditions G, = (N, T, P, S), where P, = {x - y [(N U T)*.
Az} {22} . (N U T)*¥)/z1%2, > z,yz, € P}. The grammar G, is obviously e-free
and the sets (N U T)* {21}, {z,} (N U T)* are regular over the alphabet N U T. For
each pair of strings u, v the relation u = vholdsifand onlyif u e Therefore L(G) =

= L{G,). Q.E.D.

Theorem 3. Each type 0 language can be generated by a CF-grammar with
regular conditions (generally not e-free).

Proof. It is known (cf. [1]) that each type 0 language can be generated by context-
sensitive grammar with erasing rules. Let L be arbitrary type 0 language and G be
a CS-grammar with erasing rules which generates L. G has the same form as in the
proof of Theorem 2 with the distinction that also y = ¢ is admissible. Forming the
CF-grammar with regular conditions G, in the same way as in the proof of Theorem

2, we get L(G,) = L(G) = L. Q.E.D.

Note. It has come to author’s knowledge after finishing the paper that some modification of
Theorem 1 has been proved in paper {4]. (The proof is, of course, different).
(Received June 23th, 1969.)
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VYTAH

Bezkontextové gramatiky s regularnimi podminkami

EMIL NAVRATIL

Bezkontextovd gramatika G = (N, T, P, S) s reguldrnimi podminkami je bez-
kontextovd gramatika, jejiz kazdé pravidlo je opatieno dvojict mnoZin My, M,, které
jsou reguldrni nad abecedou N U T. Retézec « lze bezprostiednd pfepsat na f
(¢ % B), jestlize existuje pravidlo u — v[M,. M,] e P a fettzce 0, € M,, w, € M,
takové, Ze o = w,uw,, f = w;vw,. Jazgk generovany gramatikou G je mnoZina
vSech termindlnich produkei odvozenych z vychoziho symbolu S.

Je dok4zdno, e mnoZina viech jazykl generovatelnych e-free gramatikami uvede-
ného typu je rovna tfid& viech kontextovych jazyki.. Vypustime-li pfedpoklad, 7e
gramatika je e-free, je moZno generovat libovolny jazyk typu 0.

Ing. Emil Navrdtil, Fakulta jadernd a fyzikdiné inZenyrskd, Biehovd 7, Praha 1.
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