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K Y B E R N E T I K A — V O L U M E 16 (1980), N U M B E R 4 

Output-Based Estimation of Communication 
Channels* 

IGOR VAJDA 

Maximum likelihood estimator of a channel state is obtained and studied provided linear 
coding and automatic repeat request decoding are employed and provided the channel noise, is 
additive and between-block independent. The estimator is based only on the information re­
presented by the repeat request statistic available at the output. 

1. PROBABILITY SPACE OF REPEAT REQUESTS 

Let us consider a communication channel with input and output alphabet A = 
= {0, 1, ..., a — 1} and with additive noise. The channel is then described by a system 
of probability distributions PN(- | s) on AN, N - 1 ,2, . . . . As we see, probabilities 
PN(x | s) of error sequences xe AN are supposed to depend also on a collection 
s = (su ..., sr) of parameters describing states of the channel. Denote the set of all 
possible channel states by S and suppose 5 c Er. 

If a linear (N, L)-code CN <= AN is applied at the input of the channel, and if the 
noise words corresponding to any two codewords sent subsequently through the 
channel are statistically independent, then the channel is well described by the family 
of probability distributions PN(- | s), s e S, alone. In what follows we consider such 
codes and channels only, for which this independence assumption is satisfied. (This 
assumption is fulfilled even by channels with bursting errors provided proper 
acknowledgement backward signals follow all codewords sent forward — cf. the ARQ 
assumption below.) 

We also suppose that, during subsequent transmission of codewords from CN, 
the channel state s e S remains unaltered. Thus, if (x0, xu ...) is a sequence of con­
secutive noise words added to respective codewords in the channel, then this sequence 

* The problem of output-based estimation has first been outlined in [1], 



can be interpreted as a sequence of mutually independent realizations of random 
sampling from sample probability space (AN, PN(- | s)), s e S fixed. In other words, 
probability distribution of sequences of noise words on the infinite product sample 
space (A^)00 is supposed to be given as infinite product probability PN(- | s) for some 
S G S . 

Suppose finally that decoding at the channel output consists in automatic repeat 
requests (ARQ, see [2, 3]) as long as no formal error is detected in the output word. 
Thus, if x e Cjy is sent through the channel PN(- [ s) and if (x0, xu ...) is a respective 
sequence of noise words, then either 

(i) x + x0(mod a) is accepted by the decoder, which takes place iff x + x0(mod a)e 
e CN, i.e. iff x 0 e CN (error of such a decoding now depends on whether x 0 is a zero 
or non-zero word, but we are not interested in decoding errors) or 

(ii) x + x0(mod a) is rejected by the decoder (i.e. x 0 $ CN), in which case the x 
is retransmitted and the whole process is repeated with xt replacing x0, etc. 

From here we see that communication of a codeword x through the channel 
requires t e {0, 1, ..., oo} retransmissions of the x iff 

JCN x (A*)00 if t = 0 
(x0, xu ...) e B(t) = l(AN - CN)' x CN x (AN)X if 0 < t < oo 

\(AN - Q ) 0 0 if t = oo , 

where {B(t) : t = 0, 1, ..., oo} is a disjoint decomposition of the sample space (Aw)°° 
of all noise sequences. We also see that the number of retransmissions is independent 
of the communicated codeword x e Cjv. This together with what has been said about 
noise sequence sample probability space implies that if T denotes the number of 
retransmissions of a codeword from CN through the channel PN(- \ s), then Tis a ran­
dom variable attaining values r = 0, 1, ..., oo with probabilities 

jPN(CN | s ) . 1 \ 
P%(B(t) | s) = P'N((AN - CNy I s) . PN(CN | s) . 1 = 

\P%((AN - c N y | s ) / 

/PN(CN I s) \ JPN(CN \s) if f = 0 
= PN(AN - CN 

\PN(AN - CN 

Thus, if we denote 

(1) n(s) = PN(CN [ s) for seS, n(s) e (0, l ) , 

then the sample probability space of the repeat request statistic T is ({0,1, ...}, 
p(' [ s)), where p(t \ s) = n(s) (1 - n(s))\ t = 0, 1, ... . The independence assump­
tion made above also implies that if Tu T2, ..., T„ are repeat request statistics cor­
responding to arbitrary n codewords from CN communicated through the channel, 

s)< PN(CN | s) = (1 - PN(CN I s))< PN(CN \s) if 0 < / < oo 
s)00 / \0 if ř = oo . 



then they are mutually indepedent and each one is identically distributed with the T 
above. Thus we have proved the following theorem. 

Theorem 1. If CN is arbitrary linear (At, L)-code at the input of a chennel PN(- | s) 
with states s e S and with between-block independent noise and ARQ decoding, and 
if Tx, T2, ..., T, is a sequence of numbers of repeat requests corresponding to n 
subsequently communicated codewords from CN, then 

s) = n(s)-(l-n(s)f" (2) 

(3) 

Pr[T, = tí,...,Tn = tn~\=p\tl,...,tl 

fn + t - 1 

t 
Pr[T! + . . . + T„ = t] = P * ( í | s ) -m - ч-))' 

where 7r(s) is given by (l) and t, tu t2, ... e {0, 1,...} are arbitrary. In other words, 
Tj, T2,..., T„ are independent random variables, each one being distributed geo­
metrically with parameter 1 - 7i(s), while their sum is negative-binomial random 
variable with parameters n and 1 — n(s). 

The random vector Tlt T2, ...,T„ will be called repeat request statistic of size n. 
Prior entering analysis of statistical problems involving the repeat request statistics 
we introduce three concrete examples of this statistic. 

Example 1. Suppose the channel is binary memoryless, PN(x | s) = six(l - s)N~Ix 

where Ix = (x)x + ... + (x)N for x e AN = {0,1}N. In this case S c [0, £). Suppose 
that Cjv is the iterated (N1N2,(Nl - 1)(N2 — l))-code, whose codewords x can 
be arranged into the following rectangular form 

t l l > • ••> C l i V j - l j t l /Vi 

S21> • ••> <=2Ni-l > S2JV1 

N,N2 = N ; 

íjV2-ll> •••> ZN2-INI-IŠNI-1NI 

SN2U •••> <?JV2ÍVI-1 > ÍN2NI 

where the right-hand digits check parity in rows and the bottom-line digits check 
parity in columns. The rest represents arbitrary information digits . 

As a combinatorial analysis of this situation reveals, 7t(s) = 1 — A7
1At2s for s 

apriori very small and for the code parameters AtjIV^ such that NxN2s < 1. 

Example 2. If the situation is as above but there is in S a state s which is not a small 
number, we can calculate 7c(s) at least for the simple iterated code with Nt = N2 = 2. 
Here the two possible codewords are of the form 

*-[S;S] °r [1:!] 
so that n(s) = (1 - s)4 + s4 for any s E S. 



Example 3. Let the code be as in Example 2 but we admit a more wide class of 
channels with Markov binary noise (see Fig. 1). If the initial probabilities of the noise 
are defined as P(0) = s2/(si. + s2), P(l) = stJ(st + s2) with 0 < sx g s2, then this 
channel reduces to the previous one iff s2 = 1 - sv The state space S of this channel 
is a subset of £2 . Obviously, 

n(s) = P4((0, 0, 0, 0) I s) + P4((l, 1, 1, 1) | s) = - 2 ( 1 ~ 5 l ) 3 + 5 -^ -^ S 2 l 
St + S2 Si + s2 

for every s = (su s2) e S. 

2. MAXIMUM LIKELIHOOD ESTIMATORS 

The repeat request statistic of size n is available at the output of any channel with 
ARQ decoding as soon as n subsequent codewords have been received and it always 
provides certain evidence concerning the channel state. However, the inference can 
be successful only if the state remains unaltered during transmission of a relatively 
large number of codewords. (In our idealized model we suppose s e S to be constant 
during all the transmission period but this obviously can be avoided in practical 
application.) Moreover, in order to specify the degree of accuracy attainable in estima­
ting the channel state or in order to impose reasonable optimality criteria, it is 
necessary to know what is the stochastic dependence between channel states and the sta­
tistic. As one can see from Theorem 1, our assumptions result into very simple pro­
babilistic description of stochastic relations between states and the statistic. Due to 
this, in solving the statistical problem of estimation the unknown channel state s e S 
on the basis of data represented by a repeat request statistic of size n, we can afford 
to start with a family of probability distributions (p"(- | s) : s e S) given in (2). 

We see from (2) that the repeat request count statistic T whose family is explicitely 
given in (3), is sufficient for any statistical inference concerning the channel state. 
This fact is to be respected in reading this paper. 

We shall say that an estimator a : {0,1, . . . } - * S of the unknown channel state 
s 6 S based on the repeat request count is maximum likelihood, if 

p*(t | a(t)) = max p*(t [ s ) . 
seS 

In this paper we restrict ourselves to maximum likelihood estimation of com­
munication channel states due to certain universality of this estimation. Indeed, 



334 according to invariance principle (theorem of Zehna, see e.g. [5], p. 223), the above 
considered maximum likelihood estimator determines maximum likelihood estimators 
of all communication parameters reasonably functionally related to the channel state. 

We introduce the notation 

l(p, p') = p log i- + (1 - p) log J---- , p,p'e [0, 1] 
P 1 - P 

for the well-known measure of divergence between distributions (p, 1 — p) and 
(p', 1 — p') on a dichotomy and we shall consider l(p, p') = 0 with equality iff 
p = p' as a known fact. 

Theorem 2. An estimator a : {0,1,...}-+ S is maximum likelihood iff 

(4) / ( — , n(a(t))\ = min I ( _ - - - , 4 , ) ) 
\t + n ) ses \t + n ) 

so that the maximum likelihood estimator is defined as a solution s = a(t) to the 
equation 

(5) n(s) = - 5 _ 
f + n 

as soon as the solution exists in S. 

Proof. Since the logarithmic function is increasing, a is maximum likelihood iff 

log p*(t I a(tj) = max log p*(t | s) , 
seS 

i.e. iff 

i.e. iff 

n + t
t
 l\ + n log 7r(<r(ř)) + t log (1 - n(a(t))) = 

Í log ( " I + n log 7i(s) + í log (1 - TC(S) , 

- - - log -;(ff(0) + — log (1 - я( f f(0)) = 
t + n t + n 

= max 
seS 

——- log тt(s) + _ — - log (1 - я(s)) 
[_í + и í + n 

i.e. iff 
1 t , 

+ log t + n n(a(t)) t + n 1 - 7t(a(0) 

= min — — log — - + — _ - log — . 

sєS l_f + П 7t(s) t + П 1 - 7t(s)J 



Substracting from the both sides the entropy of the probability distribution 
(nj(t + n), tj(t + n)) we see that a is maximum likelihood iff 

t + n t , t + n 
t + n n(a(t)) t + n 1 - n(a(t)) 

n t 

t + n t , t + n 
log — — + t + n n(s) t + n 1 - n(s)j 

which coincides with (4). 
Suppose now that S is finite and let $_, s2,..., sk be elements chosen arbitrarily 

from subsets of states possessing common value of n, where n(s_) < n(s2) < ... 
... < n(sk). This will be called monotone enumeration of elements in S. 

Lemma 1. Let S be finite and let s_, s2, ...,sk be a monotone enumeration of 
elements in S. Then there exist real numbers 0 = y0 < n(s_) < y_ < ... < yk__ < 
< n(sk) < yk — 1 such that the maximum likely value a(t) = s; iff nj(t + n) e 
e(yi-i,y.]. 

Proof. Let us consider the functions 

(ply) = I(y, n(Si)), y e [ 0 , l ] , i = 1, 2 , . . . , k . 

In view of (1) these functions are well-defined and continuous in [0, 1]. Obviously, 
there exists a disjoint decomposition [0,1] = D. + D2 + . . . + Dk + A, where 

(pi(y) - (Pj(y) < 0 for all j + i on D ; , i = 1, 2 , . . . , k , 

and where (p.(y) = (pj(y) for some i + j on A. Moreover, D ; are open in the closed 
interval [0, 1]. Since 

/ \ / \ , n(si) ( l ~ rt(si)) • 1 — n(si) 
<p{y) - <Pj(y) = y log -y{j- y^ + log - — y { 

n(Si)(l-n(sj)) l-n(Si) 

is linear, A must be a finite subset of [0, 1] and each D ; is an open subinterval 
of the interval [0, 1]. Now, since 

<p.(n(Si)) - q>j(n(Si)) = -l(n(s,), n(Sj)) < 0 for all j + i, 

we see that each interval D ; is non-empty and n(st) e D;. 

Next we prove sup D ; < inf D ; for i < / < k. If inf Dl < sup D ; then either there 
exists j 0 s D ; n Dt for which 

<Pi(}'o) ~ (Pj(y0) < 0 for all j + / 



<Pi(yo) - <Pj(yo) < 0 for all j + i 

or sup D, < inf D;. In the first case one easily obtains (Pi(y0) < <Pi(yo) < <Pi(yo) 
while in the second case n(st) < 7c(sO. Neither of these consequences is possible. 

Finally sup D ; = inf Di + 1 for i < fc since in the opposite case sup D ; < inf D i + 1 , 
which implies that A contains infinite subset (sup D;, inf D ; + 1) . Analogical reason 
yields infD! = 0, sup Dk — 1. Thus we have proved that D ; = (}';_1; y;) and 
A <= {jo> yi> •••> yk], where yt = sup Dt = inf D i + 1 ) i = 1, 2, ..., fc - 1, }>0 = 
= inf Dj = 0, yk = sup Dk= \. Thus we have proved 

<Pi(y) = min <p/.y) for y e (y;_., y j , i = 1, 2, ..., fc . 
j 

In view of (4), this and the fact that for every se S there exists Sj e S with TC(S) = n(sj) 
complete the proof of Lemma 1. 

Lemma 2. Let us consider independent sampling from a geometrical family of 
probability distributions with parameter 1 - 0 and let t — tt + ... + t„ be the 
corresponding sufficient statistics. Then the Bayes test of a priori equiprobable simple 
hypothesis 0 = n(s,) against the simple alternative 0 = 7t(si+1) is given by 

accept 0 = 7t(s;) iff e [0, >';] and accept 0 = n(si + 1) iff e (yh 1] . 
t + n t + n 

Proof. Repeating the proof of Theorem 2 with S = {s;, si + 1] we find that the 
Bayes test is given by 

accept 0 = 71(5.) iff q>i | | <, <pi + 1 ( 
\t + n) \t + n 

accept 0 = 7i(s; + 1) iff <p;|- )>q>il I . 
\t + n) \t + n) 

Since it follows from what has been said in the proof of Lemma 1 that q>t(y) <, 
= <Pi+i(y) holds iff y % yt respectively, Lemma 2 is proved. 

Lemma 3. Let Bayes test of a hypothesis 0 = Bt against alternative 0 = 02 based 
on independent observations tu t2, ...,t„ each of which is supposed to be drawn 
from a family p(- | 0) be of the form 

accept 6 = 0X iff t <, y and accept 0 = 02 iff t > y , 

where t = t(tu ..., t„) is a statistic. Let us further consider probability distribution 
p*(t | 0) induced by the statistic t and joint probability distribution p"(t1, ..., t„(8) -
= P(h\ 0)... p(t„\ 6). Then 



lim ( I P*(t | 2)У"> - lim ( I p*(t | Ø.))1" = A(X- | 0,), K- | Ö2)), 
л-»co (Sy л-»co t>y 

where 

(6) l(P,P')= inf l f f l V ( 0 - ^ , P ) . 
0<a<l , \ P ( t ) j 

Proof. This Lemma has been proved in [4] for the particular statistic 

A %(tf|02) 

Since two Bayes tests of a fixed pair of hypotheses in a fixed statistical model differ 
only on sample sets of zero probability, the above mentioned proof easily extends to 
any statistic. 

It is seen from Theorem 2 and Lemma 1 that the maximum likelihood estimator 
a : {0, 1, ...} -* S may depend on the parameter n of the family of distributions (3). 
Hence we write a„ instead of a when convenient. A basic question connected with 
maximum likelihood estimator a„ is whether or under what conditions concerning S 
or mapping (l) it is consistent, i.e. an(tx + ... + t„) -» s a.s. [p°°(- | s)] and what 
is the rate of convergence of probability p*({t : \a„(t) — si > e}|s) to zero. 

Theorem 3. Let S be open subset of a compact set in Er and let n : S -> (0, 1) 
be one-to-one and continuous. Then the maximum likelihood estimator a„ is con­
sistent. 

Proof. If the conditions given above are fulfiled, LeCam's general conditions of 
consistency, as stated in Theorem 5.3.1 of [5], hold quite evidently except, perhaps, 
the condition that for each s + s* e S there exists a neighbourhood U(s*) c S 
such that 

£p(f|s) inf [log 4 4 4 ] > -00. 
( = 0 s'.P(s-) |_ p(t I S )J 

Since, however, this sum is for any U(s*) greater than or equal 

£ p(( I S) log p(. I S) = £ <S) (1 - K(s))' log Tt(s) (1 - K(S))' = 
1=0 (=0 

= log K(S) + — ^ ~ ~ log (1 - K(S)) > - 00 , 
1 - 7l(s) 

this condition is satisfied too. 



The law-of-large-numbers based proof of consistency used below applies also to 
the continuous case considered in Theorem 3 above, provided continuity of n"1 : 
:(0, 1) -* S is supposed. 

Theorem 4. If S is finite, then necessary and sufficient condition for consistency of 
the maximum likelihood estimator is the one-to-one property of the mapping 
n : S -y (0, l). If this is satisfied, then p*({t : an(t) * s} | s) = A(s)rt+°(rt) for all 
s e S, where X(s) e (0, l) is defined as follows 

IX(p(- | st), p(- | s2)) if s = st 

X(s) = / max [X(p(- | s;), p(- | s ;+1)), X(p(- | s;), p(- | s ;- :))] if s = st, \ < i <k 

\_(p(- | -*), K* l s*-i)) i f s = sk, 

where sl5 s2, ..., sk is the monotone enumeration of (all) elements in S. 

Proof. Since the expectation of the geometric probability distribution p(- | s) 
is n(s)j(l — n(s)), the strong law of large numbers implies tjn -» n(s)j(l — n(s)) 
a.s. [p°°(- | s)] so that n/(f + «)-»• n(s) a.s. [p°°(- | s)]. This together with Lemma 1 
implies consistency of a„ provided n is one-to-one mapping. If n(s) = n(s*) for 
some s + s* e S, then it is easy to construct cr„ in such a way that s* is not contained 
in the target space ff„({0, 1,...}) c n = 1, 2 , . . . , at all. 

To prove the second part of Theorem 4, observe first that, due to Lemma 1, 

P * ( { i : - n ( t ) * s 1 } | s 1 ) = £ P*(* 1 s i ) , 
«/(t + n)>yi 

p*({*: *„(.) * Si) | s,.) = x P * ( t h ) + Z P*(t|s,)> 
n/(f + n)>j., n/(.+n)gj>i-i 

p*({f : .„(0 4= sk} \sk)= X p*(t | sk). 
n/(( + n)gj. f c-i 

By Lemma 2, the criterion below the first sum represents an acceptance criterion in 
the Bayes test of hypothesis Q = ^ (s^ against alternative 6 = n(s2), where 1—0 
is a parameter of geometrical distribution. Thus, by Lemma 3, p*({t : o„(r)=}= 
* sx} | Sj) = X(s1)

n+oW, where % ) = % ( • | s,), p(- | s2)). Analogically, the 
criteria below sums in the second row represent acceptance criteria in testing 9 = 
= n(st) against 9 = 7t(s;+1) or 9 = n(s^t) against (9 = „(s;) respectively. Thus, 
again by Lemma 3, 

P*({ t :<r„( t )*5,-}N = 

= i(K-1 s.), K-1 s;+1))
rt+o(rt) + x(p(-1 S;), P(. | s ^ o r ^ = 

= (max [A(p(. | s;), p(- | s ;+1)), X(p(- \ s;), p(- | S,._,))])»+0<"> _ A(s;)
rt+0(rt) . 

The same argument applies also to the third sum and the Theorem is proved. 



Note that, using (6), the parameters of exponential convergence {X(s) : s e S} can 
be found as explicit functions of parameters J T ^ ) , . . . , n(sk), but the formulas are 
too heavy to be stated here. 

3. EXAMPLES 

Let us consider the situation described in Example 1, i.e., let us consider an arbitrary 
binary memoryless symmetric channel with a per-bit error probability s e S c 
c (0, 10~3) and arbitrary iterated code with parameters Nu N2 such that NXN2 < 
< 103. Then n(s) can well be approximated on S by n(s) = 1 — NtN2s. 

If S is open set then, by Theorem 2, 

(j a (A _ 1 { _ 1 I w h e r e i = L _ tt + ... + t„ 
NtN2 ' t + n NtN2 ' t + 1 ' n n 

is the maximum likelihood estimator of the unknown channel state. Since in this case 
the conditions of Theorem 3 are satisfied too, (7) is consistent estimator. 

If S = {s1; ..., sk], equationsl(y, 1 — N1N2si) = l(y, 1 - A^A^S;^), yield points 

y, = — , i = l ,2, . . . , fc - l 

l 0 f i y l - l V l l W l ) s . 
( l - i V ^ S , - ) ^ , 

defined in Lemma 1. Thus, by Lemma 1, a„(i) = sf iff nj(t + n) e (y^i,)',], i.e. 

(8) a„(t) = s ; iff - - 1 _ 1 < — 1 

y> y,--i 
is the maximum likelihood estimator of s e S. Since the conditions of Theorem 4 
are satisfied, (8) is consistent estimator for which the probability of incorrect identi­
fication of a true state tends to zero exponentially with increasing n. 

Contrary to this situation, if we consider the channel of Example 3, we see that, 
for general 5 c E2, n(s) = n(st, s2) is not one-to-one mapping. Multiplicity of solu­
tions to equation (5) is evident, but neither of the too many existing maximum 
likelihood estimators is consistent. If however one of the parameters is known in 
advance (or a functional dependence between them is supposed), then our theory 
can be successfully applied. 

(Received November 5, 1979.) 
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