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KYBERNETIKA — VOLUME /6 (1980), NUMBER 4

On Shannon — McMillan’s Limit Theorem
for Pairs of Stationary Random Processes*

ALBERT PEREZ

The aim of the present paper is to prove that the conditions for validity of the generalized
version of the Shannon-McMillan’s limit theorem for pairs of stationary random processes as
given in Perez (1972) are not only sufficient but (in a certain sense) also necessary. Moreover,
these conditions were replaced by similar ones, concerning finite-dimensional spaces.

1. INTRODUCTION

The classical Shannon-McMillan’s fundamental limit theorem concerns the
asymptotic behaviour of the probability of n-letter blocks produced by a discrete
stationary source. In the case of abstract-alphabet sources we replace naturally the
above probability by some probability density. Instead of individual sources we,
thus, need now pairs of sources, the one dominating (in the sense of absolute con-
tinuity) the other for every finite n.

Generalized versions of Shannon-McMillan’s limit theorem as developed by the
author from 1956 and followed by other authors (for a summary of this development cf.
Perez (1962)) concern, thus, the asymptotic behaviour of the corresponding Radon-
Nikodym density resp. of the entropy density, as called by M. S. Pinsker the logarithm
of the former. Since in the essence this theory contributes to the study of the asymp-
totic behaviour of the likelihood ratio, it is important as well for Information Theory
as for Mathematical Statistics (for instance, in generalizing the Chernoff’s result on
the asymptotic discernibility of two random processes; cf. Perez (1972)).

The aim of the present paper is to prove that the conditions for the validity of the
generalized version of the Shannon-McMillan’s limit theorem for pairs of stationary
random processes as given in Perez (1972) are not only sufficient but (in a certain
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sense) also necessary. Moreover, these conditions were replaced by similar ones
concerning finite-dimensional spaces.

This version arised in trying to overcome an insufficiency of Perez (1962), the
Lemma 2.2 of this paper being valid only under the condition of projectivity of the
system of measures it concerns, i.e. namely for dominating process of Markovian
type. In the general stationary case it, thus, arised the need to replace this lemma by
an appropriate one (cf. Lemma 2.1 of Perez (1972)). In the essence, the object of
my present paper is a further study of this Lemma, representing the crucial point
in the proof of the generalized version- of the Shannon-McMillan’s limit theorem
considered.

2. FORMULATION

Let (X, X,) be a measurable space (abstract alphabet). Let us denote by (X, ,, %, )
for r < s the measurable space X (X, %), (X, ¥,)=(Xo, Xo), i=r+1,r+2,...
i=r+1

..., 5, corresponding to letter sequences X, = (X,s1, Xp42, -0y Xg)y 1, = —00, ...
..., —=1,0,1,..., + 0. In the special case s = r + 1 we shall denote (X, ,, ¥, ) by
(X,, X,): it is the measurable space of the s-th “coordinate” x, of x = ...x_y, X,

Xy, ... . The measurable space of double infinite sequences will be denoted by (X, &)

(X, 2) = X (X, %),

i=—ow

Let P and Q be two stationary probability measures on (X, X). By P, jand Q,
we shall denote the restrictions of P and Q on X, , respectively.

Let for every finiten = 1,2, ...
(2.1) Pon < Qon

and denote by fo,(x) the corresponding Radon-Nikodym density.

In the sequel we shall be interested on conditions for which the following funda-
mental statement is valid.

Statement. The sequence

22) {% log f(,,,(x)}V1

converges in P-mean (to a function h(x) which is invariant with respect to the shift
transformation T).



Obviously, if the statement holds then

n—w M

(2.3) lim 1jlogf0,‘ dP = lim ! H(Py,, Qou) :Jh(x) dP = /£ < o0,
no N

i.e., the generalized (relative) entropy rate of P with respect to Q exists and is finite.
In other words, condition

Q) lim L H(Poy, Qo) = 4 < oo

nso R

is necessary for the validity of the Statement.

In the sequel we shall suppose that the conditional probability functions on X,
given x_, 4 (i.c. measurable with respect to the o-algebra X_, o) corresponding to P,
pe(*]x-n0), and to @, po(*[%-,.0), are regular forn = 1,2, ...

Let us introduce the probability measure PQ_, o, on X_,, generated by P_, ,
and po(*/x_, ) in the following manner: for E € X_, , and F € X, define the set
function*)

(2.4) PQ_yor(E x F) = J Po(Flx-n0) dP_ o .
E

PQ_, 0,1 is then defined as the unique extension on the whole o-algebra X_, , of
the above set function.
It, obviously, holds for n = 1,2, ... (cf. (2.1))

(2.5) Poyy R PQoyon

Let us denote by g,(x) the corresponding Radon-Nikodym derivative.
Then one may write (putting foo = 1)forn = 1,2, ...

1 1 n=1 1 n—1
(2-6) - Ingon(x) = - Z (105f0k+1(x) - IngOk(X)) = - Z log gk(Tkx)
n R k=0 nk=o0
since
Joxs1(x) = g,(T*x) (by taking gy(x) = fo,(x)).
fok(x)
Given the stationarity of P, on the base of (2.6) one obtains
10 1 protop . .
@7) _J log for 4P = - H(Pow Qo) = 5. J log g,(T*x) dPT* =
n =

*) Note that pQ(./x_,,io) exists not only as. [Q_, o] but also as. [P_,ol, n=1,2,...
(finite) since by assumption P_, o € Q_, o for every  finite.
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p -l prot
=-3 “log g(x)dP == Y H(P_, 1, PO _,0.1) -
n k=0 ] f1 k=0

U |

By the first sum Cesaro theorem, if the following limit exists
im HP 1, PQyo1) = 4
then also

tim L H(Py, 00) = 4.
n

In the sequel, condition (i) shall be replaced by assumption

(i) limH(P_, , PQ_,0,) =4 < .

Further, provided that the sequence {log g,},>, converges in P-mean to some
limit G(x), on the base of (2.6) and the stationarity of P one may write for some
integrable function h(x)

dp = f

n—1
-’1; Y log (") - hix)| aP <

(2.8) f ‘% 10 for(x) — h(x)

= J‘y‘_l(log gdT*) = G(T*x)) dP + j P 'Y 6(1%) - W ap <
n K=o n k=0
< %z‘ J Jlog 9.(x) ~ G()| dP + ”"1 'S 6(T%) - h(x)] P

n-1
If now, h(x) is the limit in P-mean of (1/n)}, G(T*x), which according to the
k=0

well-known ergodic theorem exists since G(x) is P-integrable, one obtains from (248)
that also the sequence {1/n log fo,(x)},, converges in P-mean to h(x) so that the
Statement is fulfilled.

Our attention may, thus, be concentrated on suitable conditions ensuring the
convergence in P-mean of the sequence {Iog g,)(x)},,g 1

Indeed, this is the object of Lemma 2.2 of Perez (1962) (valid for the case of pro-
jectivity of the system of probability measures {PQ_, o }uznu 1.¢. for the case of
Markovian Q) which in the general stationary case was replaced by Lemma 2.1
in Perez (1972).

Lemma 2.1 (Perez (1972)). If

ey Pol*[X-w,0) = :ifzpe('/xwﬂ) as. [F]



(so that PQ_, o, is a probability measure)
)] H(P_ 1, PO_0,1) < 0,

lim (], dPolx:/X- o) ~0*
3 log LR Tz0.0l 4p = 0 *)
( ) J dpQ(x]/x—n,O)

n—oc
then the sequence {log ¢,(x)},»; converges in P-mean. In particular,

(2-9) lim H(P—n.l, PQ—n,o,l) = H(P—m,p PQ—oo,D.l) =

= lim ! H(Pg i Qo) = £ -

n—-x N

Proof. (new)

exists under (2)

e,
4, =J log ii‘&' - —log ,f.ggg, dpP =
dPQ_ 01 dPQ 40,1
B ﬂlog dprxifx-cg) o 9PA51[%-n0)) gp
dpQ(Xl’x—m,O) dPQ(xll'an,o)
= ﬂlog dpp(afx-0) _ 10 WPo¥1/X-s0)] 4p <
dpP(Xl/x—n,O) dPQ(X1/x—v|,o)
!
§ﬂ1 g Prlnl¥-00)) 4p +Jlog SZCITLER/
dpP(XI/x—n,D)

dpo(x1/X-n,0)
One, thus, under (3) derives that 4, — 0 iff

lim Jﬁ dPP(xl/)‘— oo,o)

dP =0
dpP(xl/x‘n,O)

log

or, equivalently, iff

(2.10) lim jlog dpelifx-s0) gp = o,
dPP(Xl/x-n,o)

n—o

*) By introducing the probability measure PO, on ¥_,,; by PO\, 1(E x

x F) = [g po(F[x_0)dP_o o for E€X_, ,, Fe¥, as extension of PQ_,,
condition (3) may be written (implicitely assuming: PQ_ o, < PO

n,0,1
(3') lim J ‘%Ll

lo —
a0, ,

dP = 0
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306 since the integral in (2.10) represents a generalized entropy, so that, according to the
well-known Pinsker’s inequality,

[ dpp(x[x - 0.0)
J dpP(xl/x—n,D)

+T \/(j L ZCHLERYY dP> )
dPP xl x—n.O)
Combining (2.10) with assumption (3) it reduces to prove

Lim J(Iog dpr(xlfx—aog) — 1o dPQ(xl/’}_g,g)) dP =0
dpp(x1/x -y 0) dpo(*1/%-n,0)

dp < J‘Iog dpelaf*- ) gp 4

log
dpP(xl/ —n, 0)

n—+wo
or

(2.11) lim H(P_, 1, PQpo.1) = H(P_ 0,1, PO 0,1)

n—o

what is also a necessary condition for 4, — O since it means

5, = [(10g dPows  _ Jog 4P s )dP—» 0.
J dPQ_ 0.1 dPQ_, 0.

If, now, PQ‘%), denotes the restriction of PQ_,, o yon¥X_, ;,since P_, ; < PQ'),

-n,1

(resulting from P__; < PQ_, o, which holds under assumption (2) H(P_,, ,,
PQ_4.0,1) < o) one may write
dP_, s dP_, T log dPQ®),

212 lo = lo
@12 BP0y are, T BaPo_,,,’

so that

(@)
S, = J(log AP _ log dP*(';’) — log - dPO%e )dP.
dPQ_ 0.1 dPQ=0 dPQ 0,1

Since, on the other hand, under (2)

(2.12) ~[

(cf. Lemma 2.2 of Perez (1962)) it results: §, — 0 and, thus, under (2) and (3)

log LLEER! — log dP'(:'c)l
dPQ_ 0,1 dPQ;

dP - 0

4P, dP > 0.

(2.13) 4y +0 iff 4, = Jlog
dPQ_, 0.1



Let us denote by B, the quantity figuring in (3) (without | |)

[, dp (x1/x— 0) J‘ dPQ_, 0,
2.14) B, =J10g¢ Xo00) gp = |log S0 gp of. (3)).
( dpQ(xl/x—n,O) dPQ(—a:x).O,l ( ( ))

We obtain immediately

(2.15) A,=HP_,;,PQ_,0,) — HP_,,, PO,

(2.16) B, =H(P_, ., P 1) — HP_ 1, PQ_ . 01)
Denoting

1) arg "

we obtain the expressions (cf. (2.13) and (2.14))

(2.18) A, = flog Epfsu] Xy i} dP

(2.19) B, = Jlog s, dP = Jlafp {logs,|%_,,}dP,

where by &,{ | X_, ,} we denote the conditional expectation corresponding to P
and measurable with respect to X_, ;.
By Jensen’s inequality, since log is a concave function, one obtains

(2:20) &pflogs, | X_,.} < log &pfs,| X_, 1}
so that
(2.21) A, 2= B,

From (2.15) and (2.12) we obtain

(222) imd, =0mH(P_,,, PQouo,1) — H(P_ 1, PO 0 0.1)
n—*cw n—
lim 4, = li_rnH(P_,,'l, PQ—n,o,l) - H(P—w,x» PQ-w,o,l)

Since, one the other hand,
H(an,h PQ-n.l),l) é H([’Aoo,p PQ’L«;),O,l)’
it follows from (2.16) and (2.22) that

(2.23) I A, < T B,

n~ o n= o
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lim 4, £ lim B,

P, n—ow

Now, comparing (2.21) and (2.23) we obtain

(2.24) Jim A4, = Iim B,
lim 4, = lim B,

By assumption (3), however, we have lim B, = O and, thus, from (2.24) we obtain
n-o

lim 4, = 0, what, according to (2.13), completes the proof of the lemma (cf. (2.11)).

[y
Q.E.D.
In the next section we shall prove some stronger results.

3. SOME NEW RESULTS

The following theorem represents a stronger version of the Lemma 2.1 (Perez
(1972)) proved in a new way in section 2.

Theorem 1. For well-defined probability measure PQ_ , , ; for which it holds

() H(P_y1, PO_01) <

the condition

(ii) lim ||log dPQ;‘”M P=0
"o dP0),

(where PO'%), , is the extension on ¥_,, ; of PQ_, ,, defined by
POR0s(E % F) = | pelFle o) 0P
E

for EeX_ o, FeX,) is necessary and sufficient for the convergence in P-mean

of the sequence
{log 4P ""——} .
dPQ_,0.1)nz1

Proof. The sufficiency was aiready proved in Section 2. As to the necessity of (ii)
it is proved as follows. We have (cf. (2.12))

) 4, = J{log dP_, 4 ~ log dP_, ,
dPQ_ 40,1 dPQ_, 0,1

dP =




dpr_ dpPQ)
gi‘p:ll,, — log — (:ﬂ‘ log — g-ml
dPQ_ 0,1 drPot, dPO_ 0.1

= f lo
()

Let us introduce the probability measure 17,,,<1 on X_, , by extending P_, , as
follows.
o dp.
(3.2) PE(E) = [ &

£ dPQY),

dPQ_ 50,

EeX_, ;. As,in Section 2, PQ,’f,’)1 is the restriction of PQ_, 5 on X_, ;.
It holds form = 1,2, ...
(3.3) P <PS)

Indeed, let
C, = {,( 9Pl 0}5 X,
dPQ_, 0.1

P(—Tl(cn) = P~uo‘l(Cn) = P—n.l(cn) =0.

Then

If for some set Ee X, it holds P, ;(E) > O then
Powi(B)=P_ (E-C)+P 4 (EnC)=P_,,(E~C)>0.

Since, on the other hand, P_,, ; < PQ_, o, (according to assumption (i)) it
follows that
PQ «;o.l(E — C,,) > 0.
But then

Pﬁh@):ﬁﬁuﬁ~co=J IPont 4pg_4i >0

£-c, APQY;
and, thus, (3.3) is proved, the corresponding Radon-Nikodym derivative being

dP i _ APy [P,

(3.4) — = / el
dP%), dPQ_, o,/ dPQ),

Thus, (3.1) may be written

dp dPQ“)
(35) 4, = ﬂlog — =t —log APOns
4P dPQ_, 0.1

dpP.

If 4, = O, then in particular

(3.6) Unlj

n-r oo

dPQ),
dPQ_, .,

fog dP = 0
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since it helds also

()
(3.7) 'f Ilog P00l 4 < 4, + [Jlog 2] gp
dPQ_, 0. dP(f,’,)J

and
(38) lim Alog Puslyp - o

' "WJ P, s
due to the fact that the entropy

HP_ . P = [log ozt ap < H(p

—w.1> Pn) = |log ape = H( —0, s PO 0.() — H(P_, 4, PQ

converges to zero under assumption (i).

(Remark. What is just proved (cf. (3.5) and (36)) says more: A necessary and

sufficient condition for 4, — O is (3.6) under assumption (1))
From (3.6) in particular it follows

()
lim 4, = lim flogm;"" dP = 0

n= o n= o

so that by (2.24) [proved under (i)]

(3.9) lim B, = lim Jlog QQ:MJ dP =0
a e dPg=),
= lim J log s, dP (cf. (2.17))
Thus, for proving (ii), i.e.

(ii) lim ﬁlog s,|dP =0

n— o
it is sufficient (cf. (3.9)) to prove that
(3.10) limj logs,dP = 0.

noo Joz1

On the base of (3.6), i.e. of

lim J'log Epl{sifX_,,}|dP = 0



we have

(A1) lim J log Ep{sufX_na) dP = O (cf. (220)).
&pllogsn/X —n,1}20

n~a@

But (Jensen’s inequality and log concave)
0= J logs, dP < J‘ &p{logs,/X_, }dP <
snzl Eptlogsn/E-n,1}20

< log &4{s,/X_,,} dP - O

jrﬁr“ﬂgs"/?{ -n, 1120

according to (3.11). Thus, (3.10) is proved and this completes the proof of the theorem.
Q.ED.

Theorem 2. Under Py, = Q,, (1 £ n < ), a necessary and sufficient condition
for the convergence in the P-mean of the sequence

o,
log "%t
dPQ_,0.1) ~

is the fulfillement of

j lim H(P_, ., PO _, =4 < ©
n,1 50,1
and
. . dPg™), |
lim log ——="™m24 dP = 0O
(1) MWJ & apg=)

(where PO, | is the probability measure on X_, , obtained by extension of
PQ_, 0,1 and defined through

PO, A(E x F) = j PolFl%-n0) dP— o
E

for EeX_, 4, FeX)).

Proof. For proving the sufficiency of the pair (j) and (jj) we may proceed as in
the proof of Lemma 2.1 in Section 2. The only difference is that instead of 4, —» 0
we have to prove that (m > n)

dP_
og ———™1  _Jog___""

mM=J1
PO oy CdPO

for n > oo (and, thus, m — o).

LN dP - 0
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Under (jj), it reduces to prove

lim §,, =0,
nm—m

Sym = J‘<]0g ,,.951'1'41 - — log dP;H) dp =
dPQ_, 0.1 dPQ_, 0.4
= H(P‘m,l’ Pme,o,J - H(P—n,l’ PQ-n,G,l)’

what takes place according to (j).

As to the necessity of the pair (j) and (ji), it may be reduced to the necessity
proof of Theorem 1, where the role of PQ_ 40,1 is played by the following proba-
bility measure: 4,,, — 0 means that there is a limit function G(x) such that

log 4P _Gldp=o0.
dPQ_, 0.1

(3.12) lim[

n=rom

Observing that under assumption Py, = Qo, forn = 1,2, ...
P—n,] =PQ- 10,1

(and not only P, ; < PQ_,, , used up to now) we define PQ_, o, by

(3.13) PO, 04(E) = .[ e 9dP_,
E
for EeX_, ;.
Then
G = log 4P
dPQ 0.1

and (3.12) gives in particular

lim H(an,la Pern,0,1) = II(P-w,lv PQ—@,O,I) .

Now, this limit is moreover necessarily finite if 4, ,, — 0. Thus, for the PQ_,, 4,
as defined by (3.13) condition (i) of Theorem 1 is satisfied. But under this condition
(equivalent under our special definition of PQ_,, o, to condition (j)) the condition
(if) (written for this PQ_, ¢ ,) is necessary for 4, — 0 (written for this PQ_, o,;)
or 4, — 0. But condition (ii) implies condition (jj) since

PO
‘10 PPl 4p < [llog P01l gp 4
dP@% 0,1

log dPO_ 501

dPQ0,4

g ~
dPO%0,

log




(Remark that all the P07, ;’s are equivalent to P_, ; and, thus, equivalent also
to PQ_., ., as defined by (3.13), so that all the densities above exist).

Thus, condition (jj) is also necessary. This completes the proof that conditions (j)
(jj) are also necessary. Q.E.D.

4. REMARKS

1) On the base of definition (3.13) we obtain

(4.1 PO_ . oi(E x F) =J cOdP_, =
ExF
=J e ¢ dPP(xﬁ’x—'f‘o) dP_ 0 Zj dpQ(xlfx—u:,O) dP_p 0 =
EXF ExFr

= LPQ(F/Lwﬁ) dP_

for EeX_,, and Fe X, defining

(2) polFlx-0 o) = J R R LI X ATy
.

Thus, we see that PQ_ . , , as defined by (3.13) has the form of PQ_, ., so that,
by extension, it is denoted in a similar way.

2) The question arises:

In what extent po(*/x_,,,) as defined by (4.2) corresponds to po(*/%-u0) =
=1im po(*[x-,,) a.s. [P] as taken in condition (1) of Lemma 2.1 (Section 2).

We have [P]

dpQ(xl/X-n.()) - dPQ—u,M _ i

dpP(x1/x~n,0) dP_, , In )
Thus,

(4.3) Po(Flx_, o) = j 1 dpp(xy[X-p0) = j €™ 5 dpp(x,[x_n0) -
F Y F

Now, under {log g,},>, converges in P-mean to G = log g we have, in particular,
log g, — log g in P-probability = g/g, — 1 in P-probability.
Since, on the other hand,

Po(*)%_0) = Po(*[X-w0) as. [P} or

313
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M‘_/x_—“"_o) — as. [
dpp(X1/X-p0) : =1

it follows that

e —em e in P-probability
dpQ(xl/Xvn,O) In dpl'(x]/xAn,O)

or
log dpQ(Xl/anc,O) 50
dPQ(x1/x—n<o)

But this is derivable directly from the necessary condition (ii) or (jj):

(i) Jllog drelifx-woll 4p ,
dpo(xy/x-n0)

It seems that condition (1) in Lemma 2.1 (section 2) is superfluous. Condition (3)
must however be formulated as follows: “let there exists a.s. [P] a conditional
probability function po(-[x_., o) such that (3) resp. (ii) holds”. Condition (2)
resp. (i) must then follow condition (3).

in P-probability .

(Received December 22, 1979.)
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