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KYBERNETIKA — VOLUME 70 (1974), NUMBER 5

Number of Alternatives in Reducing
Finite Spaces and Vector Spaces

LiBUSE BALADOVA

In this paper the number of different partitions of finite spaces and of r-dimensional vector
spaces is given, as well as the number of all partitions, if a non exhaustive method is used. Rela-
tions between the corresponding numbers of partitions of both methods are presented, too.

A. Perez fomulated the following problem: Let X, be a finite space with
or an n-dimensional vector space.

Let %, m < n, be any partition of X, in m disjoint sets, resp. any cylindric parti-
tion of the n-dimensional vector space X,, which corresponds to the rejecting of
n — m coordinates of X,,.

Let R(@/ ) be a real valued function of &

X

=n

n

m o m = 1,2, n, where %, = X,. Let

max R(#,) = R, = R(¥x).
Y
m=1,2,....n

The original task is to determine a maximizing %, among all the (admissiblc, if
it is required to respect some given constraims) Y ,.’s.

The exhaustive method requests to consider all the possible alternatives of %, to
calculate the respective R(%,,) and to compare them in order to find some Y .

Since the number of all possible alternatives grows very quickly with n, the ex-
haustive method will be, in general, unpracticable. This situation leads to approxi-
mative non-exhaustive methods.

One such method is the following: Take in the first step, m = m — 1 and let %,
be a maximizing (admissible) partition, i.e.

0
a—1

R(#y_,) = max R(#,_,) .
Yn-1
In the second step, take m = n — 2 and let #y_, be a maximizing (admissible)
subpartition of #°_,, i.e.

R#_,) = max R®#,_,),

etc. ¥y -2 subpartitin of ¥, ¢



In the (n — m)-th step, take m = m and let P be a maximizing (admissib]c)
subpartition of @2, ,, i.e.

R(#7) = max R(#,) .
Y subpartition of 0+ 1
Finaly, let m, be such that
0
R@),) = max R(#)) .

In general, ¥, + ¥ and R(#5)) < R(%y) = Ro.

o
However, there are cases where the equality is approximately attained in the
inequality above (e.g. the case of minus a-entropy of P with respect to Q). The problem

formulated by A. Perez is to compare the numbers of alternatives to be considered
in the exhaustive and non-exhaustive methods above.

1. NUMBER OF REDUCTIONS OF FINITE SPACES

Definition 1. Let 1, n be fixed, m < n. A reduction of a space X, with !X,,l =nis
a partition

@m = {Yl« cees Ym}

of the space X,, when the following is valid:

Y X =

i "o 4

L..,m,

YinY; =0 for i+j,

k3

Y, =X
1

N
i

Let m < n be fixed. Let V, , be the number of all different partitions %, of the
space X,

Theorem 1. For n =2 m = 1 the following formula holds:

m

- - n!
1 Viw =2
M S 0 N, (e DKy, (ko (kY2 ... (kY ngtoon,
where
N, ={(ny,...n):n; >0, i=1,

PR+ = m},

Ky k) k>0, kioy <k, i=2

I

It
[§
= ((kre e

nky + ... +nk,=nVng,..,n)eN}.

(For some r and N, the Ky, sets may be also empty.)

SRR %



Proof. Formula (1) follows from the fact, that for fixed ki, ..., k, such that
ki + ... + k;, = n, where n; of k; are the same, the number of all partitions is:

R A A YL R n—ki—..—ky.,
ng!..on I \k} ky )7 kp_y '

If we denote the same kj by k;, we may write the last expression as:

n!
mloond (k) (D

Especialy we can deduce from formula (1):

s (o) O

k=""1 N—1 for n odd,

n

where we put( ) =0forn—j<0

n—=1]
Let P, ,, be the number of all different partitions, if the mentioned non exhaustive
procedure is used.

Theorem 2. Let be m < n. Then

0 () )



Proof. By (1) the value of ¥, ,_, is equal to (g) andV,,_, = P, - As weform
in the mentioned non exhaustive procedure the partition @, ,_, forn = n,n — 1,...
..., m + 1, the formula (2) is valid. v

Some useful recurent formulas follow from (2):

(3) Pipw=Po i+ (f:),

m + 1
Pn,m=Pn,m+1 +( 5 )a

P,=P,+ P, for m<k<n.

Values of P, ,, and ¥, ,, for some n and all m < n are shown in Appendix. Of
course, we are not justified to compare directly the value of P, ,, and ¥, ,,, but we may
do so for the value of P, ,, and R, ,,, where R, ,, is defined by:

n—m

Rn,m = Z Vn,n—k .

k=1
Theorem 3. The following relations are true:

R3,1=P3,1
and
R,w>P,, for n>m+1, n>3.

Proof. For n = 3 we may calculate it directly, and then we prove it by means of
mathematical induction. Let be n > 3, fixed. For the first step we take: My, = n — 2.
Then

R ~Poyz =Voper + Vauez = Popey — Procipen =

=("Y+3("V-("" ! >0.
3 4 2
So for the first step the assertion is valid. With next steps m diminishes. We sup-

pose therefore the validity of the assertion for m = k, and we proveitform = k — 1.
ItisR,,_; = R, + V, -4 and from (3):

nn-2

k
Rup—y = Prjmy = Ry + Vaoy — Py — (2)
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450 By assumption, itis R, , — P,, > 0, so that we must prove:

Vak—1 — (]2(> z0.

Itmustbem > 1,ie. k — 1 2 1, therefore k 2 2;for k = 2isV, ,_; — <12€) =0.

For k > 2 V, .., contains the member with k; = 1, n; = k — 2, k; = n — (k — 2),
#n, = 1, which is:

T e e el PR X

Since n > m + 1,sothatn > k — 1 + 1 = k, hence (k " 2) = <k> and V, . 2
k

> , q.ed.

> (2) a

II. NUMBERS OF DIFFERENT REDUCTIONS
OF n-DIMENSIONAL VECTOR SPACES

‘We denote a vector space of n dimensions by X, so that:

X, =2, x2Z,x..%x2Z,,

X,= U {(z1, 22, .. 20)}

z1eZs,

Zn€Zn

Definition 2. Let be m < n. A reduction of an n-dimensional vector space X, is
a cylindric partition

Y=Yt =Yy, Y,

of the space X,, when the following is valid:

Y, =X4,,
i=1
where
A7 ={z} for i+k;, j=12,...,n—m,

Ay, = Z, for j=12,...,n—m.

Let m < n be fixed. Let W, ,, be the number of all cylindric partitions %, of the
n-dimensional vector space X,,.



Theorem 4. Let be m < n. Then

n
e (1)
m

The value of W, , is obviously equal to the number of all possible groups of n — m

. . . . . n i
coordinates which we reject from n coordinates, i.e. = .
n—m m

Let m < n be fixed. Let Q, ,, be the number of all cylindric partitions, resulting
from n-dimensional space X, when the non exhaustive procedure, mentioned above,
is used.

Theorem 5. Let be m < n. Then

n+m+1
@ Qu = EIEL(

n—m).

The value of W, ., is equal to n and as we form in the mentioned non exhaustive
procedure the partition %, _, for n = n, n — 1,..., m + 1, the following equation
holds:

Quw=n+n—1)+ ..+ (m+1),
it means, the formula (4) is valid.

Analogous recurent formulas, as for P, ,, are valid also for @, . We mention the
most useful one:

(5) OQuw = Qumar + 11+ 1.
Let m < nand let S, , be defined by:

Sym = Z Won-k -
k=1

Then

© aw1=am+(’l)
i — 1

and

Qn_n—l = Wn.n—l = Sn,n—l
immediately follow.

Theorem 6. Let be n > 2. Then

Spm > Qum for w>m+1.
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452 We prove it analogously to Theorem 3:
Spn-2 ™ Qa2 = i + " —n—(n—-1)>0 for n>2.
n—1 n—2
From (6) and (5)
n
Sap—1~ Qug—1 = Spp + (k _ 1) = Qi — k=

n(n —1)...[n—(k-2)] —k(k — 1)...2.1

=8, — O+ >0
" " (k — 1)
follows, because n > m + 1,ie.n > k + L.
APPENDIX
m Pim | Vam 1 R3m m l Pym ; Vam | Ram
PR S S — R

2 3 3 3 3 6 6

1 4 1 4 2 9 7 13
1 10 1 4

m | Pspo | Vsm Rsm m Pom | Vom R.m

i i - o

4 10 10 10 5 15 15 15

3 16 25 35 4 25 65 80

2 19 15 50 3 31 90 170

1 20 1 51 2 34 31 201
1 35 1 202

m Pim l Vi | Rim m r Py m t Va,m ’ R \m

6 21 } 21 21 7 28 . 28 28

5 36 140 161 6 49 266 294

4 | 46 350 S11 5 64 1050 1344

3 i 52 301 812 4 74 1701 3045

2 55 63 875 3 80 966 4011

1 56 1 876 2 83 127 4128
1 84 1 4139

i




m ‘ Py m l Vo,m Rg,m
8 36 36 36
7 64 462 498
6 85 2646 3144
S 100 6951 10095
4 110 7770 17865
3 116 3025 20890
2 119 255 21145
1 120 1 21146
m i Q3.m i W3m ‘ S3,m
2 3 3 3
1 5 3 6
i
m i Q5.m W5 m Ss5,m
i
-_T, SR
4 | 5 5
3 9 10 15
2 12 10 25
1 14 5 30
m ’ Q7m i Wam S7m
6 7 ‘ 7 7
5 13 i 21 28
4 18 35 63
3 22 35 98
2 25 21 119
1 27 7 126

m ! Piom ‘ Viom ‘ Riom
9 ' 45 4s 45
8 81 750 795
7 109 5880 6675
6 130 | 22827 | 29502
5 | 145 | 29925 | 59427
4 ‘ 155 | 34105 | 93532
3 161 9330 | 102862
2 164 st1 | 103373
1 165 1 103374
|
m ‘ Qum & Wam ' Sqom
3 4 ' 4 | 4
2 7 6 10
1 9 4 14
m } Qom | Wom | Som
5 | 6 | 6 6
4 [ 1 ’ 15 21
3 15 20 41
2 18 ' 15 56
1 20 | 6 62
m ! QB,m { W8.m ’ Ss,m
. I
7 8 ‘ 8 8
6 15 | 8 36
5 21 56 92
4 2% ‘ 70 162
30 | s 218
2 RO e 246
1 \I 35 8 254
|
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m } Qo om \ Wo.m So.m m Qro.m on,ml S10,m
| ( | |
8 9 | 9 9 9 0| 10 \ 10
7 17 36 45 8 19 45 55
6 24 84 | 129 7 27 120 | 175
5 30 | 126 255 6 34 210 ‘ 385
4 35 1126 381 5 40 252 637
3 39 | 84 465 4 45 210 847
2 a2 | 36 501 300 4 120 | 967
1 4 9 510 27 s 45 | 1012
! Lo ©o1022
; ‘ i i |
m Q0m | Waom | Saom
| ;7*¢A777
19 20 20 20
18 39 190 210
17 57 1140 1350
16 74 4845 6195
15 920 15504 21699
14 105 38760 60459
13 119 77520 | 137979
12 132 125970 | 263949
11 144 167960 | 431909
10 155 184756 | 616665
9 165 167960 © 784625
8 174 125970 | 910595
7 182 77520 | 988115
6 189 38760 | 1026875
5 195 15504 | 1042379
4 200 4845 | 1047224
3 204 1140 | 1048364
2 207 190 | 1048554
1 209 20 | 1048574
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