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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 5 

Number of Alternatives in Reducing 
Finite Spaces and Vector Spaces 

LIBUSE BALADOVA 

In this paper the number of different partitions of finite spaces and of n-dimensional vector 
spaces is given, as well as the number of all partitions, if a non exhaustive method is used. Rela­
tions between the corresponding numbers of partitions of both methods are presented, too. 

A. Perez fomulated the following problem: Let X„ be a finite space with \X„\ = n 
or an ra-dimensional vector space. 

Let °ym, m ^ n, be any partition of X„ in m disjoint sets, resp. any cylindric parti­
tion of the n-dimensional vector space X,„ which corresponds to the rejecting of 
n — m coordinates of X„. 

Let R(^/m) be a real valued function of <3/m, m = 1, 2, ..., n, where <&„ = X„. Let 

max R(®/„) = R0 = R(&m) . 

m=l ,2 , . . . , n 

The original task is to determine a maximizing <3tm among all the (admissible, if 
it is required to respect some given constraints) <&ms. 

The exhaustive method requests to consider all the possible alternatives of <W„V to 
calculate the respective R(<Wm) and to compare them in order to find some <Wm-

Since the number of all possible alternatives grows very quickly with n, the ex­
haustive method will be, in general, unpracticable. This situation leads to approxi­
mative non-exhaustive methods. 

One such method is the following: Take in the first step, m = m — 1 and let <&°_, 
be a maximizing (admissible) partition, i.e. 

R^l-i) = m a x R ( f „ _ , ) . 
9„-i 

In the second step, take m = n — 2 and let <3t°-2 be a maximizing (admissible) 
subpartition of ^ ° _ ! , i.e. 

e t c R«-2)= max R(®n-2), 
ClV" ^ n - z s u b p a r t i t i n o f * ^ - ! 



In the (n — m)-th step, take m = m and let <Wm be a maximizing (admissible) 447 
subpartition of <3/m+l, i.e. 

R(Wm) = max R(<Wm). 

•3/,„ subpartition of «">,„ + 1 

Finaly, let m0 be such that 

R{<3/°J = max R«) . 

In general, ^° , 0 + «7fl and R(^,°,0) _i R($ts) = R0-

However, there are cases where the equality is approximately attained in the 
inequality above (e.g. the case of minus cc-entropy of P with respect to Q). The problem 
formulated by A. Perez is to compare the numbers of alternatives to be considered 
in the exhaustive and non-exhaustive methods above. 

I. NUMBER OF REDUCTIONS OF FINITE SPACES 

Definition 1. Let m, n be fixed, m < n. A reduction of a space X„ with |X„| = n is 
a partition 

<Wm = {Y,...., Y„,} 

of the space X„, when the following is valid: 

Y;<=X„, i = 1, . . . , m, 

Y. nYj = 0 for i + j , 

U Y: = X„. 
r = 1 

Let m < n be fixed. Let V„m be the number of all different partitions <&m of the 
space X„. 

Theorem 1. For n > m > 1 the fallowing formula holds: 

(1) y_ _ = J] X7 --

r = l («,, . . . ,nr)EAV (* 1 , . . . ,MeKjv r ( fc 1 ! ) B 1 ( fc 2 ! ) " 2 . . . (fc r!)"" « ! ! . . . « r ! 

w/ie?-e 

JVr = {(«,, ..., nr) : n, > 0, i = 1, ..., r, n t + . . . + nr = m} , 

i_Nr = {(fc,, ..., kr) : fc; > 0, fc;_, < fc;, i = 2, ..., r, 

n,fc! + ... + «rfcr = n V(nls ..., nr)eiV,.} . 

(Tor some *• and Nr the KNr sets may be also empty.) 



Proof. Formula (l) follows from the fact, that for fixed k\, ..., k'„, such that 
k[ + ... + k'm = n, where n ; of fcj are the same, the number of all partitions is: 

n \ / n - fc'\ (n - k[ - ... - k'm_: 

nil...nrl\k[)\ k'2 ) V K-i 

If we denote the same k'j by k-„ we may write the last expression as: 

n! 

«1!...«r!(fc1!)"'...(frr!f 
Especialy we can deduce from formula (l): 

- = ( K ) + +@-
/c = : , N = \ for n odd , 

k = — , N = \ for n even , 

,.-, = ©, 
3 j \ « - 4 

4 / V" ~ 5 / V» - 6 

—e)-c-^»[(.->(.-i 
where we put ( ) = 0 for n - j < 0. 

V" - // 
Let P„m be the number of all different partitions, if the mentioned non exhaustive 

procedure is used. 

Theorem 2. Let be m < n. Then 

(2) Ma") + (V) + " + ( m + 1 



Proof. By (l) the value ofV„„_1 is equal to I j and V„„_x = Pn<n-X- As we form 

in the mentioned non exhaustive procedure the partition tW„^„_ x for n = n,n — 1, ... 

..., m + 1, the formula (2) is valid. 

Some useful recurent formulas follow from (2): 

(3) J Y . - l . - i , + , . 

! • _ . - . , . , + . " + 1 

IVm = P*,* + A.m for m < k < n . 

Values of PB m and V„m for some n and all m < n are shown in Appendix. Of 
course, we are not justified to compare directly the value of P„m and V„m, but we may 
do so for the value of P„m and Rnm, where R„m is defined by: 

Rn.m="iVn.n-k-
k= 1 

Theorem 3. The following relations are true: 

^ 3 , 1 = ^ 3 , 1 

and 

Pn.m > Pn.m f0'" n > ™ + 1 , n > 3 . 

Proof. For n = 3 we may calculate it directly, and then we prove it by means of 
mathematical induction. Let be n > 3, fixed. For the first step we take: mmax = n — 2. 
Then 

K,n-2 - Pn,,~2 = V„,„-J + V„,„-2 - Pn.n-X ~ Pn->,n-2 = 

= (;) + 3( :w»-'.>o. 

So for the first step the assertion is valid. With next steps m diminishes. We sup­

pose therefore the validity of the assertion for m — k, and we prove it for m = k — 1. 

It is R„it_i = R„tk + V„yk_1 and from (3): 

-—-'—-"- + " - . - ' - - 6 



450 By assumption, it is R„k - Pnk > 0, so that we must prove: 

, . - , - © S o . 

It must be m ^ 1, i.e. k ~ 1 ^ 1, therefore k ^ 2; for k = 2 hV„ik.l - ( ] = 0 . 

For k > 2 V„j/c_! contains the member with fct = 1, nt = k — 2, k2 = n — (k — 2), 

n 2 = 1, which is: 

( f c - 2 ) ! [ n - ( f c - 2 ) ] ! \ f c - 2 

Since n > m + 1, so that n > k — 1 + 1 = k, hence ( ] ^ I ] and V„A^l ^ (ЛK) 
= (ľb 

II. NUMBERS OF DIFFERENT REDUCTIONS 
OF n-DIMENSIONAL VECTOR SPACES 

We denote a vector space of n dimensions by X„, so that: 

X„ = Z, x Z 2 x ... x Z„, 

X„ = U {(z 1 ,z 2 , . . . ,z„)} . 
z iєZi , 

Definition 2. Let be m < n. A reduction of an n-dimensional vector space X„ is 

a cylindric partition 

aym __ ^i,...,s„-,„ = {7 l 5 . . . ) y r j . . .} 

of the space X„, when the following is valid: 

Yr = x A i ; 

( = 1 

where 
A{ = {z;} for i + kj, j = 1, 2, ..., n — m , 

^ = z*, for j = 1, 2, ..., n - m . 

Let m < n be fixed. Let IY„m be the number of all cylindric partitions 9' m of the 

n-dimensional vector space X„. 



Theorem 4. Let be m < n. Then 

W„,„ = 

The value of W„,m is obviously equal to the number of all possible groups of n — m 

coordinates which we reject from n coordinates, i.e. 

Let m < n be fixed. Let Qn,m be the number of all cylindric partitions, resulting 
from H-dimensional space X„, when the non exhaustive procedure, mentioned above, 
is used. 

Theorem 5. Let be m < n. Then 

/„\ ^ n + m + \ , . 
(4) &,_„, = (n - m). 

The value of W„,„-l is equal to n and as we form in the mentioned non exhaustive 
procedure the partition <3t„_i for n = n, n — 1, ..., m + 1, the following equation 
holds: 

Qn.m = n + (n - 1) + .. . + (m + 1), 

it means, the formula (4) is valid. 

Analogous recurent formulas, as for P„,m, are valid also for (?„,,„• We mention the 
most useful one: 

(5) Q,,,m= Qn,m+l + m + 1. 

Let m < n and let Snm be defined by: 

Sn,m ="fwn,„-k. 
fc=l 

Then 

(6) S„,ra-1 = S„,„, 
\m - 1 

and 

Qn.n-l = W„,n-1 =S„,„-1 

immediately follow. 

Theorem 6. Let be n > 2. Then 

S„,m > Q„.m for n > m + 1 . 



452 We prove it analogously to Theorem 3: 

S„,n~2 - Qn.n-2 =( H ) + ( n ) - n - ( n - 1 ) > 0 for n > 2 . 

From (6) and (5) 

S.jk-1 - Q„,k-i = S„ik + / j _ Qnk - fc -

_ n(n - 1) ... [n - (fc - 2)] - f c ( f c - l ) . . . 2.1 

- *„,* - fi,, + - (fc - 1). ~ > ° 

follows, because n > m + 1, i.e. n > fc + 1. 

APPENDIX 

Л? ^з,
m 

Vъ.m *
3m 

2 3 3 3 

1 4 1 4 

m П,
m 

^ 4 ,
m *4,, 

3 6 6 6 
2 9 7 13 
1 10 1 14 

m ^ 5 ,
m 

^5,
m 

* 5 ,
m 

4 10 10 10 

3 16 25 35 

2 19 15 50 

1 20 1 51 

m Pв.m V6.m *Ь.m 

5 15 15 15 
4 25 65 80 
3 31 90 170 
2 34 31 201 
1 35 1 202 

m Pl.m Vl.m * 7
> m 

6 21 21 21 

5 36 140 161 

4 46 350 511 

3 52 301 812 

2 55 63 875 

1 56 1 876 

m PS.m Vs.m *8,„, 

7 28 28 28 
6 49 266 294 
5 64 1050 1344 

4 74 1701 3045 

3 80 966 4011 

2 83 127 4138 

1 84 1 4139 



m P9,m 
v9,m R9,m 

8 36 36 36 

7 64 462 498 

6 85 2646 3144 

5 100 6951 10095 

4 110 7770 17865 

3 116 3025 20890 

2 119 255 21145 

1 120 1 21146 

m Лo,m ^lO.m R10,m 

9 45 45 45 

8 81 750 795 

7 109 5880 6675 

6 130 22827 29502 

5 145 29925 59427 

4 155 34105 93532 

3 161 9330 102862 

2 164 511 103373 

1 165 1 103374 

m Öз,m ^З.m S
3
,m 

2 3 3 3 

1 5 3 6 

m e4,„, 'П,m Vm 

3 4 4 4 

2 7 6 10 

1 9 4 14 

m Ö5,„, ^5,m s5,m 

4 5 5 5 
3 9 10 15 
2 12 10 25 
1 14 5 30 

m Q6,m ^б.m S6,m 

5 Ć 6 6 
4 п 15 21 

3 15 20 41 

2 18 15 56 

1 20 6 62 

m Ö7,m 
" • ' -

S7,m 

6 7 7 7 
5 13 21 28 
4 18 35 63 
3 22 35 98 
2 25 21 119 
1 27 7 126 

m e 8 , m 
»'-.. Ą,m 

1 8 8 8 
6 15 28 36 
5 21 56 92 
4 26 70 162 
3 30 56 218 
2 33 28 246 
1 35 8 254 



m 09,,,, wg,m 
s9,m 

8 9 9 9 

7 17 36 45 

6 24 84 129 

5 30 126 255 

4 35 126 381 

3 39 84 465 

2 42 36 501 

1 44 9 510 

m QlO.m Щo,m 
5, 

9 10 10 

8 19 45 

7 27 120 

6 34 210 

5 40 252 ( 
4 45 210 í 

3 49 120 ( 
2 52 45 н 
1 54 10 к 

10 

55 

175 

385 

637 

847 

967 

1012 

1022 

m Ö20, m ^20,,,, •̂ 20,m 

19 20 20 20 
18 39 190 210 
17 57 1140 1350 
16 74 4845 6195 
15 90 15504 21699 
14 105 38760 60459 
13 119 77520 137979 
12 132 125970 263949 

11 144 167960 431909 
10 155 184756 616665 
9 165 167960 784625 
8 174 125970 910595 
7 182 77520 988115 
6 189 38760 1026875 
5 195 15504 1042379 
4 200 4845 1047224 
3 204 1140 1048364 
2 207 190 1048554 
1 209 20 1048574 
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