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KYBERNETIKA-VOLUME 23 (1987), NUMBER 2 

SELFTUNING LQ CONTROLLERS 
WITH PRESPECIFIED STATE 

MIROSLAV KÁRNÝ, ALENA HALOUSKOVÁ 

A design of simple selftuning LQ controllers (e.g. equivalent to a digital PID regulator) is 
proposed, based on a more complex model tljan corresponds to a prespecified controller structure. 
The core of the approach consists in the optimal transformation of the model to the form needed 
for the optimal design of a controller working on the prespecified part of a measurable system 
state. The standard selftuning setting is assumed, i.e. recursively gained point estimates sub­
stitute unknown parameters. In this way an attempt is done to make up for mismodelling errors 
and to gain a basis for comparing the performance of different strategies for simple digital control. 
The presented specialization to LQG problems with a multistep criterion is proposed for practical 
use in fixed controller adjustment. 

1. INTRODUCTION 

The power and price of hardware in conjunction with the need for more sophisticat­
ed controllers have stimulated growing interest in industrial application of adaptive 
controllers. The continuity of development naturally results in attempts to design 
three-term adaptive controllers. 

A variety of approaches have been tried. A lot of them are based on explicit 
identification of a simple model combined with some control design through the 
enforced separation. As a typical example simple LQ-selftuners of Bohm and co­
workers [1] can be taken. The limiting factor for this plausible way is mismodelling. 
Due to it instability may occur even for systems which can be successfully controlled 
by an ordinary three-term controller. The danger caused by mismodelling is now 
intensively studied, see e.g. [2]. Experience as well as theoretical analysis in the vein 
of [2] have shown that the problem can be resolved by a sufficiently rare sampling. 
This safe way is, however, paid (sometimes substantially) by the control quality 
achieved. 

Our aim when designing the adaptive controller described in the paper has been 
two-fold: 
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— to propose reference algorithm for robustness studies of different simple adaptive 
controllers, 

— to obtain the tool for automatic commission of standard three-term controllers. 
To this purpose suits the following straightforward formulation of the low order 
controller design: the objective function is optimized under the restriction that the 
optimal controller has to work on a prespecified state (for related idea see [3]). 

In contrast with former solutions, the system model used in our approach is 
obtained by the optimal reduction of a more complex model which is believed to 
fit system input — output behaviour. The complex model itself is gained within 
the standard selftuning setting, i.e. recursively evaluated point estimates substitute 
unknown parameters. The form of the controller design, which formally coincides 
with dynamic programming, implies that any suboptimal design described in [4] 
can be used with the model reduction proposed. 

2. CONTROL DESIGN WITH PRESPECIFIED STATE 

Let the quality of the closed-loop behaviour of the system with the finite-dimen­
sional measurable state x(t) and the system input u(t) be evaluated through the 
additive criterion 

(1) K(l..N) = Uiq(a(t),u(t)) 
N . = i 

where E(-) denotes expectation, q(-, •) a non-negative loss function, At a (finite) 
horizon and a(t) is a fixed part of the state x(t). Without loss of generality, we can 
assume that 

(2) {) kшi* 
In the sequel we shall adopt the following notation: 
p(a | b) = conditional probability density function (abbreviated c.p.d.f.) of a random 

variable a (at the point a) conditioned on b; 
£(a | b) = conditional expectation corresponding to c.p.d.f. p(a \ b); 

x(k.. I) = (x(k), x(k + 1), . . , x(l)) for / ^ k. 
The criterion (l) has to be minimized in the class of nonanticipative randomized 

controllers under the restriction 

(3) p(u(t) \x(l..t-l),u(l..t- 1)) = p(u(t) | a(t - 1)) 

The requirement (3) expresses the specificity of the formulated problem. 
The definition of state implies that 

(4) p(x(t) \x(l..t-l),u(l..t)) = p(x(t) | x(t - 1), u(t)) 

The system description (4) is assumed to be known. A possible imbedding of the 
results into selftuning context will be commented in the next section. 
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The following proposition justifies the application of dynamic programming 
even under the restriction (3), i.e. even when controllers cannot use the full state. 
Notice that a usual filtering is not permitted; past data a(). A — 2) are not included 
in the description of the admissible controllers. 

Proposition 1. Optimal controller minimizing the criterion (1) under the restric­
tion (3) can be chosen as deterministic feedback. Optimal inputs are minimizing 
arguments in the sequence of tasks 

(6) K*(a(t - 1)) = min E(q(a(t), 11(f)) +K*(a(t)) | a(t - 1), u(t)) 
"(0 

t = JV,N - 1,.., 1 ; K*(a(N)) = 0 

The minimum achieved is 

(7) K*(l..N) = U(K*(a(0))) 
N 

Proof. Apparently, 

(8) NK(1..N)=E£ q(a(t),u(t)) = 
t = i 

= l J ] W ) > "(0) P(a(t), <t)) da(t) du(t) 

The p.d.f. p(x(l. A - 1), u(\. A - 1)) is fully determined by the model (4), p(x(0)) 
and {P[U(T) | O(T — \))}\z\, thus its marginal p.d.f.'s {P(U(T), u(z))}xZ\ are not 
influenced by the rest of the control strategy. 
Thus it holds 

i - I 

(9) min NK(1..N) = min ( X E(a(a(t), U(T))) + 
1...N 1 . . . . - 1 T = l 

H-minE(^(« ( t ) ,« ( t ) ) ) ) 
r...JV t = ( 

where min (•) stands for minimization over {p(u(t), a(t - 1))}*=J-. 
j . . . k 

For ( = Wwe have to minimize the second term of (9) 

(10) E(q(a(N), u(N))) = | \q(a(N), u(N)) p(a(N), u(N)) da(N) du(N) = 

\q(a(N), u(N)) p(a(N) | a(N - 1), u(N)) p(u{N) | a(N - 1)) . 

. p(a(N - 1)) d«(JV - 1..N) du(N) . 

Notice that the p.d.f. p(a(N — 1)) is the marginal p.d.f. of p(x(l. .N — 1), « ( l . . 
. .N — 1)), thus, it is not influenced by the choice of p(u(N) \ a(N - 1)). If we define 

(11) K*(a(N - 1)) = min q(a(N), u(N)) p(a(N) I a(N - 1), u(N)) da(N), 
«(JV) J 
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then for minimizing M*(JV) and any admissible controller p(u(N) I a(N — 1)) we have 

(12) K*(a(N - 1)) = \K*(a(N - 1)) p(u(N) | a(N - 1)) du(JV) g 

g I |a(a(iV), «(iV)) p(a(JV) | a(N - 1), u(N)) p(u(N) | a(N - 1)) da(At) d«(At) 

However, for a controller with p(u(N) \ a(N - 1)) concentrated on u*(N) the lower 
bound in (12) is achieved. Multiplication of (12) by a nonnegative p(a(N - 1)) 
and integration over a(N — 1) imply that 

(13) min E(q(a(N),u(N))) = E(K*(a(N - 1))) = 
p(u(N)|f l(iV-l)) 

= |K*(a(iV - 1)) p(a(N - 1)) da(N - 1) = 

= |K*(fl(At - 1)) p(a(N - 1), M(JV - 1)) dafjV - 1) du(N - 1) 

Adding K*(a(N - 1)) to q(a(N - l), u(N - 1)) we are, for £ = N - 1, in the same 
situation as for t = N (with the sum K*(a(N — 1)) + q(a(N - 1), u(n — 1)) playing 
the role of q(a(N), u(N))). The procedure can be repeated up to time t = 1. The 
starting step coincides with the rest for K*(a(N)) = 0. • 

The next proposition links the full state model (4) with the model required in 
dynamic programming (6) and for a set of controllers to which the optimal one 
belongs. 

Proposition 2. For a deterministic-feedback admissible controller (3), the full 
and the partial state models p(x(t) \ x(t — 1), w(f)) and p(a(t) | a(t — 1), u(t)) are 
related by 

(14) p(a(t)\a(t-l),u(t)) = 

= j | p ( x ( 0 | x(t - 1), «(.)) p(b(t - 1) | a(t - 1), «(*)) db(t -1.J) 

where for controllers (3) it holds 

(15) p(b(t - 1) | a(t - 1), u(i)) = p(b(t - 1) | a(t - 1)) = 

= p(x(t-l)jp(x(t-l))db(t-l) 

and the p.d.f. p(x(t)) evolves according to the recursion 

(16) p(x(t)) = jp(x(t) | x(t - 1), «(*)) p(x(t - 1)) dx(t - 1) 

p(x(0)) known. 

Proof. Eq. (14), (15), (16) are direct consequences of the standard rules for 
c.p.d.f.'s and of the form of feedback. • 
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3. APPLICATION TO THE LQG PROBLEMS 

The required state space description with measurable state is assumed to result 
from recursive estimation of the linear normal regression model, see [5] for details. 
The completeness of the state can be (practically) guaranteed by using the theory 
of model comparison described in [5] and elaborated to algorithmic details in [6]. 
Feasibility of the resulting selftuning controller is reached by substituting point 
parameter estimates for unknown parameters of the system model. Consequently, 
the theory is elaborated for the case of the normal regression model with known 
parameters. The implications of a state transformation needed for the decomposition 
(2) will form the only link to unknown parameter case. 

Let the system with the /n^-dimensional output y(t) and m„-dimensional input 
u(t) be described by the linear normal regression model of the "order" / 

(17) p(y(t) \y(l..t- 1), «(1. . i)) = N(y(ř) | P' ž(t), RR') 

where N(y \ y, S) denotes the normal p.d.f. of y with mean y and covariance matrix. 
S. The assumed regression vector z(t) is of the form 

(18) z(t) = 

u(t) 

(t -1)_ 

Г -0 1] 
y(t-

u(t-
•1) 

1) 

y(ť-
u(t-

1 

•0 
•0 

iг — mu + 1 + l(гnu + my) 

the matrix P contains corresponding regression coefficients and R is the Cholesky 

square root of covariance matrix (lower triangular). The system is Markovian with 

the state x(t — 1) and the transition p.d.f. 

(19) 

with 

(20) 

p(x(t) | x(t - 1), u(t)) ш N (x(t) | Ã z(t), [** ' íÿ 

A = 

1 0 . . . 0 0 0 . . . 0 0 

0 1...0 0 0 . . . 0 0 

}гny 

(l - 1) (my + гnu) + mu 

0 0 . . .1 0 0 . . .0 0 
LO 0 . . .0 0 0 . . .0 l j } 1 

m„ + (/-l)(m„+mj,) mu + my 1 

The state x(t) is assumed to be such a linear regular transformation of the state 
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x(t) (18) that y(t) forms the first my entries of x(t), i.e. 

(21) *(*)-[jj]«(0 

Thus for 

(22) 

we have 

(23) 

with 

(24) 

(25) 

M-) I *(< - 1), «(<)) = N (*(,) | .4 z(,), [ * f ° ] ) 

^Fl!'"' 
|_DJ} Í'Z - my - mu 

D = F 
0...0 0 

[oIЧ 
}m„ 

0. . .0 0 . . .0 1 

mu + (l-l)(my + mu)my+mu 1 

where P is the appropriate linear function of P. The above simple algebra demon­

strates that for any transformation (21) parameters P of the regression model 

N(y | P' z(t), RR') can be identified and used for construction of a Markov model 

(23) according to (24), (25). The matrix D (25) can be computed beforehand. 

We shall restrict ourselves to the quadratic form of the criterion (1), i.e. 

(26) q(a(t), u(t)) = a'(t) Qa(t) a(t) + u'(t) Q,,(t) u(t) = z'a(t) Q(t) za(t) 

with 

(27) Qj,t)^0, Qu(t)^0, e(f) = diag(e„(t),Aa(t)) 

The kernel Q(t) is time-dependent in order to cover presence of the stabilizing 
term in criterion (1), i.e. usually 

(28) Q(N) = g 0 > 0 , Q(t) = Q >, 0 for t < N . 

By the choice (27) the regulation problem is formulated. It can be extended to other 
to the control problems in a straightforward manner. Such extensions are not pursued 
here to focus attention to the main topic of the paper. Also penalization of u(t) is 
used for the same reasons; the technically more sound penalization of Au(t) = u(t) — 
— u(t — 1) can be achieved by a suitable definition of x(t) with Au(t) in the role 
ofu(r). 
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The following Lemma needed in the sequel is well-known, but not in the presented 
Cholesky-square-root version which suits well to obtain numerically stable imple­
mentation. 

Lemma. For 

(29) 

it holds 
(30) 

(31) 

p(d | c) = N(d | 2 + GdcG; \e - č), GdG'd) 

p(c) = N(c | č , GCG'C) 

Proof. It is simple and, therefore, omitted. D 

Assuming initial conditions y(t), u(t) for t < 1 normally distributed, the state 
x(0) is normally distributed. With the state decomposed according (2), the suboptimal 
controllers used will be of the linear form 

(32) u(t) = -La(t) a(t - 1) = -[La(t), 0] x(t - 1) = -L'(t) x(t - 1) 

This implies normality of p.d.f.s (14), (15), (16) thus only the evolution of their 
first and second moments is required. For this we shall denote 

(33) B(c(t)) = c(t) for c = u,x,b... 

P4) cov w < )) = <*) * w - ; ; { [ ^ , 4 ] «'(<) 

(35) UЛ}ia, 
Aa = [Aaa, Aab]} ia 

Apparently, 

(36) 

(37) 

* ( , ) - ^ fW]s(<-i) 

c(,)=[4-?]«('-')!oRJ 
where [*]C h denotes "the operation" of taking the Cholesky square root of the matrix 

product [•] [•]'. The straightforward application of the above Lemma to 

««w,-H-4íl?llM-
R 0 0 
0 0 0 
0 0 0 

m. 

R' 0 0" 

0 0 0 

0 0 0 
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gives 

(39) p(a(t) | x(t - 1), „(,)) = N ((a(r) | Aa г(t), [ j j ] [ J ' ° ] ) 

a(í - 1)" 
b(t - 1) 

we have Similarly for p( 

(40) p(b(t - 1) | „(. - 1)) = 

= N(&(t - 1) | B(t - 1) + Gjt - 1) G;1(r - 1) (a(t - 1) - a(t - 1)) , 

G^r - l) G'b(t - l)) 

Theorem. Let the system be described by the c.p.d.f. (23), the initial state be 
normally distributed and linear state controllers of the form (32) be used up to time 
r — 1. Then the system model needed for minimizing the criterion (1) in the class 
of controllers (3), (2) takes the form 

(41) 

= N(a(í) | Aa 

p(a(t) | a(r - 1), «(.)) = 

и(ř) 
a(t - 1) 
b(t - 1) + Gba(t - ť Г 1 G~a

l(t - 1) (a(ř - 1) - a(t - 1)) 

AabGb(t- l)G'b(t- l)A'ab + [o][oî 
Proof. Again the normality of c.p.d.f. p(a(t)\a(t- 1), u(t)) can be directly 

verified thus only the first two moments are needed: 

(42) E(a(r) | a(t - 1). u(t)) = E(E(a(r) | x(t - l), u(t)) | a(t - I), u(t)) = 

" u(t) 
= Aa a(t - 1) 

E(b(t-l)\a(t-l),u(t))j 

-u(t) 
= Aa a(t - 1) 

B(t - 1) + Gba(t - l ) " 1 G'a\t - 1) (a(t - 1) - a(t - 1)) 

To compute the (conditional) covariance matrix, we shall evaluate the innovation 
d(t) = a(t) - E(a(r) | a(t - 1), u(t)), using (42) and the assumption that u(t) is 
fully determined by a(r — 1), 
(43) 

0 
S(t) = Aa 0 

_b(t - 1) - E(b(t - 1) | a(t - 1), u(t))_ 
+ a(t) - E(a(ř) | x(t - 1, u(ij) 
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+ 

(notice different conditions!). Relations (23), (40), (43), imply 

(44) E(S(t) 5'(t) | a(t - 1), u(t)) = 

= Aabcov(b(t-l)\a(t~l))A'ab + [* o ] [o ' o ] 

+ AahE[(b(t-l)-E(b(t-l))\a(t-l),u(t))). 

.(a(t)-E(a(t)\x(t-l),u(t)))'\a(t-l),u(t)) + 

+ transposition of the foregoing term 

The last two terms in (44) equal zero as can be seen by using E(- | a(t — 1), u(t)) -
= E(E(- | x(t - 1), u(t)) | a(t - 1), u(t)) and by taking into account that b(t - 1) 
is a part of x(t - 1). • 

4. ILLUSTRATIVE EXAMPLE 

The optimal reduction of the full-state model described by the presented theorem 
has been coded and included into the subroutine library SIC [4]. The operation 
under the system KOS [4] admits (in interactive mode) to combine the resulting 
model with any suboptimal control strategy described in [4]. The simulation ex­
perience is encouraging and supports expectation related to the presented theory. 
As an illustrative example we have chosen a system described by Warwick in [3] 
which is given by third order ARMAX model 

y(t) = u(t) - 1-46 u(t - 1) + 0-81 u(t - 2) + 2-28 y(t - 1) - 1-929 y(t - 2) + 

+ 0-558 y(t - 3) + 0-1 e(t) + 0-0637 e(t - 1) 

driven by white normal noise with the p.d.f. N(e(r) | 0, 1). 
The table presented below shows values of quality criteria defined as sampling 

output variances with and without transient stage 

i 200 

Ki- -200) = - — - I y2^ f o r J = Moi 

zUU —J + I t=j 

The following versions are compared in Table 1: RQ — no control, R1 — LQ adaptive 
Table 1. Comparison of quality criteria for different controllers. 

k(\. .200) Ң101..200) 

«. 4-376 . 1 0 " 2 0-985. 10~ 2 

R2 7-397 . 1 0 " 2 4-242 . 10 ~ 2 

R3 
5-451 . K Г 2 1-754. 1 0 - 2 

Äo 133-909 ю-2 90-610. 1 0 " 2 
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controller based on the regression model of the third order with a certainty equi­
valence version of the 1ST strategy [4] R2 — differing from Rt by using the first 
order regression model and R3 by using the optimally reduced first order model. 

5. CONCLUSIONS 

The adaptive controllers working on a prespecified state of a lower dimension 
that corresponds to an appropriate model of the controlled system have been so 
far designed in two essentially different ways: 
— direct adjustment of controller parameters, 
— optimization on the basis of an identified model intentionally simplified in struc­

ture to match the desired controller. 
The first method has not yet been satisfactorily grounded in theory; the second 
has achieved limited control quality due to mismodelling errors. Better quality can 
be obtained in the latter case by using a simple model identified as some simplifica­
tion of an adequate "full-state" system description [3]. Our approach is based 
on such a model reduction which is, however, optimal with respect to the control 
objective. 

The theoretical and experimental results encourage further development of the 
method. Our evaluation of the present research stage and its perspectives can be 
summarized as follows: 
— The presented solution relies heavily on availability of the true state model (4). 

The use of the structure determination algorithms [6] is believed to be the practical 
tool for it. Under this assumption a substantial step has been made in attacking 
the mismodelling problem. In the theory, however, the solution is by no means 
complete as an analysis of the influence of improper choice of the model (4) 
is missing. 

— A practical use in controller commision will need broader simulation and test-case 
experience as well as more sophisticated algorithmization for the routine use. 

— The comparative role of the design controller has not been fully exploited. 
Extensive comparisons of the type presented in Section 4 are necessary. 

— A theoretical study of features of the optimal model reduction has remained 
open too. However, some general observations are immediately available, for 
instance, 
(a) a time-varying absolute term always occurs, 
(b) the state transitions matrix and covariance of innovations are time-varying, 
but the parameters weighting system inputs in state space models do not vary 
(cf.(41)), 
(c) the rate of model changes is essentially determined by that of full-state closed 
loops moments ((32), (36), (37)); it can be influenced partially by the quality 
criterion used (indirectly, through the control law, cf. (36), (37). 

(Received March 5, 1986.) 
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