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KYBERNETIKA - VOLUME 18 (1982), NUMBER 6 

NEW ALGORITHM FOR MINIMAL SOLUTION 
OF LINEAR POLYNOMIAL EQUATIONS 

JAN JEZEK 

In this paper, a new efficient algorithm is described for computing the minimal-degree solution 
of the linear polynomial equation. This problem occurs in linear control synthesis. 

0. INTRODUCTION 

The polynomial equation 

(1) a(X)x(X) + b(X)y(X) = c(X) 

plays central role in the linear control theory. It occurs in optimal control synthesis, 
in dead-beat as well as in quadratic criteria [1, 2, 3]. In this equation, a(X), b(X), c(X) 
are given polynomials, x(X), y(X) are unknown ones. We suppose a(X), b(X) are not 
both identically zero. Main tool for studying this Euclidean equation is the Euclidean 
algorithm. It yields general solution and can serve as a computing algorithm for it. 
In control theory applications, some particular solutions are of interest: those with 
degree of x or y (or both) minimal. Algorithms are known for selecting the minimal 
solution from the general one. In this paper, a new algorithm is described which 
computes the minimal solution directly. This way is more efficient than the general 
solution computation. The method is also based on the Euclidean algorithm. 

The indeterminate X can represent either the derivative operator s in the continuous 
control theory or the delay operator £ in the discrete case. We shall also write a 
instead of a(X) for brevity. By da we mean the degree of polynomial a(X), da = — GO 
means zero polynomial a(X) = 0. The leading coefficient of a(X) is denoted by ada. By 
gcd (a, b) we mean the greatest common divisor of polynomials a, b. 
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1. PRELIMINARIES 

Let us summarize the theory of polynomial equation briefly. Let us denote 

d(X) = gcd (a(X), 6(A)), a0(X) = *j& , b0(X) = %& 
d(X) d(X) 

Theorem 1. The general solution of the homogeneous equation 

(2) a(X)x(X) + b(X)y(X) = 0 

is 

(3) x(X) = b0(X)t(X), y(X)~-a0(X)t(X) 

where t(X) is an arbitrary polynomial. 

P roof - see [2, 3]. 

Theorem 2. The equation (l) is solvable iff d(X) divides c(X). 

Proof - see [2, 3]. 

Theorem 3. The general solution of (l) is 

(4) x(X) = xp(X) + b0(X) t(X), y(X) = yp(X) - a0(X) t(X) 

where xp(X), yp(X) is any particular solution, t(X) is an arbitrary polynomial. 

P roof — follows from linearity of (1) and from Theorem 1. 

Theorem 4. The equation (l) with a(X) ^ 0, if solvable, has the unique "y-minimal" 
solution x(X), y(X) defined by 

(5) 8y < da - 8d 

For this solution, 

(6a) dx < db - dd for dc < da + db - dd 

(6b) dx = dc - da for dc § da + 8b - dd 

Proof. Let xp(X), yp(X) be a particular solution of (l). As a0(X) ^ 0, let us take 
the quotient q(X) and the remainder y(X): 

yp(X) = a0(X) q(X) + y(X), dy < 8a0 = da - dd 

According to Theorem 3, the couple 

y(X) = yp(X) - a0(X) q(X), x(X) = xp(X) + b0(X) q(X) 

satisfies (1). Existence of y-minimal solution is proved. 
Let us prove its uniqueness. Let xu y^ and x2, y2 be two ^-minimal solutions, i.e. 

dy-L < da0, dy2 < da0. The couple x = xl — x2, y = yL — y2 satisfies the homo-
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geneous equation (2), dy < da0. But according to (3), for y ^ 0 it must be dy ^ da0. 
Therefore y = 0, yt = y2- From (2), x = 0, x t = x2. 

Now we shall prove the property (6). The equation (l) yields by cancellation 
of d(X) an equivalent equation 

(7) a0(X)x(X) + b0(X) y(X) = c0(X) 

where c0(X) = c(X)jd(X). Let us consider the degrees of all three terms: 

a) c(X) = 0, the j-minimal solution is x(X) = 0, y(X) = 0. For b(X) ^ 0 (6a) is 
satisfied, for b(X) = 0 (6b) is. 

b) dc < da + db — dd o dc0 < da0 + db0 

d(b0y) < da0 + db0 => d(a0x) < da0 + db0 => ex < db0 = db — dd, hence (6a) 
is satisfied. 

c) dc *i da + db — dd o dc0 ^ da0 + db0 

d(b0y) < da0 + db0 S dc0 => d(a0x) = dc0 => dx = dc0 - da0 = dc - da, 
hence (6b) is satisfied. • 

Theorem 5. The equation (l) with b(l) ^ 0, if solvable, has the unique "x-minimal" 
solution x(X), y(X) defined by 

dx < db - dd 

For this solution, 

dy < da — dd for dc < da + db — dd 

dy = dc — db for dc ^ da + 8b — dd 

Proof. If we interchange in (l) a with b and x with y the equation remains in­
variant. Therefore, Theorem 5 follows from Theorem 4. • 

Theorem 6. The equation (l) with a(X) ^ 0, b(k) ^ 0 , dc < da + db — dd, if 
solvable, has the unique "minimal" solution x, y defined by one of the two equivalent 
conditions: 

dx < db — dd or dy < da — dd 

Proof. According to Theorem 4, the j-minimal solution exists uniquely. It satisfies 
(6a), i.e. it is at the same time x minimal. • 

2. THE ALGORITHM 

We shall construct the algorithm as a recurrent process with finite number of steps. 
In every step, the equation is replaced by an equivalent one by a substitution. The 
final equation can be solved in a trivial way. By backward substitution chain, we 
shall obtain the solution of the original equation. 
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First, we shall prove four lemmas for the recurrent process. 

Lemma 1. Let (l) be solvable, a(k) s£ 0, dc 2: da. Then the equation 

(8) a(X)x'(X) + b())y(X) = c'(X) 

where 

(9) c'U) = c(X) - ^ Aec~B°a()) , dc' < 3c 
aca 

is also solvable, has the >'-minimal solution x', y and the _y-minimal solution x, y 
of (l) is given by 

(10) x(X) = x'()) + °-^ kac'da 

aea 

Proof. Let d = gcd (a, b). From (9), d divides c' if it divides c, i.e. (8) is solvable 
iff (l) is. As a(X) =|= 0, the x', y exists. By substituting (10) into (l) we can see that x, y 
is a solution. As x', y is v-minimal for (8), By < da — dd. Therefore x, y is v-minimal 
for (1). • 

Lemma 2. Let (l) be solvable, b(X) ^ 0, dc ^ db. Then the equation 

(11) a(X)x(X) + b(X)y'(X) = c'(X) 

where 

(12) c'U) = c(X) - ^ XSe-ib b(X), dc' < dc 

is also solvable, has the x-minimal solution x, y' and the x-minimal solution x, y 
of (1) is given by 

(13) y()) = y'(A)+Cf-)Sc-eb 

bdb 

Proof. By interchanging a with b and x with y in Lemma 1. • 

Lemma 3. Let (l) be solvable, a(X) SJE 0, dc < da + db — dd, db jg da. Then the 
equation 

(14) a())x'()) + b'(X)y(X) = c(X) 

where 

(15) b'(X) = b(X) - ^ ) d b - e a a(X) , db' < db 
ada 

is also solvable, has the j-minimal solution x', y and the minimal solution x, y of (l) 
is given by 

(16) x(X) = x'())-^ASb-da y()) 
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Proof. Let d = gcd (a, b), d' = gcd (a, b'). From (15), d divides b' => d divides d'. 
By the same argument, d' divides b => d' divides d. Therefore d' = d, i.e. (14) is 
solvable iff (l) is. As a(?) ^ 0,the x', y exists. By substituting (16) into (1) we can see 
that x, j is a solution. As x', y is j-minimal for (16), By < da — dd. Therefore x, y 
is j'-minimal for (l). As dc < da + db — dd, it is minimal. • 

Lemma 4. Let (l) be solvable, b(X) 4= 0, dc < da + db - dd, da ^ db. Then the 
equation 

(17) a'(X)x(X) + b(X)y'(X) = c(X) 

where 

(18) a'(X) = a(X) - ^ 2 XSa-ebb(l) , da' < da 
bdb 

is also solvable, has the x-minimal solution x, y' and the minimal solution x, y of (l) 
is given by 

(19) y(X) = y'(X)-afXs°~ebx(X) 

Proof. By interchanging a with b and x with y in Lemma 3. • 

Now we are ready to construct the algorithm. 

Theorem 7. Let a, b, c be given polynomials in (l). Let p be a two-valued variable 
with values px and py; here px means "the x-minimal solution is to be found", analo­
gously py. We suppose the equation is solvable and a ^ 0 for p = px, b =E 0 for 

P = Pv 
Let us construct a sequence a(i\ b('>, c(i\ p(i\i = 0, 1,2 ... with initial values a(0) = 

= a, b(0) = b, c(0) = c, p(0) = p by the following recurrent rule: 

If 

(20a) a(i) = 0 , b(i) £ 0 , c(i) = 0 , p(i> = px 

or 

(20b) a(i) $ 0 , b(» ~ 0 , c(i) = 0 , p(i> = py 

then stop, it is the last element of the sequence. Otherwise, if p(i) = px we distinguish 
two cases: 

1) dc(i)
 = db(i). it is always b(i> ^ 0. We use Lemma 2 and define c(i + 1> by (12), 

p(H-U = p(f), 

2) 5c(i) < 3fc(i) => 5c(i) < da(i) + db(i) - ^ ° , we distinguish two subcases: 

2a) db(i> > da(i), for c(i) ^ 0 it is always a(i) $ 0 (case c(i) a 0, a(i)
 s o see (20)). 

We use Lemma 3 and define !>(,'+1) by (15), p(i+1> = Py. 
2b) db(i> g 5a(i), it is always b(i> •£ 0. We use Lemma 4 and define a ( , + 1 ) by (18), 

p«"> = p, . 
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If p"> = py we analogously have two cases 3) and 4) which are literally the same as 
1) and 2) up to interchanging a with b and x with y. 

Then for every i up to some final value iF the rule is properly defined and aU), 
bU), c (0, pU) represent the problem of finding x(0-minimal or }>(0-minimal solution 
of equation 

(21) au>(X) xu)(X) + bu>(X) /°(A) = cU)(X) 

equivalent to (l). For the final value iF the state (20) is reached whose solution is 
X = 0, y = 0. 

Proof. We must prove that the rule is properly defined, i.e. the cases 

1) pu> = px , õcU) 1 ôbu), bU) = 0 

2a) Pin = px, дcU)<õbU), c(i) ф 0, aU) = 0 

2b) pU) = px , дcU) < õbU), bU) з 0 

3), 4a), 4b) similarly 

can never happen and that au), bu', cu>, pu ' really represent the problem (21), equi-
valent to (l). We shall do it by induction. For i = 0, cases l) and 2b) are excluded 
by assumptions of the theorem. In case 2a) the equation is b(X) y(X) = c(X). To be 
solvable, it must be either 8b _ Be or c = 0, so 2a) is also excluded. 

Let for some i the rule be properly defined and (21) equivalent to (1). Then a ( i + 1 ) , 
/ j ( l + 1 ) , c ( i + 1 ), p { ' + 1) as defined by the rule, always lead to an equivalent equation, 
solvable and never violating the condition aU) ^ 0 for pu> = py or bu> ^ 0 for 
pu> = px. So the next step is also properly defined and the induction is completed. 

Now we shall prove that for some finite i we must reach (20a) or (20b). Let us 
suppose that (20) is not satisfied for i = 0, the case a = 0, b = 0 is excluded. We shall 
prove that for some i one of polynomials « ( 0, bU), cu) is identically zero. Let us suppo­
se it is not true for i = 0. In every step, just one of three polynomials aU), bU), cu> 
is changed, either 8au+i) < 8aU) or 8bu+1) < dbU) or 8cu+1> < 8cu> is valid. 
Therefore [(8a + 1) (8b + l)(8c + l ) ] ( i + 1 ) < [(da + 1) (8b + 1) (5c + l )] ( 0 i sa l so 
valid. Having started from a finite positive value, this integer function must reach 
zero for some i, i.e. some of the au), bu>, cu> is zero. 

If c ( 0 is the case then the sequence continues but only steps 2a) or 2b) are possible. 
Now [(8a + l)(8b + l ) ] ( i + 1 ) < [(8a + l)(8b + l ) ] ( 0 and for some i, a ( 0 s 0, 
p(0 = px (the last step was 2b) or bu) » 0, pU) = py (2a). 

If a ( 0 was the case of zero polynomial then pu) = px, the equation is bU)(X) y

u>(x) = 
= cU)(X), solvable as proved, i.e. dcU) - 8bU) or c ( 0 = 0. The sequence continues 
with steps 1) only possible. For some i we must reach 8cu> < 8bu> i.e. c ( i )

 s o. Simi­
larly in the case of zero bu>. Q 

510 



3. COMPUTATIONAL ASPECTS 

The construction just described can serve as an efficient algorithm for a computer 
or for a paper-and-pencil work. It has the property that neither d(X) nor dd must be 
known in advance. They are obtained as a result: in (20a), there is fc(0(A) = d(X), 
similarly in (20b) a<-i)(X) = d(X). The case of unsolvable equation (d(X) does not divide 
c(Xj) is recognized by reaching the state a ( 0 = 0, i>(0 =£ 0, c (0 =|= 0, dc0) < db{i\ 
p<-l) = px or a ( 0 $ 0, fo(0 = 0, c (0 ^ 0, dc (0 < cV°, p ( 0 = py. 

The algorithm consists of a forward run and backward one. In the latter one, 
all "planned" substitutions are performed in backward order, from x ( ,p), _y('F) to 
xw, >'(0). 

In every step of the forward run, some of the polynomials a, b, c are "reduced" 
by some other one. It is useful to have a subroutine for such a reduction, say, of 
r(X) by s(X): 

or ^ ds , r'(X) = r(X) - ^ Adr~es s(X) 

i.e. from r(X) subtract s(X) multiplied by a number q and by lk such that the leading 
term gets cancelled. The real number q = rSrjsds and the integer number k = dr — ds 
are also results of the operation. The reduction can be done "in place" with no new 
memory for r' needed. 

In the backward run where (16) or (19) is applied, it is useful to have a subroutine 
for "forced reduction" of r(X) by s(X). It means: for given polynomials r(X), s(X), 
given real q and integer k ^ 0, compute 

r'(X) = r(X)-qX*s(X) 

i.e. from r(X) subtract s(X) multiplied by a prescribed number and a prescribed 
power of A. It can also be done in place. 

The operation (10) and (13) means: given a polynomial r(l), given number q and 
integer k, add qXk to r(X). It can also be done in place and it is useful to have a sub­
routine or a standard way for doing it. 

During the forward run, we must keep track of three things: 

a) the information on which of the four reduction types (9), (12), (15), (18) was used, 

b) the number q by which the polynomial was multiplied, 

c) the integer k by which the polynomial was shifted. 

These data will be used in the backward run for selecting the proper substitution 
and for doing it. The data are stored and fetched by the stack discipline (first in, 
last out). If your computer and programming language support recursive procedures 
then they can be utilized for that, otherwise you must program the stack explicitly 
in arrays. 
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Flowcharts of the forward and backward runs are in Fig. 1, 2. The four-valued 
variable f stores the information on the substitution type. Its values are mnemonic 
names for substitutions. Stack manipulation is done by operations "store" and 
"fetch". 

reduce 
c by b 

t: = 

'y plus" 

reduce 
b by a 

reduce 
a by b 

reduce 
c by a 

í f i J \P~PҲ 

í : = 

"X by y' 

t: = 

7 by X " 

t: = 

"x plus' 

store í, q , k 

Fig. 1. Flowchart of the forward run. 
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Fig. 2. Flowchart of the backward run. 

4. EXAMPLES 

The algorithm was implemented on IBM 370 computer in FORTRAN language. 
Here presented are four extremely simple examples which can be easily computed 
with paper and pencil. In Tables 1, 2 the case a(X) = 1 + 32 + 2X2, b(X) = 1 + 22, 
c(X) = 2 + 2X2 is solved for the y-minimal solution x(X) = 1, y(X) = — 1 and for 
the x-minimal solution x(X) = 0, y(X) = X. The polynomials a, b, c have the common 
factor d(X) = 1 + 2 2 . After cancelling it, we have a new equation a(X) = 1 + 2, 
b(X) = 1, c(X) = X with the same solution. This is solved in Tables 3, 4. 

Table 1. Equation with a common factor, .y-minimal solution 

a b c P t aЃ t X У 

1 + ЗД + 2A2 1 + 2A A + 2A2 

Py 

t aЃ t 

1 - 1 1 + ЗД + 2A2 1 + 2A A + 2A2 

Py 
cЪy a 1 дrplus 

1 - 1 

1 + ЗA + 2A2 1 + 2A - 1 - 2A Py 

cЪy a 1 дrplus 
0 - 1 1 + ЗA + 2A2 1 + 2A - 1 - 2A Py 

aЪy b A yЪy x 

0 - 1 

1 + 2A 1 + 2A - 1 - 2 A Px 

aЪy b A yЪy x 
0 - 1 1 + 2A 1 + 2A - 1 - 2 A Px 

cЪy b — 1 y plus 

0 - 1 

• 1 + 2Д 1 + 2A 0 Px 

cЪy b — 1 y plus 
0 0 • 1 + 2Д 1 + 2A 0 Px 

bЪy a 1 xЪyy 

0 0 

1 + 2A 0 0 Py 

bЪy a 1 xЪyy 
0 0 
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Table 2. Equation with a common factor, ^-minimal solution 

a b c p t aŕ t X У 

i + з;. + 2x2 
1 + 2Л X+ 2X2 

Px 

t aŕ t 

0 k i + з;. + 2x2 
1 + 2Л X+ 2X2 

Px 

cЪy b X y plus 

0 k 

1 + ЗЛ + 2Л2 1 + 2Л 0 Px 

cЪy b X y plus 
0 0 1 + ЗЛ + 2Л2 1 + 2Л 0 Px 

aЪy b X yЪy x 

0 0 

1 + 2X 1 + 2Л 0 Px 

aЪy b X yЪy x 
0 0 1 + 2X 1 + 2Л 0 Px 

ЬЪy a 1 xЪyy 

0 0 

1 -ř- 2X 0 0 Py 

ЬЪy a 1 xЪyy 
0 0 

Table 3. Equation without common factor, >>-minimal solution 

a ь c p t aXk / X У 

1 + X 1 ;. Py 

t aXk / 

1 - i 1 + X 1 ;. Py 

cЪy a 1 xplus 

1 - i 

1 + X 1 - i Py 

cЪy a 1 xplus 
0 1 1 + X 1 - i Py 

aЪy b 

0 

1 1 - i Px 

aЪy b X У DУ X 

0 - 1 1 1 - i Px 

cЪy b - 1 y plus 

0 - 1 

1 1 0 Px 

cЪy b - 1 y plus 
0 0 1 1 0 Px 

ЬЪy a 1 xЪyy 

0 0 

1 0 0 Py 

ЬЪy a 1 xЪyy 
0 0 

Table 4. Equation without common factor, x-minimal solution 

a b c p t aŕ / X У 

1 
i + ; . i л Px 

t aŕ / 

0 X 
1 

i + ; . i л Px 

c Ъy b Л y plus 

0 X 

1 + л > Px 

c Ъy b Л y plus 
0 0 1 + л > Px 

aby b Л yЪyx 

0 0 

1 0 Px 

aby b Л yЪyx 
0 0 1 0 Px 

bЪy a 1 xЪyy 

0 0 

i 0 0 Py 

bЪy a 1 xЪyy 

0 0 

5. COMPUTATIONAL COMPLEXITY 

Let us estimate the number of numerical operations and the amount of storage 
needed for the above method and compare them with those for other methods. 
A suitable unit of computational complexity is an operation of "reduction": sub-
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trading a multiple of a number from (or adding to) another number. For simplicity, 
let da = db = 5c = N, Sd = 0. The complexity functions f(N), g(N) for number 
of operations and number of storage places depending on N are polynomials, e.g. 
f(N) = a. + /3N + yN2. Because mainly the behavior of/(At) for great N is interesting, 
we neglect all but the leading term yN2. We do this systematically in all stages 
during complexity function calculation, e.g. we replace N + 1 by At; it simplifies 
the job significantly. Three methods are investigated: 

1) The above method. In the forward run, 5a, db, 5c are lowered from A* to 0 
N 

with 3 YJ n = fN2 reductions needed. In the backward run, 5x and Sy grow from 0 
n = 0 

JV 

to At with 2 £ n = N2 operations needed. Total fN2 operations. Auxiliary storage 
n = 0 

needed is At reals, At integers and N four-valued codewords. 

2) The general solution method [2, 3]. It computes polynomials p,q,r,s satisfying 

^-řïj-й-ш 
The matrix P represents accumulated row operations on the vector A. The degrees 

N 

dp, Sq, dr, 5s grow from 0 to At, the degrees da, db fall from At to 0 with 6 £ n = 3/V2 

n = 0 

reductions needed. Thenafter the particular solution x0 = pc, y0 = qc is recomputed 
to the minimal one by taking the remainder in division by b resp. by a. This multi­
plication and division needs AN2 operations. Total 7At2 operations is worse than that 
of the above method by factor 2-8. Auxiliary storage 4At for p, q, r, s is also greater. 

3) The probable most wide-spread method of indeterminate coefficients. By it, 
the polynomial equation is replaced by a set of M = 2At numerical equations for 
coefficients. The number of operations for solving by elimination is known to be 
M3/3 = |At3, the storage M2 = 4A/2. These formulae show that this method com­
pared with any polynomial one is worse by an order of magnitude: At3 instead 
of A72 operations, At2 instead of At storage. 

6. CONCLUSION 

The method is very simple, effective and easy to learn. Number of operations needed 
is less than that in any other method known. 
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