
Kybernetika

Jan Ježek
New algorithm for minimal solution of linear polynomial equations

Kybernetika, Vol. 18 (1982), No. 6, 505--516

Persistent URL: http://dml.cz/dmlcz/124854

Terms of use:
© Institute of Information Theory and Automation AS CR, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124854
http://project.dml.cz

KYBERNETIKA - VOLUME 18 (1982), NUMBER 6

NEW ALGORITHM FOR MINIMAL SOLUTION
OF LINEAR POLYNOMIAL EQUATIONS

JAN JEZEK

In this paper, a new efficient algorithm is described for computing the minimal-degree solution
of the linear polynomial equation. This problem occurs in linear control synthesis.

0. INTRODUCTION

The polynomial equation

(1) a(X)x(X) + b(X)y(X) = c(X)

plays central role in the linear control theory. It occurs in optimal control synthesis,
in dead-beat as well as in quadratic criteria [1, 2, 3]. In this equation, a(X), b(X), c(X)
are given polynomials, x(X), y(X) are unknown ones. We suppose a(X), b(X) are not
both identically zero. Main tool for studying this Euclidean equation is the Euclidean
algorithm. It yields general solution and can serve as a computing algorithm for it.
In control theory applications, some particular solutions are of interest: those with
degree of x or y (or both) minimal. Algorithms are known for selecting the minimal
solution from the general one. In this paper, a new algorithm is described which
computes the minimal solution directly. This way is more efficient than the general
solution computation. The method is also based on the Euclidean algorithm.

The indeterminate X can represent either the derivative operator s in the continuous
control theory or the delay operator £ in the discrete case. We shall also write a
instead of a(X) for brevity. By da we mean the degree of polynomial a(X), da = — GO
means zero polynomial a(X) = 0. The leading coefficient of a(X) is denoted by ada. By
gcd (a, b) we mean the greatest common divisor of polynomials a, b.

505

1. PRELIMINARIES

Let us summarize the theory of polynomial equation briefly. Let us denote

d(X) = gcd (a(X), 6(A)), a0(X) = *j& , b0(X) = %&
d(X) d(X)

Theorem 1. The general solution of the homogeneous equation

(2) a(X)x(X) + b(X)y(X) = 0

is

(3) x(X) = b0(X)t(X), y(X)~-a0(X)t(X)

where t(X) is an arbitrary polynomial.

P roof - see [2, 3].

Theorem 2. The equation (l) is solvable iff d(X) divides c(X).

Proof - see [2, 3].

Theorem 3. The general solution of (l) is

(4) x(X) = xp(X) + b0(X) t(X), y(X) = yp(X) - a0(X) t(X)

where xp(X), yp(X) is any particular solution, t(X) is an arbitrary polynomial.

P roof — follows from linearity of (1) and from Theorem 1.

Theorem 4. The equation (l) with a(X) ^ 0, if solvable, has the unique "y-minimal"
solution x(X), y(X) defined by

(5) 8y < da - 8d

For this solution,

(6a) dx < db - dd for dc < da + db - dd

(6b) dx = dc - da for dc § da + 8b - dd

Proof. Let xp(X), yp(X) be a particular solution of (l). As a0(X) ^ 0, let us take
the quotient q(X) and the remainder y(X):

yp(X) = a0(X) q(X) + y(X), dy < 8a0 = da - dd

According to Theorem 3, the couple

y(X) = yp(X) - a0(X) q(X), x(X) = xp(X) + b0(X) q(X)

satisfies (1). Existence of y-minimal solution is proved.
Let us prove its uniqueness. Let xu y^ and x2, y2 be two ^-minimal solutions, i.e.

dy-L < da0, dy2 < da0. The couple x = xl — x2, y = yL — y2 satisfies the homo-

506

geneous equation (2), dy < da0. But according to (3), for y ^ 0 it must be dy ^ da0.
Therefore y = 0, yt = y2- From (2), x = 0, x t = x2.

Now we shall prove the property (6). The equation (l) yields by cancellation
of d(X) an equivalent equation

(7) a0(X)x(X) + b0(X) y(X) = c0(X)

where c0(X) = c(X)jd(X). Let us consider the degrees of all three terms:

a) c(X) = 0, the j-minimal solution is x(X) = 0, y(X) = 0. For b(X) ^ 0 (6a) is
satisfied, for b(X) = 0 (6b) is.

b) dc < da + db — dd o dc0 < da0 + db0

d(b0y) < da0 + db0 => d(a0x) < da0 + db0 => ex < db0 = db — dd, hence (6a)
is satisfied.

c) dc *i da + db — dd o dc0 ^ da0 + db0

d(b0y) < da0 + db0 S dc0 => d(a0x) = dc0 => dx = dc0 - da0 = dc - da,
hence (6b) is satisfied. •

Theorem 5. The equation (l) with b(l) ^ 0, if solvable, has the unique "x-minimal"
solution x(X), y(X) defined by

dx < db - dd

For this solution,

dy < da — dd for dc < da + db — dd

dy = dc — db for dc ^ da + 8b — dd

Proof. If we interchange in (l) a with b and x with y the equation remains in­
variant. Therefore, Theorem 5 follows from Theorem 4. •

Theorem 6. The equation (l) with a(X) ^ 0, b(k) ^ 0 , dc < da + db — dd, if
solvable, has the unique "minimal" solution x, y defined by one of the two equivalent
conditions:

dx < db — dd or dy < da — dd

Proof. According to Theorem 4, the j-minimal solution exists uniquely. It satisfies
(6a), i.e. it is at the same time x minimal. •

2. THE ALGORITHM

We shall construct the algorithm as a recurrent process with finite number of steps.
In every step, the equation is replaced by an equivalent one by a substitution. The
final equation can be solved in a trivial way. By backward substitution chain, we
shall obtain the solution of the original equation.

507

First, we shall prove four lemmas for the recurrent process.

Lemma 1. Let (l) be solvable, a(k) s£ 0, dc 2: da. Then the equation

(8) a(X)x'(X) + b())y(X) = c'(X)

where

(9) c'U) = c(X) - ^ Aec~B°a()) , dc' < 3c
aca

is also solvable, has the >'-minimal solution x', y and the _y-minimal solution x, y
of (l) is given by

(10) x(X) = x'()) + °-^ kac'da

aea

Proof. Let d = gcd (a, b). From (9), d divides c' if it divides c, i.e. (8) is solvable
iff (l) is. As a(X) =|= 0, the x', y exists. By substituting (10) into (l) we can see that x, y
is a solution. As x', y is v-minimal for (8), By < da — dd. Therefore x, y is v-minimal
for (1). •

Lemma 2. Let (l) be solvable, b(X) ^ 0, dc ^ db. Then the equation

(11) a(X)x(X) + b(X)y'(X) = c'(X)

where

(12) c'U) = c(X) - ^ XSe-ib b(X), dc' < dc

is also solvable, has the x-minimal solution x, y' and the x-minimal solution x, y
of (1) is given by

(13) y()) = y'(A)+Cf-)Sc-eb

bdb

Proof. By interchanging a with b and x with y in Lemma 1. •

Lemma 3. Let (l) be solvable, a(X) SJE 0, dc < da + db — dd, db jg da. Then the
equation

(14) a())x'()) + b'(X)y(X) = c(X)

where

(15) b'(X) = b(X) - ^) d b - e a a(X) , db' < db
ada

is also solvable, has the j-minimal solution x', y and the minimal solution x, y of (l)
is given by

(16) x(X) = x'())-^ASb-da y())

508

Proof. Let d = gcd (a, b), d' = gcd (a, b'). From (15), d divides b' => d divides d'.
By the same argument, d' divides b => d' divides d. Therefore d' = d, i.e. (14) is
solvable iff (l) is. As a(?) ^ 0,the x', y exists. By substituting (16) into (1) we can see
that x, j is a solution. As x', y is j-minimal for (16), By < da — dd. Therefore x, y
is j'-minimal for (l). As dc < da + db — dd, it is minimal. •

Lemma 4. Let (l) be solvable, b(X) 4= 0, dc < da + db - dd, da ^ db. Then the
equation

(17) a'(X)x(X) + b(X)y'(X) = c(X)

where

(18) a'(X) = a(X) - ^ 2 XSa-ebb(l) , da' < da
bdb

is also solvable, has the x-minimal solution x, y' and the minimal solution x, y of (l)
is given by

(19) y(X) = y'(X)-afXs°~ebx(X)

Proof. By interchanging a with b and x with y in Lemma 3. •

Now we are ready to construct the algorithm.

Theorem 7. Let a, b, c be given polynomials in (l). Let p be a two-valued variable
with values px and py; here px means "the x-minimal solution is to be found", analo­
gously py. We suppose the equation is solvable and a ^ 0 for p = px, b =E 0 for

P = Pv
Let us construct a sequence a(i\ b('>, c(i\ p(i\i = 0, 1,2 ... with initial values a(0) =

= a, b(0) = b, c(0) = c, p(0) = p by the following recurrent rule:

If

(20a) a(i) = 0 , b(i) £ 0 , c(i) = 0 , p(i> = px

or

(20b) a(i) $ 0 , b(» ~ 0 , c(i) = 0 , p(i> = py

then stop, it is the last element of the sequence. Otherwise, if p(i) = px we distinguish
two cases:

1) dc(i)
 = db(i). it is always b(i> ^ 0. We use Lemma 2 and define c(i + 1> by (12),

p(H-U = p(f),

2) 5c(i) < 3fc(i) => 5c(i) < da(i) + db(i) - ^ ° , we distinguish two subcases:

2a) db(i> > da(i), for c(i) ^ 0 it is always a(i) $ 0 (case c(i) a 0, a(i)
 s o see (20)).

We use Lemma 3 and define !>(,'+1) by (15), p(i+1> = Py.
2b) db(i> g 5a(i), it is always b(i> •£ 0. We use Lemma 4 and define a (, + 1) by (18),

p«"> = p, .

509

If p"> = py we analogously have two cases 3) and 4) which are literally the same as
1) and 2) up to interchanging a with b and x with y.

Then for every i up to some final value iF the rule is properly defined and aU),
bU), c (0, pU) represent the problem of finding x(0-minimal or }>(0-minimal solution
of equation

(21) au>(X) xu)(X) + bu>(X) /°(A) = cU)(X)

equivalent to (l). For the final value iF the state (20) is reached whose solution is
X = 0, y = 0.

Proof. We must prove that the rule is properly defined, i.e. the cases

1) pu> = px , õcU) 1 ôbu), bU) = 0

2a) Pin = px, дcU)<õbU), c(i) ф 0, aU) = 0

2b) pU) = px , дcU) < õbU), bU) з 0

3), 4a), 4b) similarly

can never happen and that au), bu', cu>, pu ' really represent the problem (21), equi-
valent to (l). We shall do it by induction. For i = 0, cases l) and 2b) are excluded
by assumptions of the theorem. In case 2a) the equation is b(X) y(X) = c(X). To be
solvable, it must be either 8b _ Be or c = 0, so 2a) is also excluded.

Let for some i the rule be properly defined and (21) equivalent to (1). Then a (i + 1) ,
/ j (l + 1) , c (i + 1), p { ' + 1) as defined by the rule, always lead to an equivalent equation,
solvable and never violating the condition aU) ^ 0 for pu> = py or bu> ^ 0 for
pu> = px. So the next step is also properly defined and the induction is completed.

Now we shall prove that for some finite i we must reach (20a) or (20b). Let us
suppose that (20) is not satisfied for i = 0, the case a = 0, b = 0 is excluded. We shall
prove that for some i one of polynomials « (0, bU), cu) is identically zero. Let us suppo­
se it is not true for i = 0. In every step, just one of three polynomials aU), bU), cu>
is changed, either 8au+i) < 8aU) or 8bu+1) < dbU) or 8cu+1> < 8cu> is valid.
Therefore [(8a + 1) (8b + l)(8c + l)] (i + 1) < [(da + 1) (8b + 1) (5c + l)] (0 i sa l so
valid. Having started from a finite positive value, this integer function must reach
zero for some i, i.e. some of the au), bu>, cu> is zero.

If c (0 is the case then the sequence continues but only steps 2a) or 2b) are possible.
Now [(8a + l)(8b + l)] (i + 1) < [(8a + l)(8b + l)] (0 and for some i, a (0 s 0,
p(0 = px (the last step was 2b) or bu) » 0, pU) = py (2a).

If a (0 was the case of zero polynomial then pu) = px, the equation is bU)(X) y

u>(x) =
= cU)(X), solvable as proved, i.e. dcU) - 8bU) or c (0 = 0. The sequence continues
with steps 1) only possible. For some i we must reach 8cu> < 8bu> i.e. c (i)

 s o. Simi­
larly in the case of zero bu>. Q

510

3. COMPUTATIONAL ASPECTS

The construction just described can serve as an efficient algorithm for a computer
or for a paper-and-pencil work. It has the property that neither d(X) nor dd must be
known in advance. They are obtained as a result: in (20a), there is fc(0(A) = d(X),
similarly in (20b) a<-i)(X) = d(X). The case of unsolvable equation (d(X) does not divide
c(Xj) is recognized by reaching the state a (0 = 0, i>(0 =£ 0, c (0 =|= 0, dc0) < db{i\
p<-l) = px or a (0 $ 0, fo(0 = 0, c (0 ^ 0, dc (0 < cV°, p (0 = py.

The algorithm consists of a forward run and backward one. In the latter one,
all "planned" substitutions are performed in backward order, from x (,p), _y('F) to
xw, >'(0).

In every step of the forward run, some of the polynomials a, b, c are "reduced"
by some other one. It is useful to have a subroutine for such a reduction, say, of
r(X) by s(X):

or ^ ds , r'(X) = r(X) - ^ Adr~es s(X)

i.e. from r(X) subtract s(X) multiplied by a number q and by lk such that the leading
term gets cancelled. The real number q = rSrjsds and the integer number k = dr — ds
are also results of the operation. The reduction can be done "in place" with no new
memory for r' needed.

In the backward run where (16) or (19) is applied, it is useful to have a subroutine
for "forced reduction" of r(X) by s(X). It means: for given polynomials r(X), s(X),
given real q and integer k ^ 0, compute

r'(X) = r(X)-qX*s(X)

i.e. from r(X) subtract s(X) multiplied by a prescribed number and a prescribed
power of A. It can also be done in place.

The operation (10) and (13) means: given a polynomial r(l), given number q and
integer k, add qXk to r(X). It can also be done in place and it is useful to have a sub­
routine or a standard way for doing it.

During the forward run, we must keep track of three things:

a) the information on which of the four reduction types (9), (12), (15), (18) was used,

b) the number q by which the polynomial was multiplied,

c) the integer k by which the polynomial was shifted.

These data will be used in the backward run for selecting the proper substitution
and for doing it. The data are stored and fetched by the stack discipline (first in,
last out). If your computer and programming language support recursive procedures
then they can be utilized for that, otherwise you must program the stack explicitly
in arrays.

511

Flowcharts of the forward and backward runs are in Fig. 1, 2. The four-valued
variable f stores the information on the substitution type. Its values are mnemonic
names for substitutions. Stack manipulation is done by operations "store" and
"fetch".

reduce
c by b

t: =

'y plus"

reduce
b by a

reduce
a by b

reduce
c by a

í f i J \P~PҲ

í : =

"X by y'

t: =

7 by X "

t: =

"x plus'

store í, q , k

Fig. 1. Flowchart of the forward run.

512

Fig. 2. Flowchart of the backward run.

4. EXAMPLES

The algorithm was implemented on IBM 370 computer in FORTRAN language.
Here presented are four extremely simple examples which can be easily computed
with paper and pencil. In Tables 1, 2 the case a(X) = 1 + 32 + 2X2, b(X) = 1 + 22,
c(X) = 2 + 2X2 is solved for the y-minimal solution x(X) = 1, y(X) = — 1 and for
the x-minimal solution x(X) = 0, y(X) = X. The polynomials a, b, c have the common
factor d(X) = 1 + 2 2 . After cancelling it, we have a new equation a(X) = 1 + 2,
b(X) = 1, c(X) = X with the same solution. This is solved in Tables 3, 4.

Table 1. Equation with a common factor, .y-minimal solution

a b c P t aЃ t X У

1 + ЗД + 2A2 1 + 2A A + 2A2

Py

t aЃ t

1 - 1 1 + ЗД + 2A2 1 + 2A A + 2A2

Py
cЪy a 1 дrplus

1 - 1

1 + ЗA + 2A2 1 + 2A - 1 - 2A Py

cЪy a 1 дrplus
0 - 1 1 + ЗA + 2A2 1 + 2A - 1 - 2A Py

aЪy b A yЪy x

0 - 1

1 + 2A 1 + 2A - 1 - 2 A Px

aЪy b A yЪy x
0 - 1 1 + 2A 1 + 2A - 1 - 2 A Px

cЪy b — 1 y plus

0 - 1

• 1 + 2Д 1 + 2A 0 Px

cЪy b — 1 y plus
0 0 • 1 + 2Д 1 + 2A 0 Px

bЪy a 1 xЪyy

0 0

1 + 2A 0 0 Py

bЪy a 1 xЪyy
0 0

513

Table 2. Equation with a common factor, ^-minimal solution

a b c p t aŕ t X У

i + з;. + 2x2
1 + 2Л X+ 2X2

Px

t aŕ t

0 k i + з;. + 2x2
1 + 2Л X+ 2X2

Px

cЪy b X y plus

0 k

1 + ЗЛ + 2Л2 1 + 2Л 0 Px

cЪy b X y plus
0 0 1 + ЗЛ + 2Л2 1 + 2Л 0 Px

aЪy b X yЪy x

0 0

1 + 2X 1 + 2Л 0 Px

aЪy b X yЪy x
0 0 1 + 2X 1 + 2Л 0 Px

ЬЪy a 1 xЪyy

0 0

1 -ř- 2X 0 0 Py

ЬЪy a 1 xЪyy
0 0

Table 3. Equation without common factor, >>-minimal solution

a ь c p t aXk / X У

1 + X 1 ;. Py

t aXk /

1 - i 1 + X 1 ;. Py

cЪy a 1 xplus

1 - i

1 + X 1 - i Py

cЪy a 1 xplus
0 1 1 + X 1 - i Py

aЪy b

0

1 1 - i Px

aЪy b X У DУ X

0 - 1 1 1 - i Px

cЪy b - 1 y plus

0 - 1

1 1 0 Px

cЪy b - 1 y plus
0 0 1 1 0 Px

ЬЪy a 1 xЪyy

0 0

1 0 0 Py

ЬЪy a 1 xЪyy
0 0

Table 4. Equation without common factor, x-minimal solution

a b c p t aŕ / X У

1
i + ; . i л Px

t aŕ /

0 X
1

i + ; . i л Px

c Ъy b Л y plus

0 X

1 + л > Px

c Ъy b Л y plus
0 0 1 + л > Px

aby b Л yЪyx

0 0

1 0 Px

aby b Л yЪyx
0 0 1 0 Px

bЪy a 1 xЪyy

0 0

i 0 0 Py

bЪy a 1 xЪyy

0 0

5. COMPUTATIONAL COMPLEXITY

Let us estimate the number of numerical operations and the amount of storage
needed for the above method and compare them with those for other methods.
A suitable unit of computational complexity is an operation of "reduction": sub-

514

trading a multiple of a number from (or adding to) another number. For simplicity,
let da = db = 5c = N, Sd = 0. The complexity functions f(N), g(N) for number
of operations and number of storage places depending on N are polynomials, e.g.
f(N) = a. + /3N + yN2. Because mainly the behavior of/(At) for great N is interesting,
we neglect all but the leading term yN2. We do this systematically in all stages
during complexity function calculation, e.g. we replace N + 1 by At; it simplifies
the job significantly. Three methods are investigated:

1) The above method. In the forward run, 5a, db, 5c are lowered from A* to 0
N

with 3 YJ n = fN2 reductions needed. In the backward run, 5x and Sy grow from 0
n = 0

JV

to At with 2 £ n = N2 operations needed. Total fN2 operations. Auxiliary storage
n = 0

needed is At reals, At integers and N four-valued codewords.

2) The general solution method [2, 3]. It computes polynomials p,q,r,s satisfying

^-řïj-й-ш
The matrix P represents accumulated row operations on the vector A. The degrees

N

dp, Sq, dr, 5s grow from 0 to At, the degrees da, db fall from At to 0 with 6 £ n = 3/V2

n = 0

reductions needed. Thenafter the particular solution x0 = pc, y0 = qc is recomputed
to the minimal one by taking the remainder in division by b resp. by a. This multi­
plication and division needs AN2 operations. Total 7At2 operations is worse than that
of the above method by factor 2-8. Auxiliary storage 4At for p, q, r, s is also greater.

3) The probable most wide-spread method of indeterminate coefficients. By it,
the polynomial equation is replaced by a set of M = 2At numerical equations for
coefficients. The number of operations for solving by elimination is known to be
M3/3 = |At3, the storage M2 = 4A/2. These formulae show that this method com­
pared with any polynomial one is worse by an order of magnitude: At3 instead
of A72 operations, At2 instead of At storage.

6. CONCLUSION

The method is very simple, effective and easy to learn. Number of operations needed
is less than that in any other method known.

ACKNOWLEDGEMENT

The author wishes to thank Ing. V. Kucera DrSc. and prof. Ing. V. Strejc DrSc. for valuable
comments on the algorithm.

(Received March 17, 1982.)

515

R E F E R E N C E S

[1] V. Kučera: Algebraic theory of discrete optimal control for single-variable systems I —
Preliminaries. Kybernetika 9 (1973), 2, 94—107.

[2] V. Kučera: Algebraická teorie diskrétního lineárního řízení. (Algebraic Theory of Discrete
Linear Control). Academia, Praha 1978. .

[3] V. Kučera: Discrete Linear Control — The Polynomial Equation Approach. Wiley, New
York 1979.

Ing. Jan Ježek CSc, Ústav teorie informace a automatizace ČSA V (Institute of Information
Theory and Automation — Czechoslovak Academy of Sciences), Pod vodárenskou věží 4,
182 08 Praha 8. Czechoslovakia.

516

		webmaster@dml.cz
	2012-06-05T10:32:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

