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KYBERNETIKA — VOLUME 20 (1984), NUMBER 4

EXTREME SYMMETRY
AND THE DIRECTED DIVERGENCE
IN INFORMATION THEORY

PREM NATH, RANIJIT SINGH

The authors have characterized the directed divergence axiomatically using extreme symmetry,
a concept weaker than symmetry in the strict sense.

1. INTRODUCTION

Let

Iy={(py p2s P P20, i=12,...,m Z pi=1}, n=23,..

denote the set of all n-component discrete probability distributions. Let S,, n = 2, 3, ..
denote the set of all 2n-tuples of the form (py, P2, s Pus 41, 42> -+ > @) With (py,
P2 D)€L (41,92, a,) €1, such that p, = 0 for all those indices i for
which ¢; = 0,1 £i < n.

S. Kullback and R. A. Leibler [7] proposed the quantity (withE, : §,» R =] — oo,
+oo[,n=2,3,..)

n
P
1) Ey(P1s D2svos Pu Q1 G2 -0 4) = 3. D1 lOB, q—l
i=1 i

where 0log 0/q = 0, ¢ 2 0, and named it as a minimum discrimination information
Jfunction. Later on, it has also been called the directed divergence between (py, pa, ...
o€l and (44, 43, ..., @,) €T, With (py, Py oo, Pl 415 G25 -+ 44) € Sy Several
researchers have characterized (1) axiomatically. A detailed account of some of these
characterizations may be found in chapter 7 and the bibliography given at the end
of the book of J. Aczél and Z. Daréezy [3].

A. Hobson [1], L. L. Campbell [4] etc., while characterizing (1) axiomatically
assumed the following as a postulate:

Postulate I, (Symmetry). E, : S, — R is symmetric under the simultaneous permuta-
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tions of p, and g, k = 1,2, ey 1, that is.

@ EPi P pri @ G oo d0) =

= E(pi1ys Pr2ys -+ Premys Frcrys Dicays =+ o ‘Ik;n))

where k is an arbitrary permutation of 1, 2, ..., n.

The object of this paper is to weaken the symmetry Postulate I, in the strict sense
and then characterize (1) axiomatically.

2. WEAKENING OF SYMMETRY

Postulate T, is quite intuitive. It tells us that the amount of directed divergence
between (py, p, :.., po) € Iand (44, 42, -+ -, 4,) € T, does not depend upon the order
in which the paired events (p,, g,), k = 1,2, ..., n occur. For a fixed n, (2) represents
a system of n! equations, a number fairly large as compared with n whenever n 2 3.
Thus, for n = 3, Postulate I, really gives too much freedom to the variables py, p,, ...
ceos Pus 41> 25 -5, In connection with their movements within E,, of course,
without disturbing the correspondence between p,’s and ¢,’s. In a particular situation,
one may not need the use of all n! permutations of the indices 1, 2, 3, ..., n. Under
such circumstances, it seems desirable not to use Postulate I, but its some strictly
weaker form. Our way of weakening Postulate I, is based upon this idea. We intro-
duce the following definition:

Definition. Let E be a non-empty setand E" == E X E x ... x E,n = 2aninteger.
n—\imcs__'

A function f:D - R =] —oo, +o[ ,D < E" x E" is said to be an extreme-
symmetric function over the domain D if

f(xb X2s eees Xy gy X3 V15 Voo oo00 V15 )’n) =

= S (X X200 0» X3 X453 Vo V25 o5 Vae 15 V1)
for all

(%15 X2, 00 X3 Y12 V2o oo s V) €D

For related work concerning the Shannon entropy, see P. Nath and M. M. Kaur [5].

3. SYSTEM OF POSTULATES

et
(3) Fy) =E(x, 1 —x; 0,1 =)
where f is a real-valued function with domain

J=T0 1 xJo. 1fu {0y <Ju{l,y):0<y <1}.
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We assume the following postulates:
Postulate II. The mapping (x, y) = f(x, y) is continuous at the origin.

Postulate III,. For all probability distribution (p,, ps. ..., p,)€ I, with
Py +p2.>0, (‘lh q2s - ‘In) € I', such that (Pp Pasees Pus s G250 [In) €5,
4) E(P1:Pos i Pat 41, Qa5 oy G) =

= E,o(py + P2 Pao - P @ F 420300 4) +

)4 P q 42
+(ps ‘*‘Pl}E2< b ‘2 B e >, Pyt Py >0
P+ P2 Pr+t P2 41t gyt 42

Notice that, in (4) there is no need to mention ¢, + ¢, > 0 because, in S,,
py+p;>0=>qg, 4+ q,>0.

Postulate IT1,, is not applicable when p; + p, = 0, thatis, p, = 0, p, = 0. In such
a situation, we assume the following:

Postulate IV,,. For all probability distributions of the form (0,0, p3, ..., p,) €I,
41> 92- 93> - aw) e, with 0= g, + g, <1, such that (0,0, ps, ..., pss
415925 3 -+ du) € S

(5) E0.0. P30y Pu 415 920 €30 -5 €0) = Enes(0. Pas o Pai @1 + G20 G300 ) -

Postulate 1V, tells us that if, in a certain experiment, each of the first two events
is of probability zero, then these may be combined and their corresponding asserted
probabilitics may be pooled together. In doing so, the average amount of directed
divergence does not undergo any change.

Instead of Postulate I,, we assume the following:

Postulate V, (Extreme-Symmetry). E, : S, — R is extreme-symmetric over S,,, that is,
(6) E(Pr P2 oos Pamte Pus 415 G2 oo Qo 15 4n) =
= E(Pus Pas s Puc 1 P Qs Q25 - > =15 41)

Postulate V,, says that the value of E, remains unaltered if the order of finding
the probability estimates of the first and the last event is reversed. Also, from (6),
it is quite obvious that Postulate V, makes use of only two permutations of the
indices 1,2,...,n — 1, n, namely, the identity permutation 1,2,...,n — 1, n and
the permutation n, 2, 3,...,n — 1, 1. Notice that Postulate I, allows us to make
use of n! permutations of 1,2, ....n — 1, n.

Postulates I, and V, are equivalent to each other. Hence, it makes no sense
to assume V, forn = 2. For n = 3, Postulate V, is weaker than I, in the strict sense.
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Example. Define F,,: S, —» R, n=3,4,...as

F,.(Pp Pasoves Pus 910 925 -0 qn) = piqs + Puu -

Then F, satisfies Postulate ¥, but not I,. Thus, Postulate V, is weaker than I, in the
strict sense.

Postulate VI. E,(1,0;4,1) = 1.

Postulate VII. E,(1,4;4,4) = 0.

4. A CHARACTERIZATION THEOREM

The main result of this paper is the following theorem:

Theorem. Let E, : S, = R, n = 2,3, ...satisfy Postulates I, III, (n = 3,4, ...),

1V, (n = 4,5,...), V, (n = 2m, 2m — 1) for some fixed integer m = 2, VI and VIL
Then, E, is of the form (1).

The proof of this theorem needs several results which we put in the form of some

lemmas. The notation 4 ::)) B, henceforth, will mean that B is obtained from A
by first applying (a) and then (b).

Lemma 1. Postulates IIT, (n =3,4,...), 1V,(n =4,5,...) and V, (n = 2m,
2m — 1) for a fixed integer m > 2, imply

7) Ey(1,0;1,0) = E5(0,1;0,1) = 0.
) Epsf(Pis P2y 2,00,0,...,05 1. G2y vy 4 0,0, ..., 0) =
N
Jj=times

J—times

= E(py, D2 ooos Pus Qus Qs o0 ) »

Pi+p,>0, j=1,2,3,..0n=2.3,...
©)
B (P Pa s P 0000 p o p 4 @ 00 0,0, O, Gy e 0,) =

= times J—times

= Epy, Paseens Pus Q1o G2 -0 Q) »

Pr>0, n=23 . j=12..; k=12 .,n—-1."
{10) Epif(0,0,,0.0,p,, 0y ps 0,0,000, 430 s oo ) =
J—times j~times

=E,.(o,Pz,“v,p,,;ql,qz,.‘,,q,,), n=3,4,..; j=12..
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(11) Eypijef0,0, .0, p1, Pas s Pin 0,000, 0, prs gy ooy 1y 5
j i I=ti
J—times —times
0,0,..,0,d1, 42, .- 41 0:0, -, 0, @iy, . q,) =
e ———
j—times I—times
= E(P1s Pas > P Q15 Q25 -+ » G0) »
p>0, n=23.3 j=12.:1=0L2.,; k=12,..,n—-1.
Proof. Fix m > 2 arbitrarily. Then, by Postulates 1V, (n = 3)and V, (n = 2m,
2m — 1),
E3m-1(0,0,...,0,1;0,0,....0, 1) =

2 E,,(0,0,0,...,0,1:0,0,0,...,0, 1)
©E,.(1,0,0,...0,0;1,0,0,...,0,0)

G Eypy(1,0,....0,0: 1.0,...,0,0) + Ey(1,0;1,0)
©E,,1(0,0,...,0,1;0,0,...,0,1) + Ex(1,0; 1,0).

Hence

(12) Ex(1,0:1,0)=0.

Also, by Postulate Vs,

(13) En(3.4,0,0,...,0.0: 4,4,0,0,...,0,0) =
2m=2) (2m~2)
(2m=2 2m—

= E,,(0,4,0,0,...,0,1:0,4,0,0,...,0,%).

By applying repeatedly Postulate III, for n = 2m, 2m — 1, ..., 3, the LHS of (13)
reduces to
(2m — 2)E;(1,0:1.0) + Ex(3,%: 1, %) .

On the other hand, after applying repeatedly Postulate III, for n = 2m, 2m — 1, ...
..., 3, the RHS of (13) reduces to

2m — 3

Ez(l, 0; 1, O) + 4 Ez(o, 1: 0, 1) + Ez(lz‘, 14 %) .

Consequently, (13) reduces to
(14) (2m — 1) E5(1,0; 1,0) = E5(0,1;0,1).
From (12) and (14), we obtain E,(0, L; 0, 1) = 0. Thus, (7) is proved.

Equations (8) and (9) follow by the successive application of Postulate 111,.,,
b=j,j—1..,1;n=23,.. and (7).

Equation (10) follows by the successive application of Postulate IV, ,,, b = j,
Jj—1..,1;n=34..

Equation (11), forj = 1and I = 0, is a consequence of Postulate III, (n = 3, 4, ...
and (7). Forj > 1 and I Z 1, it follows from Postulate II1,, (8), (%) and (10). O
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\ =2
Lemma 2. Postulates I1I, (n = 3,4,...), IV, (1 =4,5,...) and Vi (n = 2m,
2m — 1), for a fixed integer m 2 2, imply

(13) Ey(pis P23 41, 42) = Eo(P2s P13 02 44)
(16) E3(py1s P2s P35 910 430 43) = Ea(P2 P1> P33 920 415 43)
(17) Eq(p1s Pa- P33 415 20 43) = Es(P1s P P23 415 435 42) -

Proof. To prove (15), we have the following three cases:
Case 1. p, =1, p, = 0. Then
Eo(py, 125 41, 42) = Ex(L, 01 5. 42) =
4 £,,0,0,...,0,1,0;0,0,...,0, 4, 45)
© £,,(0,0,...,0,1,0;42,0,...,0, 4y, 0)
= E;(0, 1, 0 g5, q1.0) by repeated use of (5)
B E,0, 15 g2, 41) = Ex(p2> P13 425 41) -
Case 2. p; = 0, p, = 1. The proof is similar to that of case 1.
Case 3. 0 < p; < 1,0 < p, < 1. In this case, we must have 0 < ¢, < L, i = L, 2.
Now
Ex(pi P25 015 92) 2 Ezn(p1. 0,0, .-, 0, 22501, 0,0,..., 0, g3)
© F,(920.0....,0,945,0,0,...,0, g,)
2 EZ(sz P14 ‘11) -
To prove (16), the following two cases arise:
Case 1. p; + p, = 0. Then p, = 0, p, = Oand p; = 1. Consequently 42 + 43 >
> 0 because g3 must be positive. Now
Es(py. 2. P3s 410 42- 43) = E3(0,0, 15 415 42, 45) =
U9 E,uf0, ..., 0,0, 1;0, ..., 45, 42, 43)
O F,(l,....0,0,0; g3, .. 415 92, 0)
® EppoifLi - 0,05 g3, .- 415 42)
(j:)EZm—l(o’ R VR Y PYRPRN P Q3)
= E4(0,0, 1; 45,94, 45) by the repeated use of (5)
= Es(P2, Pos P35 425 915 95)-

Case 2. 0 < p; + p, < 1. Then, we must have 0 < ¢; + g, < 1 and (16) follows
from Postulate IIT; and (15). Now we prove (17). In this case, the follow-
ing two cases arise:
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Case 1. 0 < p; < 1. Then, we must have 0 < g; < 1. Now
E3(P1s P2 P35 41> 425 45) = E2nf0, - P1u P2, 0330, o, 410 G2, 43)s P1€[0,1 = ps]
O Ep(p3, s P1y P25 05 30 -5 415 425 0)
@ Es(l’:u Dy P25 935 4915 42)
w Ej(ph P3s P25 415 935 ‘13) .

Case 2. p; = 0. Then p, + p, = 1. Hence, at least one, out of p; and p,, must
be positive.On account of (16), we may assume that p; > 0. Then ¢; > 0.
Now

Es(Py. p2. P33 41 G2 G3) = Es(P1. P2, 0545042, 43), Py > 0,45 > 0
29 Ex(pa, p1s 05 42, 415 43)
B Epn(p2 01, 0,0, 05 2, 435 G5 -5 0)
© EZHA(O! P 01230, 4, 450 -1, ‘12)
e El(pl’ 0, p2; 445 43> 612)
= E3(p1. 03 23 44 43, 92) -
This completes the proof of Lemma 2. m

Lemma 3. Postulates 11T, (n =3,4,...), IV, (n =4,5,...) and V, (n = 2m,
2m — 1), for a fixed integer m z 2, imply that E, is symmetric, in the sense of (2),
forn =2,34,....

Proof. The symmetry of E, follows from (15). Equation (16) and (17) imply
the symmetry of E;. We prove (2), for n = 4, by induction on n. We assume that E;
is symmetric, in the sense of (2), for a fixed value of j, say j = n = 3 and then prove
that E, ,; is symmetric. To do so, it is enough to prove the following (for n + 1 = 4}

(18) E,s1(Prs Pas oo Pas 13 010 Gy o5 dues) =
= Epp1(P2 Prv oo Pus 15920 Q1s o or D)
(19) Eos(Dis P2s Dasvos Pasts Q10 Q2o 35 ooos Qut 1) =
= Eoy1(P1s P3s Pas oos Pus 15410 €30 925 o5 G 1)
(20) Epi1(P1s P2 D3 oo Pui 13 Q15 G20 Q30 s Q1) =
= E,51(P1s P2s Puays -+ Prws 105 415 Q25 Gy -+ qn()1+!))

where n is an arbitrary permutation of 3,4,...,n + 1.

Equation (18) is obvious if p; + p, = 0. If p; + p, > 0, then it follows from
Postulate 111, . , and (15).

Equation (20) follows from Postulate ITl,,; and the induction hypothesis if
p1 + p2 > 0. It follows from (5) and the induction hypothesis if p; + p, = 0.
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To prove (19), the following two cases arise:

Case 1. 0 < p, + p, = 1. Then 0 < g, + g, < 1. In this case, (19) can be
proved by proceeding as on page 60 in the book of J. Aczél and Z. Daré6czy
[3]. The details are omitted.

Case 2. p; + p, = 0. Then, we must have 0 < ¢, + g, < 1. Now
E, i i(Dis P2> P3s ovvs Pos 13 Q1> 20 Q35 oo Gnvn) =
= u+1(0a 0, P35 vvs Prt 13 Q15 925 G35 -5 Qn+1)
& E,1(0,0,0, P,y Pus 13 0,415 G2 G35 -+ 0s Qs t)
=E,45(0.0,03, 0, . Puy 130, 415 G35 425 -+0» Gus1) Y (20)
@ E,1(0, P35 0, oy Puva €35 G35 G2 oo Gus 1)
= n+1(P1> D3 P2> voos Pat15 915 935 925 - > qn+1) .

This completes the proof of Lemma 3. O

Proof of the main theorem. From (3) and (15), it follows that

(1) fey)=fl=x1-y), (vyed.
From (7) and (21), we obtain
(22) F(0,0)=f(1,1) = 0.

Also, making use of (3), (21) and Lemma 3 (we need only the symmetry of Ej),
it is easy to derive the functional equation

(23) f(X~y)+(1—X)f< ? ,~L>=f(u,v)+&l—u)f<_£, J,)

l—x 1 —y l—urtl—v

x,y,u,0e[0,1[ with x+ y,u+ve[0,1].

Defining
O:{(mp):meN,peN,pzm} >R, N=1{1,23,..}
as .
d(m, p) :E‘,<i,—l'~q.‘.,i,0,0,‘..,O;l,l,...,l> ifp=2
m m m PP P
=0 ifp=1

and making use of the papers of A. Hobson [1], D. K. Fadeev [2], P. L. Kannappan
and P. N. Rathie [5], the form of f(x, y) for all (x, y) € J can be found out. Once
the form of f(x, y) is known, by making use of Postulates III, (n = 3,4,...), IV,
(n =4,5,...), VIand VII, equation (1) follows. The details are omitted for the sake
of brevity. .
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COMMENTS

The proof of our theorem makes an extensive use of probability distributions
which contain zeros. If, in E{Py, P2> ---» P} 41> 25 +--» 4,)» We have p; = g, =0,
i=1,2,...,j.,j 2 2, then exactly (j — l) zeros can be omitted with the aid of
Postulate 1V,; and if p; =g, =0, p, > 0or p; >0, p, = g, =0, then such a 0
can be removed with the aid of Postulate 1il,, provided we are in a position to prove
(7) whose proof involves the use of probability distributions with zero elements.
It is, in this way, that Postulates 11T, and IV, enable us to remove (even add) the
desired number of zeros at the appropriate places.

(Received July 25, 1983.)
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