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OPTIMAL INITIAL FUNCTIONS 
OF RETARDED CONTROL SYSTEMS 1 

J . -Y . P A R K , J . - M . J E O N G AND Y . - C . K W U N 

This paper deals with optimization problem of initial functions and optimality conditions 
for retarded functional equations for the given cost functions. Under ensuring the regularity 
of solution of the retarded system we proceed to necessary optimality condition of the 
optimal solution for cost function J in set of a admissible controls that is closed and 

1. INTRODUCTION 

In this paper we deal with optimization problem of initial functions and optimality 
conditions for retarded functional equations for the given cost functions. Under 
ensuring the regularity of solution of the retarded system we proceed to necessary 
optimality condition of the optimal solution for cost function J in set of a admissible 
controls tha t is closed and convex. 

As for the regularity of solution we deduce the results of G. Di Blasio, K. Kunisch 
and A. Sinestrari [2] regarding term by term. If the admissible set is closed and 
convex and the cost function J is strictly convex and coercive then there exists an 
initial function g for which the cost J is minimized subject the retarded functional 
differential equation as is in [6]. There exist many literatures which studies optimal 
control problems of control systems in Banach spaces. However, most studies have 
been devoted to the systems without delay and the papers treating the optimal 
initial functions for the retarded system with unbounded operators are not so many. 

In Section 2, we present some basic results on existence, uniqueness, and a repre­
sentation formular functional differential equations in Hilbert spaces. We establish 
a form of a mild solution which is described by the integral equation in terms of 
fundamental solution using structural operator. In Section 3,4, we shall give two 
forms of quadratic cost functions; one is a quadratic cost criterium in linear dy­
namic system and the other is a feedback control law for regulator problem. First 
we consider results on the existence and uniqueness of optimal control in the closed 
convex admissible set. So we present the necessary conditions of optimality which 

1 This work was supported by the Basis Science Research Institute Program, Ministry Education, 
1994, Project No. BSRI-94-1410. 
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are described by the adjoint state and integral inequality. Maximum principle and 
bang-bang principle for technologically important costs are also given. 

2. FUNCTIONAL DIFFERENTIAL EQUATION WITH TIME DELAY 

Let V and H be two real Hilbert spaces. The norm on V (resp. H) will be denoted 
by || • || (resp. | • |) and the corresponding scalar products will be denoted by ((•, •)) 
(resp. (•, •)). Assume V C H, the injection of V into H is continuous and V is dense 
in H. H will be identified with its dual space. If V* denotes the dual space, H 
may be identified with a subspace of V* and may write V C H C V*. Since V is 
dense in H and H is dense in V* and the corresponding injections are continuous. If 
an operator AQ is bounded linear operator from V to V* and generates an analytic 
semigroup, then it is easily seen that 

H xEV* : í \\A0e
tA°x\\ldt<oo\, (2.1) 

for the time T > 0 where || • ||* is the norm of the element of V*. The realization of 
Ao in H which is the restriction of Ao to 

D(A0) = {ueV :A0ueH} 

is also denoted by AQ. Therefore, in terms of the intermediate theory from (2.1) we 
can see that 

(V,V*)h2 = H (2.2) 

where (V, V*)i 2 denotes the real interpolation space between V and V*, and hence 
we can also replace the intermediate space F in the paper [2] with the space H. 
Hence, from now on we derive the same results of G. Di Blasio, K. Kunisch and 
A. Sinestrari [2]. Let a(u,v) be a bounded sesquilinear form defined in V x V 
satisfying Garding's inequality 

Re a(u, u) > co||u||2 — ci|i<|2, c0 > 0, c\ > 0. 

Let Ao be the operator associated with a sesquilinear form 

(AQU, V) = — a(u,v), u, v € V. 

Then AQ generates an analytic semigroup in both H and V* and so the the following 
equation may be considered as an equation in both H and V*: 

/

o 
a(s)A2x(t + s)ds + f(t), (2.3) 

x(0) = g°, x(8) = gҶs), se[-h,0). (2.4) 

~гx 

dt 

Let the operators Ai and A2 be bounded linear operators from V to V*. The 
function a(-) is assumed to be a real valued Holder continous in [—h, 0]. Under these 
conditions, from (2.2) and Theorem 3.3 of [2] we can obtain the following result. 
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Proposition 2 .1 . Let g = (g°, g1) G H x L2(-h, 0; V) and / G L2(0,T; V*). Then 
for each T > 0, a solution x of the equation (2.3) and (2.4) belongs to 

L2(0,T;V)nW1'2(0,T;V*)cC([0,T};H). 

Let Z denote the product reflexive space H x L2(—/i,0; V) with the norm 

\\g\\z = ( V | + y° h I^OOII2 ds) 2 , flf = (<EV) G z. 

The adjoint space Z* of Z is identified with the product space H x L2(0,T; V*) via 
duality pairing 

(g,h)z = (g°,h°)+ [ (g1(s),h1(s))ds, g e z, f e z* 
J-h 

where (•, •) denotes the duality pairing. Let x(t; g, f) be the solution of the equation 
(2.3) and (2.4) with the initial value g = (g0^1) G Z and / G L2(0,T; V*). Accord­
ing to S. Nakagiri [7], we define the fundamental solution W(t) for (2.3) and (2.4) 
by 

f -(.;<A0),O), *>0 

\ 0 t < 0 

for g° G H. Since we assume that a(-) is Holder continuous the fundamental solution 
exists as seen in [11]. It is known that W(t) is strongly continuous and AoW(t) and 
dW(t)/dt are strongly continuous except at t = nr, n = 0, 1, 2 , . . . 

For each t > 0, we introduce the structual operator F(-) from H x L2(0,T; V) to 
H x L2(0,T;V*) defined by 

Fg = ([Fg}°,[Fg}1), 

[Fg}° = g°, 

[Fg}1(s) = F1g
1(s) = A1g

1(-h-s)+ f a(r)A2g
1(r-s)dT 

J-h h 

,0 „1 \ - ir v, r2 for flf = (g°, g1) G H x L2(0,T; V). Then the adjoint F* : Z* -> Z is given by 

[ i ^ ] ° = <7° [2I,*ri1---5,iV for g = (g°,g1)eZ*. 

The solution .c(t) = x(t;g, f) of (2.3) and (2.4) is represented by 

x(t) = W(t)g°+ f W(t + s)F1g
1(s)ds+ f W(t-s)f(s)ds 

J-h Jo 

for t > 0. 
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Let I = [0,T], T > 0 be a finite interval. We introduce the transposed system 
which is exactly the same as in S. Nakagiri [8]. Let q0 G H, q* G L1(J;H). The 
retarded transposed system in H is defined by 

<¥*) + 
dt , A*0y(t) + A*y(t + h) + J a(s)A*2y(t - s) ds + q{(t) = 0 a.e. t G I, (2.5) 

y(T) = q*0, y(s) = 0 a.e. s G (T,T + h]. (2.6) 

Let W*(t) denote the adjoint of W(t). Then as proved in S. Nakagiri [8], the mild 
solution of (2.5) and (2.6) is defined as follows: 

rp 

y(t) = W*(T-t)(q*0) + J Wit-QqKQdt, 

for t G I in the weak sence. The transposed system will be used to describe a 
formulation of the optimality conditions for initial function optimization problems. 

3. OPTIMALITY CONDITION FOR QUADRATIC COST FUNCTION 

Let us assume that 

Gad = G°adxGl
ad, G°adcH, Gl

adcL2(-h,0;V) 

and G°d, Gad are closed and convex in H and L2(—h,0;V), respectively. Let J = 
J(g, x) be the cost function given by 

J(9)= [ \\Cx(t)-zd(t)\\
2
xdt + (Ng,g)z, 

Jo 

(Ng,g)z = (Nog0,g°)+ í ((N1g
1(s),g1(s)))di 

J-h 

where the operator C is a bounded from H to another Hilbert space X and zd G 
L2(I;X). Finally we are given No, Ni are self adjoint and positive definite: 

(No9°,9°) > c\g°\2, and ((N1g
l(s),g1(s))) > c\\gl(s)\\2, c> 0, 

or (Ng,g)z > c||^||^. Let xg(t) be a solution of (2.3) and (2.4) associated with the 
initial function g G Z. 

Theorem 3.1. Let the operators C and N satisfy the conditions mentioned above. 
Then there exists a unique element g G Gad such that 

J(g)= inf J(h). (3.1) 
hE.Gad 

Furthermore, it is holds the following inequality: 

(Ng-F*(p(0),p(-)),h-g)>0 
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where p(—t) is a solution of (2.5) and (2.6) for initial condition p(s) = 0 for s G 
[T,T+h] substituting?* by -C*Ax(Cxg(t)-zd). Thatis,p(s) = y(-s),se [ - M L 
satisfies the following transposed system: 

^0-+ A*Qy(t) + A*y(t + h) + [ a(s) A2y(t - s) ds (3.2) 

-C*Ax(Cxg(t)-zd) = 0 a.e. t £ I, 

y(T) = 0, y(s) = 0 a.e. s e (T,T + h] (3.3) 

in the weak sense. Here, the operator Av (resp. Ax) is the canonical isomorphism 
of U (resp. X) onto U* (resp. X*). 

P r o o f . Let x(t) = x(t;0,f). Then it holds that 
rp 

J(h) = I \\Cxh(t)-zd(t)\\
2dt + (Nh,h) 

Jo 
rp 

= f \\C(xh(t)-x(t)) + Cx(t)-zd(t)\\
2dt + (Nh,h) 

Jo 
rp 

= n(h,h)-2L(h)+ I \\zd(t)-Cx(t)\\2dt 
Jo 

where 

ҡ(g,h) = j (C(xg(t)-x(t)),C(xh(t)-x(t)))dt + (Ng,h) 
Jo 

rp 

L(h) = í (zd(t)-Cx(t),C(xh(t)-x(t)))dt. 
Jo 

Since 
xg+h(t) = x(t;g + h,f) = xg(t) + xh(t) + x(t; 0, / ) 

the map h H-> xg(-) is an affine map of Z —> H. Therefore the form ir(g,h) is a 
continuous bilinear form on Z and from assumption of the positive definiteness of 
the operator N we have 

ir(h,h)>c\\h\\2, h£Gad. 

Therefore in virtue of Theorem 1.1 of Chapter 1 in [6] there exists a unique g £ Z 
such that (3.1) holds. If ^ is an optimal initial function (cf. Theorem 1.3. Chapter 1 
in [6]), then from 

1-[J(g + 9(h-g))-J(g)]>0 

it follows that 

J'(g) (h-g) = 2[TT(<7, h - g) - L(h - g)] > 0, he Gad, (3.4) 

where J'(g)h means the Frechet derivative of J at g, applied to h. It is easily seen 
that 

x'g(t) (h-g) = (h- g, x'g(t)) = xh(t) - xg(t). 
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Therefore, (3.4) is equivalent to 

/ (Cxg(t) - zd(t), C(xh(t) - xg(t))) dt + (Ng, h-g) 
Jo 

fp 

= I (C*Ax(Cxg(t) - zd(t)), xh(t) - Xg(t)) dt + (Ng, h-g)>0. 
Jo 

Note that C* G B(X* ,H) and for <f> and \f) in H we have 

(C*AxCip,<f>) (duality H, H) = (AXC^,CTT) (duality X*,X) 

= (Cip, C4>) (scalar product in X) 

where duality pairing is also denoted by (•, •)• From Fubini's theorem and 

xg(t) - xh(t) = W(t) (g° -h°)+ f W(t + s) [F^g1 - h1)} (s) ds 
J-h 

we have 
rp 

I (C*Ax(Cxg(t) - zd(t)),xh(t) - xg(t)) dt + (Ng, h-g) 
Jo 

= ( J W(t)*C*Ax(Cxg(t) - zd(T) dt, h° - g° j 

+Lh[[F*L W*(t + -)C*Ax(Cx^-ZdWdt^^ 
= (Ng-F*(p(0),p(.)),h-g)>0 

where p(s) is given by (3.2) and (3.3), that is, y(s) is following form: 
rp 

p(s) = - f W*(t + s)C*Ax(Cxg(t)-zd(t))dt. 
J — s 

a 

Remark . Identifying the antidual U with U ( and also in case X) we need not use 
the canonical isomorphism Au- But in case where U C H it is difficult to lead the 
dual space U* since H has already been identified with its dual. 

Corollary 3.1 (Maximum principle). Let Gad be bounded and N = 0. If ^ is an 
optimal solution for J. Then 

max(h,F*(P(0),p(-))) = (g,F*(p(0),p(.))) 
n£Gad 

where p(-) is given by in Theorem 3.1. 

We remark that if Gad is bounded then the set of elements g G Gad such that 
(3.1) is a nonempty, closed and convex set in Gad. 
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Theorem 3.2 (Bang-Bang Principle). Let F and C be one to one mappings. If 
there is not the initial function g such that Cxg(t) = Zd(t) a.e., then the optimal 
initial function g is a bang-bang initial function, i.e., g satisfies g G dGad where 
dGad denotes the boundary of Gad-

P r o o f . On account of Corollary 3.1 it is enough to show that F* (p(0), p(-)) ^ 0 
for almost all s. If p(s) = 0 for almost all s G [—h, 0), then since 

p(s) = - I W*(t + s)C*Ax(Cxg(t) - zd(t))dt, 

from assumption and Lemma 5.1 in [8] it follows that 

Cxg(t) — Zd(t) = 0 a. e. 

It is a contradiction. Q 

4. OPTIMALITY CONDITION FOR REGULAR COST FUNCTION 

In this section, the optimal control problem is to find a initial function g which 
minimizes the cost function 

rp 

J(g) = (Gx(T),x(T))H+ f (D(t)x(t),x(t))Hdt + (Ng,g) 
Jo 

where 

(Ng,g) = (Rg°,g0) + f (g^s), Q(t)^(a))ds 
J-h 

and x(-) is a solution of (2.3) and (2.4), G, R G B(H) are self adjoint and nonneg-
ative, and D G B(0,T;H,H) which is a set of all bounded operators on (0,T) and 
Q G H(0, T; U, U) are self adjoint and nonnegative, with Q(t) > m for some m > 0, 
for almost all t. 

Theorem 4 .1 . Let Gad be closed convex in Z. Then there exists a unique element 
g G Gad such that 

J(g)= inf J(h). (4.1) 
n£Gad 

Moreover, it holds the following inequality: 

(F*(P(0),p()) + Ng,h-g)<0, 

where y(t) = p(—t) is a solution of (2.5) and (2.6) for initial condition y(T) = 
-Gxg(t) and y(s) = 0 for s G (T,T + h] substituting q*(t) by -D(t)xg(t). That is, 
y(t) satisfies the following transposed system: 

^p- + A*0y(t) + Aly(t + h)+ f a(s)A2y(t-s) ds-D(t) xg(t) = 0 a.e. t el, (4.2) 

y(T) = -Gx9(T), y(s) = 0 a.e. s G (T,T + h] (4.3) 
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in the weak sense. 

Proof. According to the form of solution of the equation (2.3) and (2.4) the 
map g i—> xg(t) = x(t; g, f) = x(t; g, 0) + x(t; 0, f) is an affine map of Z —*• H. If we 
set 

n(g,h) = (G(xg(T)-x(T;0,f)),xh(T)-x(T;0,f)) 

+ f (D(t)(xg(t) - x(t;0,f)),xh(t) - x(t;0,f))dt 
Jo 

+ (Gx(T; 0, / ) . x(T; 0, f)) + f (D(t) x(t; 0, f), x(t; 0, /)) + (Ng, h) 
Jo 

L(h) = (Gx(T; 0, f), xh(T) - x(T; 0, /)) + / (D(t)x(t; 0, f), xh(t) - x(t; 0, /)) d* 
Jo 

then it is written J(g) in the form 

J(g) = Tr(g,g)-2L(g). 

Under the hypotheses on G, D, and Q, there exists a unique u which minimizes J. 
Then from 

J'(9)(h-g) = 2[ir(g,h-g)-L(h-g)} 
= 2(Gxg(T),xh(T)-xg(T)) 

rp 

+2 I (D(t)xg(t),xh(t)-xg(t))dt + 2(Ng,h-g), 
Jo 

(4.1) is equivalent to the fact that 

(Gxg{T), W(T) (h° - g°) + (Gxg(T), £ W(T + s)[F,(hl - g1)]^) ds^j 

+ [T(D(t)xg(t),W(t)(h°-g°))dt 
Jo 

+ ( (D(t)xg(t),J W(t + s)[Fx(h
l -gl)](s)ds\ dt + (Ng,h-g) 

= (W(T)*Gxg(T),h°-g°)+ f ([F*W(T+-)Gxg(T)](s),h1(s)-g1(s))ds 
J-h 

+ ([TW(t)*D(t)xg(t)dt,h°-g°) 

+ ГЉL W(t+-)*D(t)Xg(t)dt (s),hl(s)-gl(s)\ ds + (Ng,h-g) 

= ((F*(W(T)*Gxg(T), W(T + -)*Gxg(T)), h-g) 
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+ \ F \ I W W*D (* )**( - )d« . / W(t + -)*D(t)xg(t)dt),h-g\ 

+(Ng,h-g) 

= (F*(p(0),p(-)) + Ng,h-g)<0. 

Hence 

p(s) = -W*(T + s)Gxg(T)- I W*(t + s)D(t)xg(t)dt 
J — s 

solves (4.2) and (4.3). 

Remark. If Gad is bounded and N = 0, then for the cost function J in Section 4 
we can also obtain the pointwise maximum principle and the bang-bang principle. 

From now on, we consider the case where Uad — L2(0,T;U). Let xg(t) = 
x(t; g, 0)+f* W(t-s) f(s) ds be solution of (2.3) and (2.4). Define T G H(L2(0, T; H)) 
andT T £B(L2(0,T;H),H) by 

(T<f>)(t) = f W(t-s)<j>(s)ds, 
Jo 

rp 

TT<\> = ( W(T-s)<f>(s)ds. 
Jo 

We also define solution operators S G B(L2(0,T; Z)) and ST G B(Z, H) by 

(Sg)(t) = x(t;g,0), STg = x(T;g, 0). 

Then we can write the cost function as 

J(g) = (G(x(T;g,0) + TTf),(x(T;g,0) + TTf))H (4.4) 

+ (D(x(-; g, 0) + Tf), x(-; g, 0) + Tf)L,{Q>T.H) + (Ng, g)L2(QiT]Zy 

The adjoint operators T* and TT are given by 

(T*<f>)(t) = J W*(s-t)<f>(s)ds, (4.5) 

(TT<f>)(t) = W*(T-t)cj>. (4.6) 

Theorem 4.2. Let Gad = L2(0,T; Z). Then there exists a unique initial function 
g such that (4.1) holds and 

g(t) = -A~ly, 

where A = STGST + S*DS + N and y = STGTTf + S*DTf. 

P r o o f . The optimal initial function g for J is the unique solution of 

J'(g)h = 0. (4.7) 
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From (4.4) we have 

J'(g)h = 2(G(STg + TTf),STh)) + 2(D(Sg+Tf),Sh) + 2(Ng,h) 

= 2((N + STGST + S*DS) g, h) + 2(STGTTf + S*DTf, h). 

Hence (4.5) is equivalent to that 

((Ag + STTTf + S*DTf,h) = 0. 

Since A is self adjoint and bounded below we have A"1 E B(0,T;H,U) (also see 
Appendix of [3]). Therefore, the proof is complete. • 

(Received January 27, 1995.) 
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