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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 5, P A G E S 4 9 1 - 4 9 9 

D I S T R I B U T I O N OF ESTIMATORS 
AND O P T I M A L E X P E R I M E N T A L DESIGN 
IN N O N L I N E A R REGRESSION 1 

ANDREJ PAZMAN 

In this survey we present in a condensed exposition good approximations of probability 
densities of LS estimators in nonlinear regression models. This includes also marginal den­
sities or densities of scalar parametric functions. Further, the main ideas of two approaches 
how to use these densities for optimal experimental design are presented: the approach us­
ing the second order approximation technique, and the approach using optimality criteria 
in an integral form. 

1. INTRODUCTION 

We consider a nonlinear regression experiment 

y(xi) = r)(xi,e) + €i; i=l,...N, (1) 

€!,...,€N i.i.d. ~N (0 ,<7 2 ) . 

which is performed according to some (exact) design 

X = ( x i , . . .,xN). 

The vector 9 £ 0 is the vector of unknown parameters of dimension p. The (Fisher) 
information mat r ix corresponding to the design X and to the parameter 9 has the 
form 

-M.f.D-t^'y. (2) 

A standard optimality criterion in model (1) is given by a function (cf. [2], [4], [6]) 
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where <I> is equal to <_>[M-1] = lndet[M - 1] (D-optimality) or has any other form 
known from the classical theory of design in linear models. This approach can be 
criticized for two reasons: 

i) Such criteria depend on 9. But this is a principal property of any optimality 
criterion in nonlinear models, since the amount of information obtained from the 
observations may depend very much on 9. Consequently, for designing nonlinear 
experiments we need some prior knowledge about the parameter value, e.g. a prior 
density or a guess about the value of 9. The last approach is used also in this paper. 

ii) In contrast to linear models, the expression e r 2 M - 1 (x , 9) is just a first order 
approximation of the variance of the LS estimator 

9= argmin \\y - n(9)\\2 (3) 
(7 

and it corresponds to the asymptotic normal distribution of 9. (We note that by 
|| || we denote the Euclidean norm, i.e. the square root of the sum of squares.) 
This approximation may be misleading in small sample nonlinear regression, unless 
we restrict the set of designs to those giving models with small curvatures (cf. [5]). 
Another approach is the use of second order approximations of the model or of a 
confidence region (cf. [6] for a survey). 

In this paper we present alternative approaches which are based exclusively on 
the probability density of 9. This is justified by the evident fact that the whole 
information about the statistical properties of 9 is contained in its probability dis­
tribution. 

2. APPROXIMATE JOINT PROBABILITY DENSITY OF 9 

Before discussing experimental design, we present approximate probability densities 
of estimators. In this section for the vector 9, in the next section for the estimator 
of any scalar function of 9. 

From this place up to the last paragraph of Section 4 the design X is fixed, and 
we omit to write it in the notation. 

Unless some particular cases, we do not know the exact probability density of 9, 
but there are very good approximations. For surveys the reader is referred to [9], 
and recently to [7]. Some results discussed in [7] require the knowledge of moments 
(Edgeworth expansions), or their precision is studied only asymptotically. 

The approximate density of 9 considered in the present paper is given by the 
formula (4) without using moments, just the first and second order derivatives of 
t)(xi, 9) are required. The precision of this approximation can be evaluated for small 
samples by a geometric insight into the model (cf. [8, 11, 12]). 

Here is the formula for the approximate density (cf. [12]): 

q(9\9) = ^ ' ^ L ^~exP ( K\\P(O)[n0) ~ V(9)}\\2\ (4) 
A ' ; (2.r)W-<r™ det1/2[M(0)] \ 1a^ K ,UK ) IK nn j v ; 

where _ ... n T,^ 
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is an orthogonal projector. The term T(9,9) is rather complicated in general non­
linear models, however, it can be expressed in simple terms if the model is "linear 
in a certain sense": 

i) We have 

F(6,6) = det[M(§)], 

if model (1) is linear in 9, or if it is intrinsically linear. The last assumption means 
tha t the intrinsic curvature of Bates-Wat ts (cf. [3]) is equal to zero identically. In 
this case the density (4) is exact, as is well known. 

ii) If on the other hand, only the parameter effect curvature is zero identically, or 
equivalently, if M(9) = const on 0 , one takes (cf. [8, 9]) 

T(Q, 9) = det \Mij(6) + [rj(§) - r](9)]T 11^(9) 

where 2 . 

Hij{e)-de7d9~-
iii) In more general nonlinear models we need the expressions 

Rikji(O) = H%(6) [I - P(9)] Hk](9) - HT(0) [I - P(9)] Hkj(9); i, j , k, I = 1 , . . . ,p, 

which are know in differentiable geometry as components of the Riemannian curva­
ture tensor. (Cf. [1] for the definition of this tensor in general statistical models). 
If a regression model has either a zero intrinsic curvature or a zero parameter cur­
vature, then the Riemannian curvature tensor is zero identically, i.e. for every 9. 
The reverse is not true, for instance, if p = 1, then evidently R(9) = 0, although the 
intrinsic and the parameter curvatures may be non-zero. Another example is the 
classical Michaelis-Menten model which also has R(9) = 0. Important is tha t re­
gression models having R(9) = 0 identically, still maintain some properties of linear 
models. (Cf. [10] for a corresponding classification of nonlinear regression models.) 

In models with R(9) = 0 we have (cf. [8, 9]) 

F(9,9) = det[Q(9,9)], (5) 

where 
Qij(9, 9) = Mij(§) + [rj(9) - V(9)]T [I - P(§)) H{j(9) 

is a modified information matrix. 

iv) In general models the term T(9,9) can be expressed as a polynomial in the 
components oiQ(9, 9) and oiR(9). (Cf. [12] for the explicit form of this polynomial). 
The formula (4) is an approximate density as soon as the model is not intrinsically 
linear, but its precision is "almost exact" in the following sense: one can take a 
subset S of the sample space RN so that the probability of S is nearly one, and tha t 
(4) is the exact density obtained from samples y belonging to the set ;3. For more 
details concerning the meaning of "almost exact" cf. [11]. 

However, it seems tha t the choice of T(9, 9) given by (5) is sufficient in many cases. 
This choice is equivalent to neglecting the value of the Riemannian curvature tensor. 
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Moreover, the density (4) with F(9,9) = det[Q(9, 9)] is equal to the saddlepoint 
approximation of the density of 9 (cf. [7]). So besides a geometrical insight of the 
approximation (4) we have also an asymptotical justification based on the properties 
of the saddlepoint approximation. 

3. DENSITIES OF ESTIMATORS OF SCALAR FUNCTION OF 6 

Sometimes an experiment giving the maximum precision of the estimator of the 
response function is required. Or, the aim of the experiment is the estimation of 
a given function of 9. Consequently we need also densities of estimators of scalar, 
linear or nonlinear, parametric functions 9 £ 0 —> T(9). In particular, T(9) may be 
equal to the ith parameter 0,-. 

The aim of this section is to present a recent method for computing the approx­
imate probability densities of such estimators. Unfortunately, the approximation, 
although still very good in many cases, is not "almost exact" in the sense mentioned 
in Section 2. (Cf. [14] for computing the densities of each parameter separately in 
the two-dimensional Michaelis-Menten model.) 

Denote 
G(y) = T(9(y)). 

Here 9(y) is the estimator (3) as a function of y = (y(xi),..., y(xw))T. We remind 
the reader that the design X = (x\,..., XN) is fixed. Denote further by / G ( T ) the 
density of G(y). 

The main idea here is to use the Dirac function 8(-). We write for any fixed 
yen1 

fc(l) = / S(j -u)fG(u)du 
Jn1 

= lim / —Lr-e-^[G{y)-l]2f(y\9)dy. (6) 
A|0 JnN y/2irX 

If the model and the function T are linear, then [G(y) — j]2 is a quadratic form in 
the variable y. In the general case we approximate it by a quadratic form Qy(y), to 
obtain approximately 

fG(y) = \im[ -L-e-^Q^f(y\9)dy 
AJ.0 JnN y/ZTVA 

where f(y\9) is the normal density of y. Important is a good choice of Q^(y) to 
obtain a simple limit and a good accuracy of the approximation. Two different 
choices are considered in [14]. The first consists in computing 

6>7 := argmin \\fj - r)(9)f 
1 0e©,T(0)=7 

for each y. Here fj is the true value of r)(9). The form Qy(y) is then obtained as the 
quadratic Taylor formula of the function y —> [G(y) - y]2 at the point y = rj(97). 
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The resulting approximate density is (cf. [14]): 

where 

and 

^ 7 r ( j | | 6 7 

dT(Š(y)) 
Ц = дy 

H-v 

!Г-=ч(*т) 

6 7 6 T 

7 IIM2" 
The required derivative of 9(y) with respect to y is obtained by the use of the implicit 
function theorem, as described in Section 4. 

In the second approach, which gives a small improvement of (7), we take for 
Qj(y) the quadratic form which appears when using the Laplace approximation of 
the integral (6) (before taking the limit in (6); for details cf. [14]). The resulting 
formulae are more complicated, and are not presented here. 

4. DESIGN BASED ON THE SECOND ORDER APPROXIMATION OF 
THE ENTROPY 

In fact, we do not need to know the density of 9 when computing the second order 
approximation of the moments of this distribution, because the integrals which define 
such moments can be taken with respect to the density of the observed vector y. 
Such approximations are well known (cf. e.g. [16]). However, to approximate the 
entropy of the distribution of 9 one can not avoid the use of q(9\9). 

The entropy of q(§\0) is 

Ent = - I [\nq(9\9)]q(9\9)d9, 
J® 

and it can be written, by the use of the Taylor formula, in the form 

Ent = Ee[-\nq(9\9)} = - f \nq(9(y)\9)f(y\9)dy 
Jn" 

f f. ,;;, XMN d\nq(9(y)\9) 
= - / \\nq(9(y)\9)y=m + - qy {y)l } 

JnN 

(У-Ш 
У=П( ) 

+ hy^щ^^Ш) 
2^ ,к " дудуЧ 

дyт 

(y-rì( ))}f(y\ )ày. 

y=v( ) 

To express the last integral we need the moments of y and the derivatives of 9(y). 
Since f(y\9) is normal, the moments are trivial. To obtain the derivatives, we use 
the normal equation 

0 = l$ \\y - vWW2 = 2W«) - y]T ^ 



496 A. PAZMAN 

and the evident equality 

HУ) 
\y = r)(9) 

Since the equality in the normal equation holds after setting 9 = 6(y), the mapping 

y —* 9(y) is defined implicitly by this equation, at least in a neighbourhood of the 

point y = r)(6). This allows to compute the derivatives of 9(y). For tha t , let us 

denote by F(y, 9) the right hand side of the normal equation. According to the 

implicit function theorem 

д т(y) ÕF(y, ) 
дy дy 

= (y) 

дғ(y, ) 
д т 

= (y) 

By a direct differentiation we obtain the higher order derivatives. 
By the described procedure we obtain the second order approximation of the 

entropy, which, expressed as a function of X, has then the form (cf. [15]): 

Entќ 

fhere 

2 

entt-^M-j\X,9){M;b\X,9)[RajM(X,6) + Ub

aij(X,e) 

-rîAx, o) r j (x, 9) - ra
ac(x,9) r^x, 9)} 

1 

(8) 

ent. l n d e t M ( X , 0 ) + const. 
* 2 

is the first-order approximation of the entropy, and where 

ЛГ 

Td

ai{X, ) = E 
fc=i 

Jaij(X, ) 

лt 

= E 
fc=l 

dr)(xk,9) d2r)(xk,9) 

89 d 89ad9i ' 

dn(xkí9) d3r)(xk,9) 

d9b d9ad9id9j' 

Similarly, the expression Rajbi(X,9) is a component of the Riemannian curvature 

tensor for the given design X. 

The value of Entg has been used in [15] to compute the opt imum design for 
the Michaelis-Menten model, and has been compared with the classical D-optimum 
design. 

5. DESIGNS WITH OPTIMALITY CRITERIA IN AN INTEGRAL FORM 

The second order approximations of moments or of the entropy, etc., can be wrong 
if for example the probability density of 9 is bimodal, or if a large part of the 
distribution of 9 is on the boundary of the parameter space O. In such cases 

i) we need criteria of an integral form, as considered in this section, and 

ii) we have to modify the density (4) to include also the probability on the bound­

ary of 0 . 
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Let us consider the second problem. To take into account the probability dis­
tribution of 9 on the boundary of the parameter space 0, we modify the estimator 
itself. Instead of (3) we consider 

9(y) = argmin {\\y - n(9)\\2 + u(9)} 

where to(9) is some smooth penalty function, which is infinite on the boundary of 0 , 
and zero in an "interior part" of int(Q), say 0* C int(Q). The particular choice of 
this penalty function is not decisive, and some possibilities are presented in [13]. One 
can easy see that we have 9 = 9 on 0*, but instead of the estimates 9 on the boundary 
of 0, we have estimates 9, which are in the region 0 — 0* close to the boundary of 
0 . So there are shifts of estimates from the boundary to a neighbourhood region. 
What is important is that such shifts of estimates do not influence very much the 
values of the optimality criteria given below. 

The approximate probability density of 9 (which is on the same level of precision 
as (4) for T(9, 9) = det[Q(9,9)] ) has the form 

q( \ ) = ne, e) r__i_ 
i / 2 r A ^ ť ^ l 6 X p I 2(72 

(2Ҡ)m/2аm deť/2[M( )] 
P(9)[n(9) + u(9)-n(9)] (9) 

where 

Г( , 9) = det Qij( , )-—uT( )Hij( ) + 
д2ш( ) 
d9id9j 

i, j = ! , . . . , p , 

and where u(9) is a vector 

u(9\ - dT]{9) M-Ud\ d ^ 9 ) 

In this section we consider criteria functions of the form 

X - Ф[QX] 

where $ is a classical criterion function known from linear models (e. g. lndet(-) for 

D-optimality, tr(-), for A-optimality, etc), and where Qx is the p x p mean square 

error matrix of 9 with entries 

{Qxh = / (* - fy $ - <>)i 9XW) do, 
JQ 

Since the moments in these entries are given by integrals, we speak about integral 
criteria functions. Sometimes the criterion function is given by a unique integral, as 
is in the case of a generalized A-optimality criterion where 

*IQX1 = YtiQxh = III* - *)ll2 ixW) d~° (10) 
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considered in details in [13]. Similarly, the criterion function is given by just one 
integral if it is a generalized L-criterion function, i .e. if it has the form $(•) = 
tr[ty(-)] where W is a given positive semidefinite matr ix. On the other hand, in 
the case of the generalized D-optimality criterion with $(•) = lndet(-) , the criterion 
function can not be reduced to a unique integral. 

To minimize the integral (10) (or any other criterion function given by one in­

tegral) with respect to the design X, we proceed by using directly the method of 

stochastic approximation. 

In general, the stochastic approximation means to minimize: 

min <£>(#) 
X 

where (p(x) is an unknown function. The information about the values of <p(x) is 
obtained by observing some random variables z(x{); i = 1 , . . . such that 

E[z(xi)] = <p(xi) 

where the points x\,x2, • • • are chosen according to a certain rule. 

In our case instead of iEi,a?2> • • • the sequence of designs X\,X2,... is taken ac­
cording to a rule, which in fact is a modification of the gradient method. The limit 
of this sequence is the optimal design. We take tp(-) of the form 

<p(X) = í \\9-e\\2q^(9\e)ál 
J® 

and we take 

z(Xi) = \\eW-e\\2qxi(9W\e). 

Here the design X{ is the design at the ith step of the iteration, and £?(*) is taken 
at random from a uniform distribution on O. So instead of observing, we simulate 
vectores &(*\ and compute z(Xi). Hence, in our problem we combine a Monte-Carlo 
simulation and a gradient minimization. For details and an example cf. [13]. 

For criteria functions which can not be reduced to one integral (say for D-
optimality), such a direct use of stochastic approximation is not possible. An indirect 
use may be possible, however has not been checked. 

C o n c l u s i o n . Having good approximations of the probability distribution of the 
least squares estimator on the whole parameter space, including its boundary, one 
can build meaningful optimality criteria, and compute opt imum designs. In contrast 
to linear model, the criteria functions are not convex, but one can use s tandard 
numerical procedures to minimize the criteria functions, at least when the number 
of parameters and the number of considered design points is not very large. 

(Received December 12, 1995.) 



Distribution of Estimators and Optimal Experimental Design in Nonlinear Regression 499 

R E F E R E N C E S 

[1] S. Amari: Differential-Geometrical Methods in Statistics. (Lecture Notes in Statist. 
28.) Springer-Verlag, Berlin 1985. 

[2] A. C. Atkinson and A. N. Donev: Optimum Experimental Designs. Clarendon Press, 
Oxford 1992. 

[3] D. M. Bates and D. G. Watts: Relative curvature measures of nonlinearity. J. Roy. 
Statist. Soc. B^S(1980), 1-25. 

[4] P. Chaudhuri and P. A. Mykland: Nonlinear experiments: Optimal design and infer-
ence based on likelihood. J. Amer. Statist. Assoc. 88 (1993), 538-546. 

[5] M.A. Clyde: Вayesian designs for approximate normality. In: Advances in Model-
Oriented Data Analysis (Ch. P. Kitsos and W. Müller, eds.), Physica-Verlag, Heildel-
berg 1995. 

[6] I. Ford, C. P. Kitsos and D. M. Titterington: Recent advances in nonlinear experimen-
tal design. Technometrics 31 (1989), 49-60. 

[7] P. Hougaard: Nonlinear гegression and curved exponential families. Improvement of 
the approximation to the asymptotic distribution. Metrika Ą2 (1995), 191-202. 

[8] A. Pázman: Probability distribution of the multivariate nonlinear least squares esti-
mator. Kybernetika 20 (1984), 209-230. 

[9] A. Pázman: Small sample distributional properties of nonlinear regression estimators 
(a geornetric approach). Statistics 21 (1990), 323-367. 

[10] A. Pázman: A classification of nonlinear regression models and parameter confidence 
regions. Kybernetika 28 (1992), 444-453. 

[11] A. Pázman: Nonlinear Statistical Models. Kluwer, Dordrecht 1993. 
[12] A. Pázman: Higher dimensional nonlinear regression - a statistical use of the Rieman-

nian curvature tensor. Statistics 25 (1994), 17-25. 
[13] A. Pázman and L. Pronzato: Nonlinear experimental design based on the distribution 

of estimators. J. Stat. Plann. Inference 33 (1992), 385-402. 
[14] A. Pázman and L. Pronzato: A Dirac-function method for densities of nonlinear 

statistics and for marginal densities in nonlinear regression. Statist. Probab. Lett. 26 
(1996), 159-167. 

[15] L. Pronzato and A. Pázman: Second-order approximation of the entropy in nonlinear 
least-squares estimation. Kybernetika 30 (1994), 187-198. Erratum. Kybernetika 32 
(1996), 104. 

[16] B. C. Wei: Some second order asymptotics in nonlinear regression. Austral. J. Statist. 
33 (1991), 75-84. 

Prof. RNDr. Andrej Pázman, DrSc, Faculty of Mathematics and Physics, Comenius 
University, Mlýnská dolina, 84215 Bratislava. Slovák Republic. 


		webmaster@dml.cz
	2012-06-06T06:54:42+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




