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K Y B E R N E T I K A — VOLUME 31 (1995) , NUMBER 5, P A G E S 4 8 9 - 5 0 7 

EXPONENTIAL RATE OF CONVERGENCE 
OF MAXIMUM LIKELIHOOD ESTIMATORS 
FOR INHOMOGENEOUS WIENER PROCESSES 

F R I E D R I C H L I E S E AND A N D R E A S W I E N K E 

The distribution of an inhomogeneous Wiener process is determined by the mean func­
tion m(t) ss EW(t) and the variance function b(t) = V^(W(t)) which depend on unknown 
parameter d _ 0 . Observations are assumed to be in discrete time points where the sample 
size tends to infinity. Using the general theory of Ibragimow, Hasminskij [2] sufficient con­
ditions for consistency of MLE i?n are established. Exponential bounds for P(\-dn — t?| > e) 
are given and applied to prove strong consistency of ^n-

INTRODUCTION 

Inhomogeneous Wiener processes with mean function m(t) and variance function b(t) 
are continuous stochastic processes W(t), 0 < t < T, with independent increments 
so tha t W(t) — W(s) is normally distributed with mean m(t) — m(s) and variance 
b(t) — b(s) and W(0) = 0. The functions b(t) and m(t) are continuous and supposed 
to be known up to the unknown parameter d _ 0 . b(t) is clearly a nondecreasing 
function. 

Such processes are of interest both of the theoretical and practical point of view. 
In applications an inhomogeneous Wiener process is often used as a model of the fret 
of a technical system. It is supposed that the fret in time interval (s,t) is normally 
distributed and the state of the technical system a t time t is the superposition of 
the independent frets in disjoint time intervals. Let P$ denote the distribution of 
the process W. P$ is defined on the Borel sets of C[0,T] , the space of continuous 
functions on [0,T]. If 6 not depends on d, then under weak conditions on m(2,?9) 
it holds P$ ~ P„, d,ri E 0 and it 's possible to evaluate explicitly the density 
function of P$ with respect to Pn [3]. If b(t) is depending on d then P$ J_ P„ for 
d _̂ 77. Therefore there is no natural way to develop a reasonable likelihood theory 
and we suppose tha t the process is observed at time /,• £ [0,T], where 0 = to < 
t\ < ... < tn = T. Instead of the values W(ti) we may deal with the increments 
W(ti) — W(ti-i) which are normally distributed with mean m(ti, t?) —m(t,-_i, ?9) and 
variance b(ti,d) — b(ti-i,d), respectively. We are interested in asymptotic results. 
Therefore we suppose tha t a sequence 0 = to,n < ^i,n < < tkn,n = T of parti t ions 
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of [0,T] is given. In difference to Jacod [3] we suppose, that the decompositions 
Zn := {totn, ti>n, ... 2/b„,n} of the interval [0,T] are nonrandom. Furthermore 
we suppose tha t m n independent replications of the process W are available. The 
corresponding differences Wj(U,n) — Wj(U-i,n) then form a double array of random 
variables. In our asymptotic considerations we do not nessesarily assume, in general, 
tha t both kn and m n tend to infinity. To establish bounds for the probability 
P(\\dn — d\\ > e) where dn is the Maximum Likelihood Estimation (MLE), we apply 
the technique from Ibragimov-Hasminski j [2] which was developed for arbitrary 
sequences of statistical models. The conditions formulated there imply Hellinger 
integrals and Hellinger distances of the distributions from the model. To prepare 
the main results we therefore collect in the first part estimates of product measures 
whose components are normal distributions. Using these inequalities which include 
regularity conditions on m(Z,i9) and b(t,i!)) we are able to apply the general results 
from [2] to the distribution C\Wj(t%in) ~ Wj(U-i,n)), (1 < i < kn, j = 1 , . . . , m n ) . 
Our main results are the Theorems 2 and 3 which include exponential bounds for 
T ( | | ^ n — d\\ > e). If the function b depends on $ then the upper bound established 
in these theorems tends to zero with exponentially rate as kn —> oo. The number of 
independent replications need not tend to infinity, mn = 1 is enough. This result 
corresponds to the fact P# ± P„ for d ^ n iib(t, d) depends on d. Conversely, if b(t, d) 
is independent of d then we need an increasing number of replications to guarantee 
consistency of the MLE and to derive exponential bounds for T( | |^n — ^| | > £)• In 
the general mixed situation both kn and m n tend to infinity. Our bounds for the 
probability T ( | | $ n — i5|| > e) include this general situation. 

In the last par t of the paper we apply the exponential bounds to establish the 
strong consistency of the MLE dn. 

If the consistency of the MLE is clear, the asymptotical normality of the MLE in 
the present model can be derived with the methods of [5]. 

1. HELLINGER INTEGRALS OF NORMAL DISTRIBUTIONS 

General conditions for consistency of MLE were established in [2]. The conditions 
there are formulated in terms of Hellinger integrals. As an auxiliary result we firstly 
establish inequalities for Hellinger integrals of special ^-dimensional normal distri­
butions. For fixed n let Un be a subset of Mk and /zu;, <rUti (i = 1 , . . . , n; u £ Un) 
functions with values in M1 and (0,oo), respectively. These functions are used as 
mean and variance of one dimensional normal distributions. We need the following 
assumptions: 

(VI ) 
sup av 

Ll<:'<n,uGUn 

i n f <TÌ 
l<i<r.,uЄU7 l

 ь 
<Di 

(V2) E 
i = l 

- 1 < L > 2 | | u - u | | 2 v«, veUn 
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( V 3 ) J2\?f-l\2>D3\\u-v\\2 Vu,veUn 

1 = 1 

i = í 

2 

__ 
~L + ~: 

( V 4 ) É ° ^ ' _ ^ . ' ) ! <^ll"-"[l2 Vf,-€g. 
uг ' v i 

(V5) y ^ (Hui-fivi)2 ^ n .i | ,2 v c n 
v y > ö o— > i/5 W ~ w vU,v£Un. 

ť=1 °"«. + ^, 
where D\, ... ,D§ are some nonnegative constants. Let N(/i, cr2) denote the normal 
distribution on M.1 with mean // and variance cr2. We set for i = 1,..., n 

P$ =-V(10«*,ffJf), « , « € _ / „ . 

Definition 1. Let P, Q be probability measures on the measurable space (X;A) 
and v a dominating cr-finite measure. Let p and q denote the densities. Then 

HS(P,Q)= fp'q'-'du, 0 < s < l 

is called the Hellinger integral of order s. 

Lemma 1 . Let the assumptions (VI), (V2) and (V4) be satisfied. Then there 
exists a constant ci = ci(L>i, L>2, D4) 

£(_ - HЬ(P§,P§)) <Cł||«-.||2. 
i = i 

P r o o f . An easy calculation shows 

I 1/2 
Hi(P(í) pW) = J -i exp< - -

I ^Hгti /^vij 

with 7-j := ~\il~1i- Using the inequality 1 — e _ a < a (a > 0) we get 

1 - H1/2(P(%P$) < i l n Q ( , r , + 1)) - l í n * ! + 4 0-2.4.^2 
^1 ^ ш ' vv% 

We now investigate the function g(--) := In (|(7r + 1)) — | ln7r. An expansion in a 
Taylor series at point 1 up to the second order term shows 

« 7 ( 7 Г ) > Ì (7Г - 1 ) 2 , 0 < 7 Г < 1 , ( 7 Г ) < Ì ( T Г - 1 ) 2 , 1 < 7 Г < OO. 



492 F. LIESE AND A. WIENKE 

Because of # ( - ) = g(n) it follows 

i mm (l, 1 ) (* - l )2 < <?(*) < ± max ( l , 1 ) (* - l )2 . (1.1) 

By assumption (VI) we get 7T; > 4 - and therefore 

£K*0<f-X>-i)2-
i= l i= l * 

The assertion now follows from (V2) and (V4). — 

Definition 2. Let P and C} be two probability measures on the measurable space 
(X\A) dominated by the cr-finite measure v. Let p, q be the densities of P and Q. 
Then 

Pm(P,Q):=(J\p--q-\mdu)^ 

is called the Bellinger distance of the order m of P and Q for all integer m > 0. 

Remark. The Bellinger distance is a metric for m > 1 (see [4]). 

Lemma 2. Suppose the assumptions (VI) and (V4) are satisfied. For every integer 
m > 1 there exists a constant C2 = C2(m, D$) so that 

n 

r « 2 (p(i) p(i) \ < C J | U _ -,112 
2_^P2m\1 u,w J v,w) — c 2 | | " " | | • 
i = l 

P r o o f . To evaluate the expression p2T^l(Q)R) we apply the binomial formula: 

p2m(p(i) p(i) v _ y v _ l r * f2"^ e x p J (_*! L) {fHni - ^ y 
k-0 \ / V wi 

To simplify the notations we set 

E
m
 k (2m\ ( ( k2 k \ (/im- - /u*,)1 

2m 

= Ê(-1)*(2ľ) A * ( 2 w " ł ) = P m ( л ) 

i-_r> V / 

' I (^UÌ Џvi) 

fc=0 

with A := exp 
ьm* a 
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Similarly as in [2] (p. 274) we expand Pm(X) in a Taylor series at point A = 1. It is 

easy to see, tha t the derivatives Pm (1) are linear combinations of sums 

s.-B-irftj*1 <! = 1 2J)-
fc=o ^ ' 

Si can be written in the following form: 

ft = B-D*fi,)- = B-i)*(̂ )-«*-1 

ifc=0 v J k=o v y 

2 m /o \ 2 m /o \ 

a = B-i)f r>=B-W2;w -1) 

-£(.-1)-" 
2 = 1 

2m 

+ B-1) * < 2 m ' ь 
jfc = 0 

fc=0 

j f e - l 

2 = 1 

2 = 1 
дz2 (z-l) 2m д 

2=1 ' дz 
+ ir(^-i)2mU-

Obviously, the term Si is a linear combination of -§JJ(Z — l ) 2 m | 2 = i (j = 1 , . . . , t) and 

it holds So = Si = . .. = S 2 m _ i = 0. Hence p£0) = P& = . ..P^~l) = 0 and we 

get Pm(X) = ( l -A) m P m
T n ) (V ' ) with some if> (0 < V < 1)- For the concrete form of the 

constant Pm (ip) we refer to [2] (p. 276). Using the inequality 1 — e _ a < a (a > 0) 

we obtain with some absolute constant 

\P-ui fl-vi) \ 
P2m(P&,Pl%) < ^ ( 1 - A)m < C? ( - - - - - -

\ O" 

Assumption (VI) implies 

2 -> _ _ + __ 
w . _ 2 D i 

The assertion of Lemma 2 now follows from the assumptions (VI) and (V4): 

_ > L ( P i t - P S ) < 2c2D, _; (/i"' _ g - - < 2c2D1D4||u - «||2. 
1 - 1 i = 1 <г + < i 

Now we estimate Hellinger integrals of normal distributions with different vari­
ances. We recall to the definition to the Hellinger integral in Definition 1 and get 
with 7T = ali/ali : 

f k I k 1 
H_t_ (N(fiwi, o-2

ui), N(fiwi, o-2

vi)) = exp | — In 7T - - In ( — (TT - 1) + l) \ . 
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L e m m a 3 . Suppose (VI) and (V2) are satisfied. Then for every integer m > 0 
there exists a constant c^ = C3(m, D\, D2) so that 

T,plm(P!&,p!&)<c3h-v\ 
t = i 

P r o o f . To evaluate the expression plm(P> B) we set w — 5T,- = trj^jo^t 

/ 9 \ 

s ^ a . ^ D = E(-i)k(T)Hj_(pí%,pí%) 
k-0 ^ ' 

= D-ircr)«p{i-'- 5M^-D+1)} 
Now let us use the notat ion s = -^-, #jfc(7r) = | s l n 7 r - | ln(s7r — s +- 1), fk(n) = 
exp{^ (7 r )} and 

ftW = D-D' (T) A'«. ' • 
To expand the function /i(7r) in a Taylor series at point 7r = 1 we need the derivatives 
of the functions fk(n) up to the order 2m. The jth derivative (j = 1 , . . . , 2m) can 
be expressed by linear combinations of terms 

( n (».o('))<")«p {»(*». 
»=i 

where ^Di=i ^ai = 3 f ° r ai £ -^- We consider the function <7fc(7r) and its derivatives. 
By induction one can prove 

5fc W ~ ( i } 2 W (STT-S+J-

Then the derivative of gk(n) at point 7r = 1 is 

Hence /£ (1) is a linear combination of the products 

n y ~ s r fe **.=?*.aiGN>>=i»—..m). 
i=l \ i= l / 

By termwise differentiation of function h(w) we get 

,.«>(i)=D-i)i(T)^>(»-
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Because of the special form of /£ (1) the term h^\l) is a linear combination of Si 
(see proof of Lemma 2). Taking into account Si = 0 (* = 1 , . . . , 2m — 1) h(ir) can be 
estimated by Taylor expansion at point 7r = 1 in the following form 

2m ,~ v 

M*)=E(-!) f c r /fc(°(?r -i)2m - ̂  - i ) 2 m > 
where -i- < 7r < Di because of (VI) and 0 < £ < sr. Taking again 7r = ^ we get 

&&% Pft) = *(*<) < ^ ( * . - i ) 2 m -

Under the assumption (V2) we have 

EJ>!m(p£l P£1) < * X > -x)2 < d^Wu - VW2 

1=1 i = l 

which proves Lemma 3. • 

The following inequality was proved in [1], Corollary 3.1. 

Lemma 4. Let P{ and Q;, i = 1 , . . . , n be probability measures on the measurable 
space (X,A). Denote by Hi x . . . x Pn and Qi x . . . x Qn the corresponding product 
measures. Then for each m > 1 there exists a constant c4 = 04(771) (independent of 
n) with 

n n 

/ ?
2 ^ ( P i X . . . x P n ) Q i x . . . x Q n ) < C 4 X ; / > 2

2 ^ ( P i I Q i ) + c 4 ( ^ ( l - H i ( P i ) Q l ) ) ) m . 
i = l i= l 

Lemma 5. Assume conditions (VI), (V2) and (V4) are satisfied. For every m > | 
there exists a constant C5 = c§(m, D\, D2, D4) so that 

\ i = l t'=l / 

P r o o f . Because of Lemma 4 and by using the metric property of P2m and the 
elementary inequalities (a + bf < 2(a2+b2) and £ £ . , (a2 + b2)m < ( £ ? = 1 a2 + 62)m 

we get 

p\z(f[p^f[p^) < ^E^m(p«:>,i'S)+c4(x:(i-H4(^:i^)))m 

\ i = l i = l / i= l i= l 

f^PlmiP^P^) < f2{p2m(P^%P^) + P2m(Piil,P^)yrrl 

i = l i = l i = l 

i= l i = l 
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Since Lemma 2 and 3 hold for every w we get 

A f n ^ i . n ^ . ) <2m(c2\\«-v\\2+c3\\u-v\\T-
\i=i i=i J 

The statement 

irrl 

from Lemma 1 now completes the proof. • 

Lemma 6. If the assumptions (VI), (V3) and (V5) are satisfied then 

n^^i.^^-pf-d^+T)""-"!!2}- ' 

P r o o f . Using the notations above and ~i = tr^/tr^,- we get: 

= «p{lt(IIu-i-1n(i(. + 1))-i^!)}. 
Assumption (VI) implies ~ < D\. Using inequality (1.1) for g(n) we arrive at 

-HI-Z> - l? < X> (U* +»)) - 5'-'••• 
1 i=i i=i v ' 

The assertion now follows from the assumptions (V3) and (V5). • 

2. GENERAL CRITERIA FOR EXPONENTIAL RATE OF CONVERGENCE 
OF THE MAXIMUM LIKELIHOOD ESTIMATOR 

At first we consider a general sequence of experiments (Xn;An; P# , d ~ ©), where 
the parameter space O C Rk is open. For all n the family P$ (d ~ 6 ) is supposed to 
be dominated by a cr-finite measure vn. For the proof of the exponential convergence 
rate of maximum likelihood estimators for inhomogeneous Wiener processes we apply 
results from the monograph by Ibragimov-Hasminskij [2]. Let ipn be a sequence of 
nonsingular k x k matrices. We define Un(d) := <p~l(Q — fl) and denote by pn the 
density of P$ w.r.t. vn 

Pn(Xn,v) := -T—(xn) 
dvn 
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for xn £ %n • We assume, that the experiments are homogeneous, which means tha t 
P ? rsj P " for all x), n G 0 and all n. The likelihood ratio in a localized form is given 

by 
ry / X Pn(xn,^~\- <fnU) 

« - ( - - • « ) = , , ( , „< ) • 

where w 6 Un(d) and .rn G «Yn. Let *9n be a measurable mapping from (Xn,An) in 
( B c , /3e) with #© as <r-algebra of the Borel sets of 0 C so that 

Zn,6 (xn,<pn~
1(:dn-d)) = sup Zn^(xn,u) 

holds for all d 6 0 . Then i?n is called a maximum likelihood estimator. Zn^(xn, 0) = 1 
implies 

P*(\<Pn1(K-0)\>'r) <P£ ( s u p zn>d(xn,u)>\\ 

for all 7 > 0. Hence to prove consistency it is enough to estimate the term on the 
right hand side. We denote by Q the set of all sequences of functions gn(y) with the 
following properties: 

a) For fixed n gn(y) is nondecreasing on [0,oo). 

b) For all a > 0 holds lim y~a exp {—gn(y)} — 0. 

The following Theorem 1 (Theorem 5.1 in [2]) plays a basic role to establish 
the exponential rate of convergence in our proof of consistency. It gives general 
criteria for consistency and exponential rate of convergence for maximum likelihood 
estimators, ".i the sequel we will derive easy manageable conditions on the functions 
m and b with the help of this theorem. 

T h e o r e m 1. Assume tha t for fixed n and D^-almost all xn G Xn the Zn^(xn,u) 
is a continuous function of u. Suppose that for every compact K C 0 there exist 
numbers m(K), M(K) and an a > k (k = d im©) and / > a, such that for all d 6 K 

sup \u - v\-aE,in\ZT (u) - Zl»(v)\l < M{1 + Rm)- (2-1) 
MI,IH<* 

If there exists a sequence (gn) 6 Q such that for all u G Un, d G K 

E#,nZl,(u)<exV{-gn(\\u\\)} (2.2) 

then there exists a no so that for all n > no 

sup Pii\<Pl\K - t?)| >H)< Hexp {-bgn(H)} , (2.3) 

where b and B are nonnegative constants, which only depend on K C 0 . 
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Suppose 0 C Mk and let W(t) (0 < t < T) be an inhomogeneous Wiener process 
with mean function m(t,-d) and variance function b(t,d), d £ 0 . On one side the 
process shall be observed at a grown number of observation points. On the other 
side we shall assume that independent replications of the process are available. Let 
W\(t),... ,Wmn(t) (0 < t < T) be independent Wiener processes with the same 
distribution as W(t) (0 < t < T). These processes will be observed at time points 
0 = £o,n < < tknin < T. Because of Wj(Q) = 0 for the estimation of the parameter 
vector d we can deal with the increments Wj(ti,n) — Wj(ti-\in) instead of Wj(t%,n) 
without loss of information. The sequence of associated statistical experiments is 
(M.knmn.Bknmn.pnjeQ^ w h e r e 

kn 

Pf = Yl r » (m(ti)n, i?) - m(ti-lin, tf), b(ti>n, ii) - b(ti-i,n, i?)). 
i = l 

Here Nmn is the mn-times product measure. To avoid irregularities let the following 
conditions hold. Condition (A2) avoid a degeneration of the model. The considered 
increments of the process have always positive variances. For abbreviation we define 
Am(t i | r i,i?) := m(tiin,d)-m(ti^itn,d) and Ab(ti<n,d) := b(ti,n,ti)-b(ti-i,n,'d). As­
sume that the functions m and b behave regularly along the sequence of observation 
points. 

( \Q\ max (tin ~ U-i,n) < C min (tin ~U-in). 
\t\v) \<%<hn l<i<kn 

Let O C Rk be open and 6C compact. m(t,i3), b(t,d) are continuous on 
(Al) [0,T] x 6C and differentiable w.r.t. t G [0,T] for all d £ 0 . Suppose that 

the derivative b = | | is a continuous function on [0,T] x Oc. 

Assume that sup sup b(t, $) < B\, inf inf bit, d) > B2 for some 
(A2) o<t<T^e© o<t<T#ee v ; 

BUB2 > 0 . 

(AЗ) 

There exist some nonnegative constants C\,\ and C2,& with 

c i ,6 | | ^-^ | | 2 < kn E (Ab(tiin,d)- Ab(tijn,V))2 < c2>fo||^ —77II2 Vt?, V G e . 
i = l 

There exist some nonnegative constants ci ) 7 n and c2im with c i ) m | | $ — 77H < 

( M ) kn É (Am(ti)n,d)-Am(ti,n,r]))2 < č2,m | |t? - r}\\2 Vtf, v 6 ©• 
г ' = l 

T h e o r e m 2. If the assumptions (AO), . . . , (A4) hold and the sequence Nn satisfies 

s u p - — < CO (2 A) 
n -lVn 

U m i n f ( c l j m - ^ + c M - ^ L ) > 0 (2.5) 
n - 0 0 Nn Nn ' 
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then for every compact subset K C 0 there are nonnegative constants B _= H(K) 
and b = b(K) depending only on K so that 

sup P?(y/Nn\\*n - *|| > H) < Bexp {-bF(cltJ£- + clib^-)H2)) 
d£K I JVn IVn J 

for every sufficiently large n and every II > 0 where 

Bl 1 
E :— min 

16H fC 6 Г 2 ' 8H iCT 

P r o o f . We denote by pn(xn,'d) the density of P# w.r.t. the Lebesgue measure 
on M,knTnn and define ipn := } Ik, where Ik is the unit matrix. The notations for 

Un(d) = tp-^S - d) and xn G i ^ m " 

- / x _ P n ( ^ n , ^ +<^nW) 

Zn(xn,wJ :_ — 
Pn(Xn,V) 

are the same as in the beginning of this chapter. The continuity of Zn(xn,u) with 
respect to u follows from the structure of the density pn as a product of onedimen-
sional normal distributions and the continuity of m(t, •d) and b(t, . ) as functions of 
7L Using the following notation 

Pi>u = .V((Am)(t,-ni. + (pnu), (Ab) (*,-,-,_* + tpnu)) 

(i = 1,..., kn) we get the relations 

I mn kn mn kn \ 

^,n\zi,(u)-z^(v)f=P\ nnP i ,- > nn^> (2.6) 
y _ i . _ i i=i .=i / 

I mn kn mn kn \ 

E#,»Z*,(_) = J_4 n_I P *>JIII P ».o • (2-7) 
y_i«_i /si i=i / 

We set /_„,• - Am(titn,d + ^ = u ) and o-J,- = Ab(tiiTl,d + -737--)• We now verify 
the conditions (VI),. . .,(V5). The condition (VI) follows from"(A0) and (A2). To 
establish (V2), (V3) and (V4) we remark that in view of (AO) 

T CT 
<Utn-ti-i,n<-r-. (2.8) ПŁ — -*•» - . - * , » _ 1 

—' л-n л, n 

Hence by (A2) 

Hence (A3) and (A4) imply: 

H2T 7 BXCT 
^ - < ^ < — - (2.9) 
V^ ft.n A/ n 

_ _ _ _ _ _ _ _ _ _ _ _ I I ..112 • V ^ _ _ _ ! ~ __i__ • c2,bC2kn ; 
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c i , m n„. ..n2 y \~^ yl^ui ~ Hvi) j , c2mLj 

i—1 " Ul ' "VI 

i|2 <- V ^ _ _ _ _ ţ _ j <-
M - -L_< - 2 . - 2 . ^ l u - Ы I 2 . 

2B1CTNn" » " ^ - . , + «_ ~2B2TNn 

Now we apply Lemma 5 with mnkn instead of n. Because of condition (2.4) 

- c2)hC
2 ( mnkn\ , c2mC ( mn 

D2 = (wy{sy^r) and Di=(wifr{zpK 
satisfy the conditions (V2) and (V4). We set a = 1 = 2k in Theorem 1 and m = k 
in Lemma 5 and get from (2.6) 

Etf,n 

2fc (mn kn mn kn 

y = i . = i jssii-i ) 

for every u, v £ Un(d). Hence condition (2.1) in Theorem 1 is fulfilled. We now turn 
to condition (2.2). Inequality (2.9) allows us to put L>i = §^A'2 in (VI). Set for 
fixed n 

• clbmnkn clmmn 
-*3 = ,„ 7-3— Ar

 a n d -O5 — 

(HiCT)2Nn ° 2B1CTNn 

then Lemma 6 implies 

-*,»*„>(«) < exp{-(i^2 + T )IH|2} 
_ J / c1>bB%mnkn _______\ii 1,2\ 
~ e X P \ [WBtC6T2Nn

 +mCTNn~
mi J 

< e X p { - E ( C l , m ^ + C M ^ ) | H | 2 } , 

where 

Now we set 

F — min 
B 

16H^C6T2 '8H iCT 

S„(x) = Ғ ^ , m — + C l , 6 — j 

Obviously yn(£) is nondecreasing in [0,oo). The relation lims/-^ y~a exp {—yn(y)} = 
0 is a consequence of assumption (2.5). The assertion now follows directly from 

Theorem 1. . D 

We reformulate the result of the last theorem by setting H = •S/N~e, e > 0, Nn = 
fcnmn • 
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P r o p o s i t i o n 1. Under the assumptions of Theorem 2 it holds 

sup P£(\\dn-d\\ > e) < Bexp {-bF(climmn + clibknmn)e
2)} 

•d£K 

Let us discuss the last proposition in more details. If the variance function b(t, $) 
of the Wiener process under consideration really depends on d then one may expect 
that ci.j > 0. Then if kn —• oo as n —> oo one sample (mn = 1) is enough to come to 
a consistent estimator. This corresponds to the fact that the distribution of Wiener 
processes with different parameter values are mutually singular. If more replications 
are available then the rate of convergence increases. If 6(2, ?9) is independent of 
•d then c1>b = 0. Then we have to assume cltTn > 0 and mn —* oo to guarantee 
consistency. Then condition cljTn > 0 means that the mean value function m(t,-d) 
differs essentially from m(t, rj), d / n. The condition mn —> oo says that the number 
of independent replications of the Wiener process tends to infinity. It is clear tha t 
for b(t, d) being independent of d this condition is nessesary to arrive to a consistent 
MLE since the distribution of the Wiener process for different parameter values are 
measure theoretically equivalent under weak conditions to the mean value function 
m(t,d). 

In the following we need a simple technical lemma which is a direct consequence 

of the definition of the Riemann integral. 

L e m m a 7. Let h\(t) (0 <t < T, A G A) be u, family which is equicontinuous and 
uniformly bounded. Suppose 0 = to>n < ... < tkn>n = T is a sequence of parti t ions 
o f [ 0 , T ] w i t h 

max ( i . , n - t ; - i , n ) n~& 0. (2.10) 

Then 

sup 
лєл 

l<i<Jfc t. 

VMЧnXЧn -U-i,n)- / Һ\(t)dt 
i=l J° 

П—+0O 

We now ask for better manageable conditions which imply (A3) and (A4), re­
spectively. Let 6 C 1 * be open. For € > 0 we set 

e« = {fj:t? = tf+,e} tfee, m\<e}. 

The following regularity condition on a function f(t, $) is useful to derive sufficient 
conditions for (A3) and (A4). Set f(t,tf) = §-J(t,d) and Df(t,d) = (-^-f(t,tf), 

••-,^/M))-
There exists e > 0 so tha t / is defined on [0 ,T + e) x 0 e . For fixed 

/»N i5 6 0 £ the function t i—> f(t,fl) is differentiable on [0 ,T + e) and for 
^ > fixed 0 < t < T + £ the function d i—• f(t, d) is differentiable w.r.t. the 

components of d. (t,ti) i—• Df(t, -d) is continuous on [0, T + e) x G e . 
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We introduce a function F by 

F(h, s, e,t, rj) = [f(t + h,V + se)- f(t, rj+se)- (f(t + h,V)- f(t, rj^h-'s'1 

if 0 < h < e, -£ <s <e, \\e\\ = 1, s^O. Put 

F(0,s,e,t,V) = [f(t, V + se)- f(t, i-.)]*"1 

if — £ < s < e, ||e|| = 1, s ^ 0. Set 

F(h, 0, e,t, ry) = ((Df)(t + h,rj),e)- ((Df)(t, V), e) 

0 < h < e, \\e\\ = 1, where (•, •} is the scalar product. Put finally 

F(0,0,e,t,V) = ((Df)(t,V),e). 

Let 0C be denote the closure of 0 which is assumed to be compact. S\ is the closed 
unit sphere around the origin. The representation 

f(t + h,V)-f(t,V)-f(t + h,V + se) + f(t,V + se) = f [ ((Df)(x,r3+(e),e)dxdt 
Jt Jo 

shows that (h, s, e,t, V) \—• F(h, s, e,t,V) is a continuous function on [0, | ] x [— | , | ] x 
Si x [0,T] x 6C provided / fulfils (A). 

Lemma 8. If / fulfils the condition (A) and {ti,n} satisfies (A0) then 

sup 
-є<2s<є,sф0 

e € S i , i , Є c 

т 

kn 

£ 
ѓ = l 

(Af)(U,n,V+ se) - (Af){U,n,V)ҳ^ 

lfг,n »i— í,n )$ 
[fi,n ti — l,n) 

/ ( 

f(t,V+se)-f(t,V)ү 
dt 

P r o o f . Because of the continuity of F on the compact set [0, | ] x [— | , | ] x S\ x 
[0,T] x 0 C we have 

A n := sup m a x | E 2 ( / i | n - l i _ 1 | n , s , e , / z > , 7 7 ) - F2(0,s,e,/ l ) n,77)| „---+, 0 
t e s ! , , ^ i 

-c<2s<e,sj:a 

and by the definition of F: 

^ f(Af)(tlin,V + se) - (Af)(U,n,V)^ 

i-l 
sup 

e € S i , t ( € c 

-c<2s<є,sфO 

\^i,n ti—l,n)S 

\ 2 

J [fi,n ti — \,n) 

£ 
»=i 

kn 

f(ti,n,V + se) - f(tiin,V)\2 

\fi,n *i — \,n ) 

< An £ ( * , > ~ U-i,n) = A n T n-=^Q 0. 
г ' = l 
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We set A = 77 + se and apply Lemma 7 to f(t, 77 + se) to get the assertion. • 

Now we introduce the function 

n f 4 h 9 , f(t + h,^)-f(t,d)-(f(t^-h,r])-f(t,r])) G{t>h' *' * = %P^ 
on 0 < t < T, 0 < h < e, d, 77 £ 9C , ||t9 - ^ > 5 > 0 and set 

f(t,d)-f(t,r,) 
G(t,0, -9,17) = 

| r / - i 9 | | 

G(t,h,"d,r)) is again continuous. The following lemma may be proved quite analo­
gously to Lemma 8. 

Lemma 9. Suppose / fulfils the condition (A) and {tiiU} satisfies (A0). Then 

вир 
| |*-ч||>« 

- V / A / ( t i i n > i 9 ) - A / ( t i f n , T 7 ) \ -

£ jV (ťi,n-ti_i,„)||tí-»7| Vti,n ï»'— l,пj 

-ľл f(t,ů)-f(t,V)Ý 
11.-1,11 dt 0. 

Propos i t ion 2. Suppose 0 C 1* is open an*4 bounded. Assume / fulfils condition 
(A) and there exist a constant c > 0 so that 

{f(t,ů)-f(t,V))2át>cЏ-V\f (2.11) 

for every d, rj £ 0 e . If {/.,„} is a sequence which fulfils (A0) then there are constants 
ri,f,C2,f w i t h 

ci,/||tf - V\\2 <knJ2 (&f(U,nJ) ~ A/(ti,n> r/))2 < c2,/||i9 - 77||2 VT9, 77 G Gc 

i=l 

and every sufficiently large n. 

P r o o f . Set 

#(«,l>) = / ( t i_l , n + tt(t»> -ti_l,n),»7 + t»(l9 -77)) - / ( t ,_l t„,»7 + v(l9 - 77)) 

- / ( t i_ i ,n + «(ti,n - t i - i . n ) . 77) + /(t,_i,n, rj). 

Using the relation 

/ (*+*, r7)- /( t , rj)-f(t + h, n+se)+f(t, 77 + se) = / ^ ((->/)(*, i?+£e), e) dx d£ 
•t+/i /•* 
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we see that for 0 < u, v < 1 

|#(u, v)\ < sup \\(Df)(t, 0)|| \U,n - U-i,n\ ||i? - V\\ = Ti \U,n - *.-i,„| ||tf - # 
O<t<T,t?£0 

Condition (A0) implies T2 = supn kn maxi<j<t„ \U,n ~ **-i,„| < oo. Hence 

kn kn 

kn £ |*,(tt) V)|2 < *nr2 £ \{u,n - u-i,n)\
2 ¥ - # < r2r2T||^ - rj\\2. 

i = i » = i 

Putting c2j = T 2 r 2 T we get the right hand inequality in the statement. To prove 
the other inequality we firstly consider the case ||i? — r)\\ < | . Then d = rj + se, e G 
Si, 0 < s < | and s = ||$ — r)\\. The assumption on / says 

fT ,f(tiT) + se)-f(t,r))ydt > 
c 

Condition (AO) now implies the existence of a constant T3 > 0 with 

r3 
min \U,n~U,n\ 

Ki<kn 

< kr 

By Lemma 8 we have for all sufficiently large n and alleG/5'i, — | < 8 < | . s / 0 : 

k ^fAf(U,nJ)-Af(tiin,r,)x2 

t = i 
\\U-TJU 

fAf(U>n,ů)-Af(U,n,y)\\4 v 

> * 3 I —z" T7TÍ u~ I Kli,n —U-l,n) £ 
V (*.> - U-i,nW - m\ ) 

This yields the left hand inequality of the statement for ||tf — r)\\ < §. The case 
\\fl ~ vW > f m a y be treated analogously with the help of Lemma 9. • 

Now we derive from Theorem 2 easier manageable conditions on the functions 
m^tj'd) and 6(t, i9) which imply an exponential rate of convergence of maximum 
likelihood estimators. 

Theorem 3 . Suppose {^n} fulfils (AO) and 9 C 1* is open and ©c compact. 
Assume that both m(t,d), b(t,d) fulfil the condition (A). Suppose b fulfils (A2). 
Put 

*=*#rw=w£®f't)~i(f,n))*" (212) 

Then for every sequence dn of maximum likelihood estimators of d by observation 
of mn independent Wiener processes at the points {ti,n} (1 < i < kn), and every 
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compact set K C © there are two nonnegative constants 6 = b(K), B = B(K) so 
that with F from Theorem 2 

sup P^^/KmZWK-n >H)< BexV\-bF(^ + cb)H
2)) (2.14) 

provided cb > 0 and kn „---£, oo. It holds 

sup P$ynZ\\h ~ n >H)< Hexp {-bF(cm + cbkn)H
2} (2.15) 

ti£K 

provided cm > 0 and mn n-zr33 oo. 

The proof of Theorem 3 is a direct consequence of Theorem 2 and Proposition 2. 
a 

The statement (2.14) says that in case the variance function actually depends on 
the parameter formulated as condition cb > 0 then a sequence of observations at an 
increasing number of observation points of one continuous realization is enough to 
generate consistency of the MLE. The mn replications increase the rate of conver­
gence. If we only know that cm > 0 then the number of replications mn must tend 
to infinity to generate consistency. The increasing number of observation points 
tin (* — 1 , . . • i kn) is only used to realize the left hand inequality in (A4) with help 
of the assumption cm > 0. 

An analysis of the proof of Theorem 2 shows that the statement (2.15) continues 
to hold if kn is fixed kn = kno, but n0 is large enough in the sense that the left hand 
inequality in (A4) holds with cm > 0. If kn = kno is fixed and mn —*• oo then we 
arrange the increments of the process Wj (t) in vectors 

Zj = (WK*!,-,-). W/(*2,no) - W}(<1|B0). . . • , WjQtk^no) - Wj(**-.-l,»o)) 

and see that Z\,..., Zmn are i.i.d. random vectors. The exponential rate of conver­
gence of MLE is then a well known fact, see [2] and [6]. 

We ask now for sufficent conditions of the basic assumptions (2.12) and (2.13) in 
the special case of kn := n, tiyTl := —, i = 0 , . . . , n. Consider the expression 

1 r1 rT k Bh 

(t, d + s(n- d))(di - m)(#m ~ rim) dtds 

\\ů-

db 

> Џ 

дů,.. 

^ p f кьifi+s(" - щ* - ^n2 d s ^ j ä Xi*tWi 
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where the second last inequality holds because the sum under the integral is a 
quadratic form, which can estimated with help of the smallest eigenvalue inf^ge Ai^tl) 
of the associated matrix 

M*) := ( f i ^ - M ) ^ M ) d O 
Obvious sufficient conditions for (2.12) and (2.13) are the uniform positivity of the 
smallest eigenvalues Xi^d) and X\)m(d) of the matrices Ab(d) and Am(d), respect­
ively. 

Propos i t ion 3. Suppose {ti>n} fulfils (A0) and 0 C 1* is open and convex and 
O c is compact. Assume that both m(t,d) and b(t,d) fulfil the condition (A). If 
inftfg©.- Ai jt(^) > 0 and inf^ee^ Xi>m(d) > 0 then (2.15) in Theorem 3 holds. 

Example . Suppose both m(t,d) and b(t,d) are linear in the parameters, i.e. we 
have a quasilinear model 

k k 

KM) = I>;V>;W, m(t,0)=520j<pj(t). 
j=l j=l 

Suppose (fj, ipj are continuously differentiable in [0,T+ e). Then 

Aъ(ð)= ( / Фi(t)фm(t)dt) 
^ JQ ' \<l,m<k 

It is easy to see that this matrix is nonsingular iff the functions ipj (t) are linearly 
independent, i.e. 

k 

X>;^(.) = 0 a.s. 
J = I 

w.r.t. the Lebesgue measure holds iff c\ = . . . = Ck = 0. Consequently the only 
conditions on m, b to guarantee consistency in the quasilinear model are the con­
tinuous differentiability of the <Pj, ipj and the condition that the model is not over-
parametrized, i.e. the {<Pj} and {ipj}, respectively, systems are linearly independent. 

3. STRONG CONSISTENCY OF MLE 

In this chapter we apply the exponential bounds to establish strong consistency of 
MLE and to formulate results on the rate of the a.s. convergence. 

Suppose (X;A; Ptf,fl E O) is a probability space on which the i.i.d. Wiener 
processes W\, W%,... are defined. A special class of sequences of real numbers be­
comes importance in the sequel. Let Nn be a given sequence of naturals. Denote by 
u({Nn}) the class of all sequences {an}, an £ E1 so that 

2^?°» < oo 
n = l 

for every 0 < q < 1. Obvious examples for Nn = n are an = na, 0 < a < 1/2. 
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T h e o r e m 4 . Suppose the assumptions in Theorem 3 are fulfilled. The conditions 
cb > 0 and {an} £ U{{knmn}) imply 

Pd ( lim an\\K - i9|| = 0) - 1 . 
\n—*oo J 

The conditions cm > 0 and {bn} G U{{mn}) yield 

Ptf f lim bn\\dn-d\\ = 0) = 1. 
\n-*oo J 

P r o o f . We use the well-known fact (see [7]) tha t for a sequence of random 
variables 

P„ ( lim Xn = O) = 1 iff P* ( sup Xm > e ] „-=-->, 0 
Vn^oo / \ m>n / 

for every e > 0. Using the inequality P.j(| s u p m > n xm| > e) < 2!LnP*(|A"fc| > e) 
the two statements of Theorem 4 follow directly from (2.14) and (2.15) and the 
definition of U{{knmn}) and U{{mn}), respectively. • 

(Received August 20, 1993.) 
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