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KYBERNETIKA- VOLUME 23 (1987), NUMBER 1 

ZEROTESTING BOUNDED ONE-WAY 
MULTICOUNTER MACHINES 

PAVOL ĎURIŠ, JURAJ HROMKOVIČ 

One-way multicounter machines with bounds on the number of reversals and zerotests in 
accepting computations are studied. The bounds are considered as functions of the length of 
input words. The first hieararchy results for nonconstant bounds on the number of zerotests 
are obtained. Further results relate the reversal complexity and zerotest complexity again in 
relation to nondeterminism, time, and the number of counters as additional complexity par­
ameters. 

1. INTRODUCTION AND DEFINITIONS 

We shall study the hierarchy of zerotesting bounded one-way multicounter machines 
and their relation to reversal bounded one-way multicounter machines in this paper. 
We consider a multicounter machine as a multipushdown machine whose pushdown 
stores have a single-letter alphabet. 

Informally (the formal definition can be found in [4, 5]), a one-way multicounter 
machine consists of a finite state control, a one-way reading head which reads the 
input from the input tape, and a finite number of counters. We can regard a counter 
as an arithmetic register containing an integer which can be positive or zero. In one 
step, a one-way multicounter machine may increase or decrease a counter by 1. 
The action or the choice of actions of the machine is determined by the input symbol 
currently scanned, the state of the machine, and the sign of each counter: positive 
or zero. The machine starts with all counters empty and accepts if it reaches a final 
state with all counters empty. The class of one-way multicounter machines working 
in quasirealtime (for each machine there exists such a constant d that the length 
of each part of any computation, in which the reading head is stationary, is bounded 
by d) will be denoted by QR-COUNTER, the deterministic version by QR-DCOUNTER. 
The class one-way multicounter machines without any restriction will be denoted 
by COUNTER, the deterministic version by DCOUNTER. 

We shall study the reversal and zerotesting bounded versions of these machines, 
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where the number of reversals is bounded by a function of the input word length. 
The constant-reversal bounded computations were studied in [5, 7], the /-reversal 
bounded computations, for an increasing function/, were studied in [1, 2, 8, 10, 11]. 
The zerotesting bounded multicounter machines have been so far considered for 
constant bound only [12]. 

For increasing functions f(n) = o(g(n)), where g(n) = o(log2 n), and one-way 
deterministic quasirealtime multicounter machines, we prove the existence of strong 
hierarchy according to zerotest bounds / and g. Further, we show that there is a lan­
guage L' recognized by a one-way deterministic quasirealtime multicounter machine 
with one zerotest which can be accepted by no one-way nondeterministic multi-
counter machine with f(n) = o(n) reversal number bound. This result relates the 
reversal complexity and the zerotest complexity in relation to nondeterminism and 
time as additional complexity parameters. 

Now, let us defirie formally the reversal, and zerotest complexity measures. Let 
J5?(M) be the class of languages accepted by the machines in a class M. Let A be 
a multicounter machine from the class M and L(A) be the language accepted by A. 
Let / be a real function defined on natural numbers. Then LRf(A) denotes the set 
of all words in L(A) for which there is an accepting computation containing at most 
f(n) reversals (i.e. changes from increasing to decreasing contents of a counter or 
vice versa), where n is the length of the input word. Let F be the class of all functions 
q from natural numbers to positive real numbers such that for all natural numbers 
n:f(n) ^ q(n). Then we define the classes of languages 

&Rf(M) = \){LRf(B)} and 2>(M - R(f)) = \\ £Rq(M). 
BBM qsF 

Now, we shall introduce the zerotesting restriction. Let / be a function from 
natural numbers to positive real numbers, and let A be a multicounter machine from 
a class M. Then LZf(A) is the set of all words in L(A) for which there is some accepting 
computation having its zerotest number at most f(n) (i.e. the machine A empties 
the counters at most f(n) times in the computation), where n is the length of the 
input word. Let F be the class of all functions q from natural numbers to positive 
real numbers such that for all natural n:f(n) g q(n). We define the following classes 
of languages 

<ezs(M) = U {Lzf(B)} and if(M - Z(f)) = \J <?Zq(M) . 
BeM qeF 

In what follows we shall often consider computations in which a multicounter 
machine reads a group of identical symbols whose number is greater than the number 
of states. Clearly, there has to be a state q which will be entered twice (or more) 
in different configurations in this part of computation. If these two occurrences 
of the state q are adjacent (no further state q and no two equal states different from 
q occurs inbetween) we say that this part of the computation is a cycle with state 
characteristic q, reading head characteristic — the number of symbols over which 
the reading head moves to the right in this cycle, and counter characteristic, for 
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each counter, which is the difference between the counter contents at the beginning 
and at the end of the cycle. Thus, the counter characteristic can be positive, if the 
machine increases the contents of the counter in the cycle, it can be negative if the 
counter contents is decreased in this part of the computation, and obviously it can 
be zero. 

We call attention to the fact that if a cycle occurs in a computation of a one-way 
deterministic multicounter machine reading a group of identical symbols it follows 
that this cycle will be executed repeatedly until the reading head reaches some 
different symbols (i.e. until the reading head reads through the whole group of 
identical symbols) or a counter reaches zero. 

Let s be the number of states of a multicounter machine A and k be the number 
of A counters. Then we can bound the number of all cycles with different character­
istics by 

s(s + 1) (2s + If . 

Now, we introduce the following notation. Let d be a real number. Then {d} 
is the smallest natural number k such that d g k, and [d] is the largest natural 
number m such that d ^ m. Le t / , and g be functions defined on natural numbers. 
The fact that lira f(n)jg(n) = 0 will be denoted by/(n) = o(g(n)). 

2. RESULTS 

Using modifications of the proof technique developed in [3, 7, 10] a hieararchy 
of one-way quasirealtime deterministic multicounter machines according to zerotest 
bound is esatblished and a relation between reversal and zerotest complexity measures 
is shown. 

Theorem 1. Let / and g be increasing functions from naturals to positive reals 
such that g(n) j> f(n) for all natural n, f(n) = o(g(n)) and g(n) = o(log2 n). 
Then £e(QR-DCOUNTER-Z(f)) £ J?(QR-DCOUNTER-Z(g)). 

Proof. Let us consider the language Lg = {utu2 ... up\ p ^ g(\ulu2 ... up\) and 

M. = a"'fo"' for all i = l,...,p, where nt > 0}. Clearly, this language can be accepted 
by a QR-COUNTER machine B with one counter such that LZg(B) = Lg. 

Now, we shall show by contradiction that the language Lg does not belong to 
^(QR-DCOUNTER-Z(f)). Let h be a function from natural numbers to positive 
real numbers such that h(n) ^ f(n) and let there exist a QR-COUNTER machine A 
such that Lzh(A) = Lg. Let A have s states and let the length of each part of any 
computation, in which the reading head is stationary, be bounded by a constant c. 
We shall consider the word 

x = attlb"lan2bn2... a"»<»>£,"»(••) 
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i - 1 

where Mx >. s + 1, n; k 2sc £ n ; for i = 1, . . . , g(n). Since a(n) = o(log2 n) we 
J = I 

can assume that such a word exists and belongs to Lg. 
Since f(n) = o(g(n)) there exists such subword 

y = a">b"> ...a"kb"k 

of the word x that k — j is greater than the number of all cycles of A with different 
characteristics, and the machine A empties no counter during the computation on y. 
It is easy to see that, for i = j , j + 1, ..., k, the counter characteristics of all cycles 
used in the computation on a"' must be equal or greater than 0. It follows from the 
fact that if one of the counter characteristics of a cycle is negative in the computation 
on a"r, for some j S r S k, then the corresponding counter must be emptied in the 
computation on a"r, what is the consequence of the assumption 

r - l 

n,. ^ 2sc Y, nj . 
J = I 

Since k — j is greater than the number of all cycles of A with different charac­
teristics there exist such two numbers d, z: j <. d < z ^ k that the machine A 
works on a"d in a cycle sx and on a"" in a cycle s2, where st and s2 have the same 
characteristics. Let m be the reading head characteristic of these cycles. Clearly, 
we can assume m > 0 because no quasirealtime computation of a deterministic 
multicounter machine can involve a cycle with the reading head characteristic 0. 
It can be simply seen that if A accepts the word x = vtyv2 then A must accept 
the word 

x' = vxa">b">... a"d+mb"d... an'~mbn* ... a"kb""v2 

what proves our assertion because x' does not belong to Lg, and if w — w1s1w2s2w3 

is the accepting computation on x then w' = w1s1slw2w3 is the accepting computa­
tion of A on x'. • 

Now, we show that quasirealtime, determinism, and one zerotest can be sufficient 
for the recognition of a language, for which nondeterminism, unbounded time, 
and f(n) = o(n) reversals do not suffice. 

Theorem 2. Let f(n) = o(n) be a function from naturals to positive reals. Then 
<e(QR-DCOUNTER-Z(l)) - £?(COUNTER-R(f)) 4= 0. 

Proof. Let us consider the language L' = {w | w in {a, b}* such that Jka(w) = 
= #fo(w) andfor allx, j>in {a, b} + , w = xyimplies #o(x) > # &(x)}. This Ian uage 
can be accepted by a QR-DCOUNTER machine B' with one counter. The machine 
B' increases (decreases) the contents of its counter for all a(b) on the input tape. 
If B' computing on an input word will empty its counter, and is not scanning the last 
symbol of the input word then B' does not accept. If B' will empty its counter and is 
scanning the last symbol on the input word B' accepts. 

Now, we shall prove by contradiction that L' does not belong to 3?(COUNTER-
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-R(f)). Let h be a function from natural numbers to positive real numbers such 
that h(n) :» f(n). Let us assume that there exists a COUNTER machine B such that 
LRh(B) = L. Let E have s states, k counters, and the number of all cycles with different 
characteristics be bounded by a constant d. We shall consider the input word 

x = a(as+ i&»+»)«»+«<-+ WW) ambm+i 

in L', where c > d. Sincej(n) = o(n), for a sufficiently large n, there is a nonnegative 
integer m such that the length of x is n = 2 + 2(s + 1) c(fc + l) {f(n)} + 2m. So, 
there exists a subword 

XX = (a*+l^+l)*(*+l>(*+l) 

of x such that B computing on xt reversals no counter. It is easy to see that in the 
same way as in the proof of Theorem 1 of [10] we can construct a word x' which 
does not belong to 11 but which is accepted by B. Obviously x' will be constructed 
from x in such way that we first take some amount of a's of a n a s + 1 of x, and then 
pump a group of a's of x, what breaks the prefix property of x. 

Corollary 1. Let f(n) = o(n) be a function defined on natural numbers. Then 
^(QR-COUNTER-R(f)-Z(l)) «-: if(gR-CoUiVTER-Z(l)) 
^(COUNTER-R(f)-Z(l)) £ g(COUNTER-Z(\)). 

We call attention to the fact that the hierarchy results formulated in Corrolary 1 
can be formulated for deterministic machines, and machines with different time 
restrictions too. 

Concluding this paper we give some open problems concerning zerotesting multi-
counter machines. 

Open Problems. Let f(n) g g(n) be functions such that f(n) = o(g(n)). What 
is the relation between: 

1. &(DCOUNTER-Z(g)) and £C(DCOUNTER-Z(f)) 

2. &(QR-DCOUNTER-Z(g)) and ^(QR-DCOUNTER-Z(f)) for g(n) £ log2 n 

3. ^(QR-DCOUNTER-Zff)) and £C(DCOUNTER-Z(f)) 

4. £C(DCOUNTER-Z(f)) and &(COUNTER-Z(f)) 

5. Se(QR-DCOUNTER-Z(f)) and &(QR-COUNTER-Z(f))l 

We note that Problems 1, 2, 3 can be formulated for nondeterministic machines 
too. We conjecture that we shall be able to solve Problems 3, 5, and Problem 2 for 
g(n) S n. On the other hand we have no idea which can help to solve the additional 
problems. 

(Received August 5, 1985.) 
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