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KYBERNETIKA-VOLUME 23 (1987), NUMBER 1 

ON A NONLINEAR DIFFERENTIAL GAME 
OF EVASION WITH CONSTRAINTS 

MILAN MEDVED 

A strategy of evasion for a class of nonlinear differential games with linear constraints is 
constructed. 

1. INTRODUCTION 

A game of evasion is a mathematical idealization of a conflict situation of the 
following type: Let two moving, controllable objects 01 and 02 be given. These 
objects can be represented e.g. by planes, or by some another technical devices. 
The aim of the object 02 is to avoid a given subset M of the phase space and the aim 
of the object 0t is to force the object 02 to fall into the set M. The evasion game 
consists of finding a strategy of choosing some controls for the object 02, to ensure 
that this object remains all the time outside the set M. A differential game of evasion 
is a game of evasion which is described by a system of differential equations depend­
ing on some control parameters. If the motion of the objects of the game is con­
strained to a subset of the state space, then the game is called an evasion game with 
constraints. 

A definition of an evasion and pursuing strategy, given by P. Isaacs, has some 
disadvantages. These are supposed to be optimal in some sense and thus definition 
is too restrictive. In order to improve possibilities of calculations of strategies, L. S. 
Pontryagin (see [17], [18]) proposed another definition of strategy. Today there are 
many papers concerning linear and nonlinear differential games based on Pontrya-
gin's definition of strategy and it is hardly possible to give a list of all these papers. 
We only refer the reader to the papers [11-20] and to the book [7], where many 
such papers are quoted. 

The aim of this paper is to show that the methods for solving nonlinear differential 
games of evasion (in Pontryagin's sense) developed recently, can also be successfully 
applied to nonlinear differential evasion games with constraints. We have been 
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motivated by the paper [12], where a certain type of so called quasilinear differential 
game of evasion with linear constraints is solved. Naturally, there are many open 
problems concerning nonlinear evasion games with constraints. For example, it is 
possible to consider the game described by a control system in more general form 
than that in our paper with some type of linear or nonlinear constraints. Another 
class of problems concerns evasion games with constraints played by more that 
two players (see e.g. [12]). Moreover, from the practical point of view, it is natural 
to give also some integral constraints on control functions e.g. J™ ||M(t)||2 dt < °°> 
fo IK ' ) | 2 d* < °°> w n e r e u a n d v are control functions of the pursuer and evader, 
resp.; see e.g. [1]). 

Before we give the precise formulation of our problem, let us briefly recall the 
mathematical description of an evasion process. Let the motion of the controllable 
objects Ot and o2 be described by the nonlinear differential equations 

(1) i = fix, u), 
(2) y = g(y, v), 

respectively, where x, y e Rm, ue Rp is a control parameter of the pursuer and 
v e R" is a control parameter being in possession of the evader. If the control u 
is given by a function u = u(t), then after substituting it into equation (1) we obtain 
the equation x(t) = f(x(t), u(t)) and we can solve this equation with the initial condition 
x(0) = x0. Analogously, if v = v(t), the we can solve the equation y(t) = g(y(t), 
v(t)) with the initial condition y(0) = y0. Let x = (xlt x2), y = (yu y2), where 
xu yt are geometric coordinates and x2, y2 are velocity coordinates of the objects 
o! and o2 respectively. Let us define the set M = {(x,, x2, yt, y2) e Rm x R'": 
x t = yi}. If xt(t) = yt(t) for some t e (0, oo), i.e. (x(t), y(t)) e M, then the objects 
Ot and o2 have the same geometric coordinates. This can be interpreted as capture 
of the object o2 by the pursuer ot at time t. If the control function v = v(t) can be 
chosen in such a way that (x(t), y(t)) £ M for all t e (0, oo) and for arbitrary control 
function v = v(t) belonging to a given class of function, then this means that the 
evader o2 cannot be captured by the pursuer in finite time. Now, let us write equa­
tions (l) and (2) as one equation 

(3) i = F(z, u, v) , 

where z = (x, y) e R2m, F(z, u, v) = (fyx, u), g(y, v)). Then M = {(zu z2, z3, z4) e 
6 R2'": Zj = z3} and the condition z(t) $ M means that the objects Ot and 02 have 
their geometric coordinates different at time t. 

Now let us assume that the evasion game is described by the equation 

(4) z = Cz + / (« , v), 

where z e R", C is a constant matrix, / (« , v) is a continuous function on the set 
U x V c: R" x Rq, where U and V are nonempty, compact sets. Let M <= R" be 
a linear subspace of R". The evasion game described by an equation of the form (4), 
which is linear in z and nonlinear in (u, v), and by a linear subspace M is called 
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a quasilinear differential game of evasion. The following theorem concerning such 
a quasilinear differential game of evasion has been proved by R. V. Gamkrelidze 
and G. L. Kharatishvili (see [4]). 

Theorem 1. Let U c R", V a R" be nonempty, compact sets,/(«. v) be a continuous 
function on U x V with values in R" and let a linear subspace M of R" be given. 
Assume that the following conditions are satisfied: 

(1) dim M S n - 2 

(2) There exists a 2-dimensional subspace W of L, where L is the orthogonal com­
plement to the subspace M in R", and an integer k such that: 
(a) Each set 

nClf(U, V), i = 1, 2 , . . . , k - 2 

is a point 

(b) The set 

R0 = H c o T t C ' - 1 ^ " , V) 
ueV 

contains an interior point (relatively to W), where n: R" —> W is the ortho­
gonal projection onto Land co A denotes the convex hull of the set A. 

Then there exists an evasion strategy (in the sense of Definition 2 from Section 2) 
for the game described by equation (4) and the subspace M and the following holds: 
If Q(z(i), M) is the Euclidean distance of the point z(t) from the set M, then 

(5) 8(z(t), M) ^ K(l + |z(t)|Y* for all t e [0, oo), 

where || • || is the Euclidean norm on R" and the constant K > 0 depends on the 
equation, but not on strategies. 

Example. Let the dynamics of objects Ot and 02, respectively be described by 
the equations 

(5) x + ax — QU 

y + by = av , 

where x, y, u,ve R2n, n >. 1, ||fi|| ^ 1, ||t;]| g 1, a, b, Q, a are positive numbers and 
a > Q. If z = (zu z2, z3) = (x — y, x, y), then the system (5) can be written in 
the form 

-1 = -2 - z 3 

(6) z2 = -az2 + QU 

z3 = — bz3 + av 

and we can write this system in the form (4), where 

~0 I - I 
= 0 -al 0 

0 0 -bl 
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u = (0, QU, 0)*, v = (0, 0, cry)*, f(u, v) = (0, QU, av)* (w* is the transpose of w), 
/ is the n x n, unit matrix U = {(0, QU, 0): \\u\\ = 1}, V= {(0, 0, or): ||g|| = 1}, 
M = {z = (Zi, z2, z3) e K3": Zj = 0}. The subspace L = (zu z2, z3) e R3n: z2 = 0, 
z3 = 0} is the orthogonal complement of M in R3n and the orthogonal projection 
7t: W3" —> TV is represented by the matrix 

"/ 0 0~ 
0 0 0 
0 0 0 

Obviously, nf(u, v) = {0} for all (M, v) e U x V i.e. 7ij(U, V) = {0} and one can 
easily calculate that nCf(u, v) = (QU - av, 0, 0)* The set 7iC/(w, V) has the form 
nCf(u, V) = {(QU, — av, 0, 0)*:i)6 V} and one can show that this set is the ball 
in L with center at the origin and radius a — Q. Therefore the assumption a > Q 
implies that the assumption (2) —(b) of Theorem 1 is also satisfied. By this theorem 
there exists an evasion strategy for the game described by the system (6) and the 
subspace M. Moreover, the inequality (5) with k = 2 is satisfied. 

2. THE EVASION THEOREM 

Consider a system of ordinary differential equations 

(7) z = P(z, u, v), 

where z e R" is the state variable, u, v are control parameters (M - the parameter 
for the pursuer, v - the parameter for the evader), ueU, veV, U c Rk, V c Rl 

are nonempty, compact sets. We suppose that the following conditions are satisfied: 
(A) P(z, u, v) is continuous on R" x U x V 
(B) There exist constants a > 0, b > 0 such that 

|(z, P(z, u, v))\ = a\\z\\2 + b for all (z, u,v)eR" x U x V 

((x, y) is the scalar product of x and y) 

(C) For any R > 0 there exists a constant CR > 0 such that 

\\P(z,u,v)-P(z,u,v)\\ = CR\\z-z\\ 

for all(w, v)eU x Vand z, z e BR = {w e R": \\w\\ ̂  R}. 
The conditions (A) —(C) ensure that for any measurable functions u(t), v(t) defined 
on the interval [0, oo) and such that M(f) e U, v(t) e V for all t = 0 and any z0 e R" 
there exists a unique solution of the initial value problem 

(8) z = P(z,u(t),v(t)), z(0) = zo 

defined on [0, oo) (see [2]). 
We denote by J4(l, Y) the set of all measurable functions defined on the interval 

/ = [0, oo) with values in the set Y <= R". 
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Definition 1. A mapping v: Ji(I, U) x R" -> Jl(l, V) (the values of v we denote 
by v(u, z), or v"(z, •)) is said to be a strategy, if it possesses the property: If uu u2 e 
e Jl(I, U), z0 e R", T> 0, then the equality uL(t) = u2(t) almost everywhere on 
[0, T] implies the equality vUi(z0, t) = vuz(z0, t) almost everywhere on [0, T]. 

Definition 2. Let M be a linear subspace of R". A strategy t>: •#(/ , U) x R" ~+ 
-+ Jf(I, V) is called an evasion strategy, if for any measurable function u e Ji(I, U) 
and any z0 e R", z0 £ M, the solution z(t) of the initial value problem (8) with v(t) = 
= i'"(z0, t) does not intersect the subspace M for any t >. 0. The problem to find 
an evasion strategy is called an evasion problem, or the differential game of evasion. 

We consider an evasion problem with constraints (to be specified later), where 
the system (7) has the following special form: 

(9) x = A(x, y) + B(x, y, u, v), 

y = Py + g(x, y, u, w, v) + f(u, w), 

where x e R", y e Rm, fi > 0, ueU, weW, veV, U <= Rk, W c Rl, V <= W are 
compact sets, u is a parameter for the pursuer, w, v are parameters for the evader, 
A: R" x Rm -> R", B: R" x Rm x U x W x V'-> R", g:R" x Rm x U x W x V-* 
-> R", f:U x W'-* Rm. In our case the subspace M is a subspace of the state space 
R" x Rm. Let the following constraints be given: 

(10) (qk,y) = 0, k=l,2,...,s, 

where qt, q2,..., qs are given constant vectors in Rm. 
We consider the system (9) with the constraints (10) and we wish to find an evasion 

strategy (wu(x0, y0, •), v"(x0, y0, •)) (it has two component w" and v") such that 
for any u e Ji(I, U) and any (x0, y0) e R" x Rm satisfying the inequalities (qk, y0) >. 
>. 0, fc = 1, 2 , . . . , s, the solution z(t) = (x(t), y(t)) of the system (9) with u = u(t), 
v = v"(x0, y0, t), w = wu(x0, y0, t), which fulfils the initial condition z(0) = (x0, y0), 
satisfies the inequalities (qk, y(t)) — 0 for k = 1, 2 , . . . , s and for all t e [0, co). 
We call this game the differential game of evasion with constraints given by the system 
(9), the subspace M and the constraints (10). 

Now, let us rewrite the system (9) into the form 

(11) z = P0(z) + F(z, u, w, v), 

where z = (x, y), P0(z) = (A(x, y), py), F(z, u, w, v) = (B(z, u, w, v), g(z, u, w, v) + 
+ f(u, w)). We assume that 

(a) A is C-differentiable (i.e. P0 is C-differentiable) 
(b) The mapping P(z, u, v) = P0(z) + F(z, u, v) satisfies the conditions (A)-(C). 

We define recurrently: C0(z) — id (the identity), Ci(z) = D P0(z) (the Jacobian 
of P0 at z), Ct(z) = D Ci-^z) P0(z) for i > 1. 

Let us formulate the so called evasion conditions: 
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(E 1) For any z = (x, y) $ M there exists a linear subspace L = L(z) in R"+m ortho­
gonal to M, dim L 2: 2, an open neighbourhood Us of the point z and a natural 
number p = p(z) 5S r such that the following conditions are fulfiled: 

(i) {n Cj(z) F(z, u, w, v): (u, w,v)eU x W x V} = {0} for all z e Us and 
and all 7 = 0, 1, . . . , p - 2, where n = 7c(z) is the orthogonal projection 
of R"+m onto the subspace L(z) 

(ii) f. f)co{n Cp^^z) F(z,u,w,v):veV] contains an interior point with 
HE £7 weW 

respect to L(z)), where co B is the convex hull of B. 

(E 2) There exists a point co in the set f) /(«> W) such that (co, <jft) S 0 and ||a(z, M, vv, 
«e£7 

y)|| g (to, ?fc)/||?fc|| for k = 1, 2 , . . . , s and for all (z, u, w, v) e R" + m x U x 
x IF x V, where / (« , IF) = {f(u, w):weW}. 

Theorem 2. Suppose that for the differential game of evasion given by the system 
(9), a linear subspace M of Rn+m and the constraints (10), the conditions (a), (b) and 
the evasion conditions (E 1), (E 2) are fulfilled, where codim M = n + m — dim M ^ 
s> 2. Then there exist closed sets W, Wt in Wn+m such that M cr int FF. c int W, 
a positive function 7: [0, 00) x [0, 00) -* R, a positive function T: [0, 00) -* R 
with values in the interval (0, 1) and an evasion strategy (w"(z, •), vu(z, •)) such that 
for any measurable function u e Jt(I, U) each corresponding solution z(t) = (x(t), 
y(t)) of the system (11) satisfies: 

(1) If z0 =(x0,y0)$W, then e(z(t), M) ^ y(Q(z0, M), ]|z0||) for all t^0 and 
z(T(|]z0[|)) ^ W, where Q(Z, M) is the distance of the point z from the subspace M. 

(2) If z(ti) $ IT for some tt e [0, 00), then z(f) $ Wx for all t ^ ft. 
(3) If z(fx)e F, then there exists a r2 e \tu tx + T(||z(ti)||)] such that z(t2) $ W. 
(4) If z0 = (x0, j 0 ) $ M is the initial value for the solution z(t) = (x(t), y(t)) and 

((?fc, y0) ^ 0 , fc = 1, 2 , . . . , s, then (afc, j(r) ^ 0 for all k = 1, 2 , . . . , s and all 
t e [0, 00). 

Remark. General results for nonlinear evasion games without constraints of that 
kind as we have formulated in the previous theorem were proven by B. Kaskosz [5] 
(see also [6], [7]). We are using her method in the proof of the theorem. This method 
is somewhat related to the one developed by R. V. Gamkrelidze and G. L. Khara-
tishvili (see [4]). Both methods are applicable also to evasion games described 
by some systems of integro-differential equations of Volterra type (see [9], [10]) 
and similar results to those contained in the theorem may be proven also for the 
evasion game with constraints described by these integro-differential equations. 
Some results concerning the evasion game with constraints of the form (10) described 
by the system of quasilinear differential equations 

X; = AiXt + Biyi + fi(u, v), i = 1, 2, .... m , 

y = Py +fm+i(u,v), 
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%i e R"', y e R", Ah Bt are constant matrices, u, v are control parameters, are obtained 
in the paper [12]. 

Before proving the above theorem, we define so called extended evasion game 
and formulate some indispensable lemmas. 

Let us denote by (EG) the evasion game described by the system (11), the subspace 
M and the constraints (10). 

Definition 3. By the extended evasion game corresponding to the evasion game 
(EG) we mean the evasion game described by the system of differential equations 

(12) z^P0(z)+"+'£1
riiF(z,u,w,vl), 

; = i 

where z = (x, y), ueU, w e W, vteV, i = I, 2,..., n + m + 1, /.i = (jut, \x2,... 
n + m + l 

...,H„ + m+1)e{neRn+m + l: £ p. = 1, fij 2 0, j = 1, 2 , . . . , n + m + 1} (ueU 
; = i 

is the control parameter for the pursuer and v — (ftit fi2. ••-, Pn+m+u w> vu v2> ••• 
... vn+m+1) e A x Wx Vx Vx ... x Vis the control parameter for the evader), 
by the subspace M and by the constraints (10). We denote this game by (EG)ex. 
An evasion strategy for the game (EG)ex is denoted by v"(z, t) = v"(t) = (fi"(t), ... 
••; A+m+ l(0' lv"(0> 4 0 . • • •> <+m+ 1(0)-

Lemma 1 (see [5, Theorem 2.1]). Let vz(z, •) be an evasion strategy for the game 
(EG)ex and Tbe a given positive number. Then for any E > 0 there exists an evasion 
strategy v"(z, •) for the game (EG) such that for each measurable function u e 
e Jl(I. U) and any z0 e W+ ,"the corresponding solutions zt(t), z2(t) of the systems 
(10) and (11), respectively, satisfy the inequality 

(13) \\zx(t) - z2(t)\\ < e for all t e [0, T] . 

Lemma 2 (see [3]). Let f:MxMr-> Ss, (t, uu ..., ur) -> f(t, ut,..., ur) be con­
tinuous in t on the interval [0, T]. Let Q(t) be a compact set in Rr, which is upper 
semicontinuous in t. Let R(t) = {f(t, u): u e Q(t)} and y: [0, T] -» Rs be a mesur-
able function such that y(t) e R(t) for all f e [ 0 , T]. Then there exist measurable 
functions uuu2,...,u, defined on [0, T] such that f(t, ut(t), u2(t),..., ur(t)) = y(t) 
for all / e [0, T]. 

Lemma 3 (see [17]). Let Q be a cube in R" with center at the origin and sides 
parallel to the axes and let p be a natural number. Then there exists a positive con­
stant 0 such that for any curve wp(t) in R" whose components are polynomials of 
degrees not greater than p there exists a point w0 e A such that 

|K(t) - wotP|| = otP for all t e [0, oo) . 

Proof of Theorem 2. There exists a vector co eOf(u, W) satisfying the second 
ueU 

evasion condition (E 2). Let u be any feasurable function defined on the interval 
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J = [0, 1] with values in the set U. Consider the equation 

(14) f(u(i), w) = co, 

where by the solution of this equation we mean a measurable function w = w(t) 
defined on the interval J with values in the set W, which fulfils this equation almost 
everywhere on J. The existence of such solution of (14) follows from Lemma 2. 
Denote this solution by wu

a(t). 

Let u(t), v(t) be any measurable functions defined on J with values in U and V, 
respectively. Let z(t) = (x(t), y(t)) be a solution of the system (11) corresponding 
to the functions u(t), w"a(t) and v(t), which satisfies the initial condition z(0) = 
= (x0,y0), where (y0, qk) ^ 0 , k — 1,2, ...,s. The function y(t) has the form: 

y(t) = e"( y0 + f e"((-s) g(x(s), y(s), u(s), wu
a(s), v(s)) ds + P yc,-s)f(u(s), wl(sj) ds. 

Since f(u(t), wJJ,(i)) = a> almost everywhere on J, we have 

(y(t), qk) = e<"(y0, qk) + P _"<'->, qk) ds + 
Jo 

e« ' -%(x(s ) , y(s), u(s), wl(s), v(s)), qk) ds ^ 

_. e^Oo,.*)+ (»,«*) f e ' ^ d . -

- P e « ' - % ( x ( s ) , y(»), "(s), wl(s), v(s))\\ \\qk\\ ds ^ e"((y0, «,) + 

+ (co, qk) P e**--> ds - P e«f-^(o), g,) ds -_ e"'(y0, ^ ) ^ 0 

for all t e [0, oo). 

Since the constraints conditions (10) are satisfied for arbitrary measurable func­
tion v e Jt( J, V), we have the possibility to construct the additional components 
of the evasion strategy by Kaskosz's method. 

Let us choose any point z £ M and let Us be its open neighbourhood, for which 
the evasion condition (E l)-(i) is satisfied. Then there is an open neighbourhood 
Vj of the point z, V2 <= Uf and a number % e (0,1) such that for any initial value 
z0 e V= each corresponding solution of the system (11) and also of the system (12) 
lies in Us for all t e [0, ? J . One can show (see [5]) that if z(t) is a solution of the 
system (11) satisfying the initial condition z(0) = z0, then 

Z(t) = Z0 + P0(Z0) t + ... + Cp_!(z0) PQ(z0) - + 
p! 

F(z(s), u(s), w(s), v(s)) + C1(z(s)) F(z(s), u(s), w(s),«,(_)) (ř - s) 
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+ ... + Cp_2(z(s)) F(z(s), u(s), w(s), „(_)) { J 7 ^ P \ d* + 

+ P C__.(_(_)) F{_), u(_), w(s), v(s)) ^ ^ 7 d 5 + 

Jo OP - 1 ) ! 
+ f Cp(z(s)) (P0(z(s)) + F(z(s), «(S), w(s), v(s)) ( L ^ ds. 

Jo p! 

Using the evasion condition (E l)-(i) we obtain 

(15) nz(t) = wp(z0,t) + R(tp+i) + 

í> Cp_.(_(c)) Ғ(z(s), M(s), w(s), p(s)) ( t 5 ) ' 7 d s , 
(p - 1)! 

where R(tp+1) = f0 TT Cp(z(s)) (P0(z(s)) + F(z(s), u(s), w(s), v(s)) (t - s)p\p\ d s , 

(16) llK(tP+1)|| S_ Ngt
p+i for t s [0, T] , 

iVz is a positive constant, wp(z0, t) = 7tz0 + 7iP0(z0) t + ... + nCp-^Zo) P0(z0). 
. tpjp\ and 7i = n(z) is the projection of Rn+m onto the subspace L = L(z). 

Now we shall describe a construction of a local evasion strategy near the point 
z e M. The evasion condition (E 2)-(ii) implies that there is a cube Qz with center 
at the point z and sides parallel to the axes (we suppose orthogonal coordinate 
system on L) and such that 

(17) Q-z •= n 0 co {n Cp.x(z) F(z, u, w, v): v e V} = 
ueV weir 

n + m + 1 

= 0 n {" Cp_ x(z) V p, F(z, M, w, Pj): n e _f, Pj e V, i = 1, 2 , . . . , n + m + 1} 

Let us put <2 = (l/p!)<2_ and choose open neighbourhoods Vz, V? of z and a number 
5*° e(0, Tz) such that if z0 e Vz, then any solution of (11) and (12), respectively, 
with the initial value z0 remains in Vz° for all t e [0, T°] and (18) 

(18) \\n C.,_.(-) F(z, u, w, v)-n C,...(f) F(z, u, w, v)\ <, £6>2p! 

for all z e Vz° <= Vz (we may suppose that V? <_ Vz) and for all (u,w,v)eU xWx V, 
where 0 = <92 is the positive number, for which the inequality from Lemma 3 
is valid (here the point w0 = wzo corresponds to the cube Q = (l/pHQ. and to the 
curve wp(z0, t)). From (17) we obtain that if (l/p!)wzo e Qz, then for any ueV and 
w e Wthere exists v(u, w) = (p1(«., w), . . . , jt_n+m4.1(u, w), P^U, W), ..., pH+m+1(„, w)) e 
e A x V x ... x V such that 

n + m + l 

(19) 7i Cp_ i(z) X ^(u , w) F(z, u, w, P;(U, w)) = wzop! . 
i - i 

Let us take a basis £ i n R ( B + m + 1 ) ( ! + 1 ) (/ = dim V) and choose from the set of all 
solutions of the equation (19) the lexicographic maximum v0(u) with respect to the 
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basis £. Then by Lemma 2 the function v0(u(t), w(tj) is a measurable function for any 
measurable functions u(t) and w(t). Define the local evasion strategy for the game 
(EG)ex as the mapping v%z0, t) = (Hi(u(t), <,( /)) , . . . , nn+m + 1(u(t), Wjt)), wu

a(i), 
vt(u(t), w'Jt)),..., vn+m+l(u(t), wl(t))). Then for the solution z(t) of the system (12) 
with the initial value z0, corresponding to the value of the strategy we have 

n* 2(on = th(*o, o + f«c,_.(.?(.-))"T W«(-). <(s» • 
Jo '=i 

. F(z(s), w(s), w"/s), y;(«(s), <(s)) ^ ~ ^ * ds + R(tp+1) = 
(p ~ 1)1 

= ||wp(z0, t) + R(tp+1) + P n Cp-i(z)"+f +k(«(s) , <(s)) . 
J o > ' = ' 

" . F(z, «(s), w«(s), -.(«(.-), <(s)) ^ ^ ds + 
(P - ! ) ! 

+ f" I+ W(s)> <(s0 L> C P - I ( ^ ) ) -*(-(-)> «(s). <(«), 
Jo '= ' 

»i(«(s), <,(s)) - n Cp-i(z) F(z, M(S), w'Js), Vi(u(s), < /s ) ) ] . 

. ^ | d s a | K ! = 0 , , ) + ,,„,1-fp!£^ds-
- N4P+1 > 0JP - ^ tp - N-Jp+1 = (— - NA t". 

Obviously there exists a T e (0, 7;°] such that @t\2 - NSTS =d c f £ z > 0 and from 
the above estimation we have 

(20) ||n z(t)\\ >= Kst
p for all t e [0, TJ . 

Choose a positive constant C. such that C2 > ( T ) " 1 and 

(21) | < P o ( 0 + P( z , u, w, v))\\ < \C, for all z e V and all 

(M, W, v) e U x W x V. 

If z0 e V and Z e [0, T], then the solution z(t) of the equation (11) with the initial 
value z0 satisfies the inequality 

(22) e(z(t), M) ^ Q(Z0, M) - t(Cf/2) for all u e JC(J, U), v 6 Jt(J, V)., 

and all w e Jt(J, W) . 
Indeed, we have 

Q(z(t),M) = IMOfl = \\nz0 + ^(n(P0(z(s)) + 

+ F(z(s), u(s), w(s), v(s)) dsf ^ Q(Z0, M) -
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- r \\x(P0(z(s)) + F(z(s), u(s), w(s), v(s))\\ ds ^ Q(Z0, M) - \tCt. 

If we suppose that Q(Z0, M) <, 1 for z0 e Vz, then (22) implies the inequality 

(23) Q(z(t), M) ^ ie(z0 , M)/2 for all ( e [0, ie(z0, M)/CJ . 

For each z0 e V choose a positive number e(z0) such that 

(24) Kzt
p ^ iKz-/

p + e(z0) for all / ^ y(z0, M)jCt. 

Take the evasion strategy v"z(z0, /) for the game (EG)ej[ and apply Lemma 1 for 
e = e(z0) and T = Tz. By this lemma there exists an evasion strategy v"z(z0, t) of 
the game (FG) defined for all z0 e Vs,z0^M and |z(/) - z(/)|| < e(z0) for all 
/ e [ 0 , TJ, where one can choose e(z0) such that also ||7rz(/) — Kz(t)\\ < e(z0) 
(z(t), z(t) are solutions of (11) and (12), respectively, with the initial value z0). Then 
we have Q(z(t), M) = \\n z(t) + n z(t) - n z(t)\\ ^ \\nz(t)\\ - \n z(t) - nz(i)\ ^ 

= Kzt" - e(z0) ^ ±Kzt
p for all / e [(C , )"1 Q(Z0, M), TJ. Choose a positive number 

K-z such that K2 < \C=, Kz S \KS. Then 

(25) e(z(t), M) = Kzt
p 

e(z(t),M)^K,Q^~^- for / e [ 0 , TJ, 

where p = p(z). 
We have constructed the local evasion strategy near the point z. The process 

of globalization of this strategy and the construction of the functions T can be 
performed in the same way as in [5] and therefore we omit the rest of proof. 

Example. Let the dynamic of the object Ox be described by the equation 

(29) x + (a + cp{xj) x = QU 

and the dynamic of the object o2 is given by the equation 

(30) y + Py = av + yw + p, 

where x, y, p e R'", a, [5, Q, a, y are positive constants, <p is a smooth function with 
real values and there exists a positive constant K such that \<p(x)\ :£ K for all x e Rm. 
Assume that the control parameters u, v, w be such that ueU = {ue Rm: \\u\\ < 1}, 
veV= {veRm: \\v\\ < \), w e W =de( V. Let the constraints be given by the in­
equality 

(31) (q,y) = 0, 

where q e R'" is a constant vector. If z = (zu z2, z3) = (x — y, x, z), then the 

system (29), (30) can be written in the form 

z, = z2 - z3 

(32) z2 = - ( a + <p(z2)) z2 + QU 

z3 = -fiz3 + av + yw + p 
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0 / - I 

0 Q(-a) 0 
0 0 -ßl\ 

(compare it with the system (6)) and this system can be written in the form (11) 
(here we have (w, v) instead off), where P0(z) = (z2 — z3, - (a + <p(z2) z2, — /?z3) 
and F(z, u, w, v) = '(0, gu, av + yw + p), Let M = {(zu z2, z3) e « 3 m : zl = 0}. 
The orthogonal complement to M is L = {(zu z2, z3)e K3m: z2 = 0, z3 = 0}. 
The orthogonal projection n be as in example of Section 1 and C0(z) =d e f id, 

Cx(z) = D P0(z) = 

/ is the m x m unit matrix, Q(zt) = - ( a + d((p2(z2) z2)jdz2). Obviously, n C0(z). 
. F(z, u, w, v) = 0 for all (z, u, w, v) e B3m x U x W x V and thus the evasion 
condition (E 1) — (i) for p = 2 is satisfied. The form of the system (32) implies 
that the assumptions (A), (B), (C) concerning the existence and uniqueness and 
the global existence of solutions of this system are satisfied. Obviously, n Ct(z). 
. F(z, u, w, v) = (QU + av + yw, 0, 0)* e L. If a > Q + y, then the set f) f]{n C^(z) . 

ueV weW 

. F(z, u, w, v): v e V} is the ball in Lwith center at the origin and radius a — (Q + y). 
Hence we have shown that the evasion condition (E 1) is satisfied. The system (32) 
can also be written in the form (9) (here we have (w, v) instead of v), where x = 

= (zu zz), y = z3, A(x> y) = (z2 - z3> - (a + <?(z2)
 z2)), B(X> y>"' w>v) - (°> efy* 

(there we have -fi instead of fi), g(x, y, u, w, v) = av and f(u, w) = yw + p. Ob­
viously, T = (\f(u, W) = yW + p and a, =d e f p e L. If (p, q) > 0 and a < (p, q) : 

usU 

: \\q\\, then \g(x, y, u, w, v)\\ g a < (p, q)l\\q\\ and hence under these conditions 
also the evasion condition (E 2) is satisfied. Therefore Theorem 2 implies that there 
exists an evasion strategy for our evasion game with constraints. 

(Received September 26, 1985.) 
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