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KYBERNETIKA — VOLUME 23 (1987), NUMBER 1

ON A NONLINEAR DIFFERENTIAL GAME
OF EVASION WITH CONSTRAINTS

MILAN MEDVED

A strategy of evasion for a class of nonlinear differential games with linear constraints is
constructed.

1. INTRODUCTION

A game of evasion is a mathematical idealization of a conflict sitvation of the
following type: Let two moving, controllable objects O; and O, be given. These
objects can be represented e.g. by planes, or by some another technical devices.
The aim of the object O, is to avoid a given subset M of the phase space and the aim
of the object O, is to force the object O, to fall into the set M. The evasion game
consists of finding a strategy of choosing some controls for the object 0,, to ensure
that this object remains all the time outside the set M. A differential game of evasion
is a game of evasion which is described by a system of differential equations depend-
ing on some control parameters. If the motion of the objects of the game is con-
strained to a subset of the state space, then the game is called an evasion game with
constraints.

A definition of an evasion and pursuing strategy, given by P. Isaacs, has some
disadvantages. These are supposed to be optimal in some sense and thus definition
is too restrictive. In order to improve possibilities of calculations of strategies, L. S.
Pontryagin (see [17], [18]) proposed another definition of strategy. Today there are
many papers concerning linear and nonlinear differential games based on Pontrya-
gin’s definition of strategy and it is hardly possible to give a list of all these papers.
We only refer the reader to the papers [11-20] and to the book [7], where many
such papers are quoted.

The aim of this paper is to show that the methods for solving nonlinear differential
games of evasion (in Pontryagin’s sense) developed recently, can also be successfully
applied to nonlinear differential evasion games with constraints. We have been
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motivated by the paper [12], where a certain type of so called quasilinear differential
game of evasion with linear constraints is solved. Naturally, there are many open
problems concerning nonlinear evasion games with constraints. For example, it is
possible to consider the game described by a control system in more general form
than that in our paper with some type of linear or nonlinear constraints. Another
class of problems concerns evasion games with constraints played by more that
two players (see e.g. [12]). Moreover, from the practical point of view, it is natural
to give also some integral constraints on control functions e.g. [§ [u(?)]* dt < oo,
_’3" Hu(l) 2 dt < oo, where u and v are control functions of the pursuer and evader,
resp.; see e.g. [1]).

Before we give the precise formulation of our problem, let us briefly recall the
mathematical description of an evasion process. Let the motion of the controllable
objects O, and O, be described by the nonlinear differential equations
(1) : % = fix, u),
@ ¥ =g,
respectively, where x, ye R™, ue R’ is a control parameter of the pursuer and
ve R is a control parameter being in possession of the evader. If the control u
is given by a function u = u({), then after substituting it into equation (1) we obtain
theequation %(1) = f(x(t), u(t)) and we can solve this equation with theinitial condition
x(0) = x,. Analogously, if v = v(f), the we can solve the equation j(r) = g(¥(?),
uo(t)) with the initial condition p(0) = yo. Let x = (xy, X5), ¥ = (¥, ¥2), where
X1, ¥y are geometric coordinates and x,, y, are velocity coordinates of the objects
0, and O, respectively. Let us define the set M = {(x,, X, ¥y, ¥,) € B x R™
xg = yi}. 1 x,(t) = yy(t) for some 1 & (0, ), i.e. (x(1), y(t)) € M, then the objects
0, and O, have the same geometric coordinates. This can be interpreted as capture
of the object 0, by the pursuer Oy at time ¢. If the control function v = vt} can be
chosen in such a way that (x(r), (1)) ¢ M for all ¢ & (0, o) and for arbitrary control
function v = v(t) belonging to a given class of function, then this means that the
evader 0, cannot be captured by the pursuer in finite time. Now, let us write equa-
tions (1) and (2) as one equation
3) z = F(z,u,v),
where z = (x, y) € R*", F(z, u,v) = (f\x, u), g{y,v)). Then M = {(24, 25, 25, 2,) €
€ R*": z, = z;} and the condition z(¢) ¢ M means that the objects O, and 0, have
their geometric coordinates different at time t.

Now let us assume that the evasion game is described by the equation

0 i = Cz + fiu,v),
where z € R", C is a constant matrix, f(u, v) is a continuous function on the set
U x V< R? x R, where U and V are nonempty, compact sets. Let M < R" be

a linear subspace of R". The evasion game described by an equation of the form (4),
which is linear in z and nonlinear in (u, v), and by a linear subspace M is called
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a quasilinear differential game of evasion. The following theorem concerning such
a quasilinear differential game of evasion has been proved by R. V. Gamkrelidze
and G. L. Kharatishvili (see [4]).

Theorem 1. Let U < RP, V = R" be nonempty, compact sets, f(u. v) be a continuous
function on U x V with values in R" and let a linear subspace M of R" be given.
Assume that the following conditions are satisfied:

(1) dmM £ n—2
(2) There exists a 2-dimensional subspace W of L, where Lis the orthogonal com-

plement to the subspace M in R", and an integer k such that:

(a) Each set

rC U, V), i=1L2,..,k—2
is a point
(b) The set
Ry = NconC* flu, V)

uel
contains an interior point (relatively to W), where n: 8" — W is the ortho-
gonal projection onto Land co A4 denotes the convex hull of the set 4.
Then there exists an evasion strategy (in the sense of Definition 2 from Section 2)
for the game described by equation (4) and the subspace M and the following holds:
If o{z(), M) is the Euclidean distance of the point z(¢) from the set M, then

(5) o(z(f), M) =2 K(1 + [|z()])™* forall te[0, ),
where I]]] is the Euclidean norm on R" and the constant K > 0 depends on the

equation, but not on strategies.

Example. Let the dynamics of objects O; and O,, respectively be described by
the equations

(%) %+ ax = ofl
y+ by =0b,

where x, y, #, 5 B*", n 2 1, ] £ 1, |3 < 1, a, b, g, o are positive numbers and
o> 0. If z=(z,2,2;5) = (x — %, ¥), then the system (5) can be written in
the form

iy =23~ 24
(6) 2, = —az, + o#l

Zy = —bzy + of

and we can write this system in the form ( 4), where

0 I -1
C=|0 —al 0r,
0 0 —bI
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u = (0, o, 0)*, v = (0,0, oD)*, f(u,v) = (0, ofl, oD)* (w* is the transpose of w),
Iis the n x n, unit matrix U = {(0, ¢4, 0): & < 1}, V= {(0, 0, od): 3] < 1},
M = {z = (zy, 25, z3) € R*": z; = 0}. The subspace L= (z,, z,, z5) € R*": z, = 0,
Zq = 0} is the orthogonal complement of M in R and the orthogonal projection
n: B*" — W is represented by the matrix

100

n=[{000].

000
Obviously, 7 f(u, v) = {0} for all (u, v) e U x V, i.e. n f(U, V) = {0} and one can
casily calculate that nC f(u, v) = (el — 0%, 0, 0)* The set nC f(u, V) has the form
=C f(u, V) = {{eu, — ov,0,0)*: ve V} and one can show that this set is the ball
in L with center at the origin and radius ¢ — g¢. Therefore the assumption ¢ > ¢
implies that the assumption (2)—(b) of Theorem 1 is also satisfied. By this theorem
there exists an evasion strategy for the game described by the system (6) and the
subspace M. Moreover, the inequality (5) with k = 2 is satisfied.

2. THE EVASION THEOREM

Consider a system of ordinary differential equations
@) z = P(z,u,v),
where z e R” is the state variable, u, v are control parameters (u — the parameter
for the pursuer, v — the parameter for the evader), ue U, ve V, U = R*, V< R}
are nonempty, compact sets. We suppose that the following conditions are satisfied:
(A) P(z, u, v) is continuous on B" x U x V
(B) There exist constants @ > 0, b > 0 such that

[(z, P(z, u, v))] < alz]> + b forall (z,u,0)eR" x U xV
((x, y) is the scalar product of x and y)
(C) For any R > 0 there exists a constant Cg > 0 such that
176, .9) — Pz, 9] < Caliz — 71

for all (u,v)eU x Vand z, Ze By = {we R" |w|| < R}.
The conditions (A)—(C) ensure that for any measurable functions u(1), v{t) defined
on the interval [0, o0) and such that u(t) € U, v(t) e V for all t = 0 and any z, € R
there exists a unique solution of the initial value problem (

) £ = Pz, ult) o). 2(0) = z
defined on [0, o) (see [2]).

We denote by (I, Y) the set of all measurable functions defined on the interval
I = [0, o) with values in the set Y = R”.
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Definition 1. A mapping v: J#(I, U) x R* - #(I, V) (the values of v we denote
by v{u, z), or v(z, +)) is said to be a strategy, if it possesses the property: If u,, u, €
e #(I,U), zo€R", T> 0, then the equality u(f) = u,() almost everywhere on
[0, T] implies the equality v*!(zq, ) = v"%(z,, t) almost everywhere on [0, T].

Definition 2. Let M be a lincar subspace of R". A strategy v: (I, U) x R" >
— #(I, V) is called an evasion strategy, if for any measurable function u € #(I, U)
and any z, € R”, z, ¢ M, the solution z(r) of the initial value problem (8) with v(f) =
= 1"(z,, t) does not intersect the subspace M for any ¢t = 0. The problem to find
an evasion strategy is called an evasion problem, or the differential game of evasion.

We consider an evasion problem with constraints (to be specified later), where
the system (7) has the following special form:

(9) % = A(x, y) + B(x, y,u,v),
¥ =By + g(x, v, u, w,v) + f(u, w),

where xeR", yeR™, >0, ueU, weW, veV, Uc R, W R, Vo R are
compact sets, u is a parameter for the pursuer, w, v are parameters for the evader,
AR xB" >R, BR"XR"xUXWXV>R,g:R" xR"xUxWx V-
— R, [: U x W— R"™. In our case the subspace M is a subspace of the state space
R” x R™. Let the following constraints be given:

(10) (7)) 20, k=1,2,..,s,

where 44, 43, ..., 4, are given constant vectors in R™.

We consider the system (9) with the constraints (10) and we wish to find an evasion
strategy (W“(Xo, Yo, *)» (o, Yo» *)) (it has two component w* and »“) such that
for any u € (I, U) and any (x,, yo) € R" x R™ satisfying the inequalities (q;, yo) Z
20, k=1,2,..,s, the solution z(f) = (x(r), y(r)) of the system (9) with u = u(y),
v = v"(xo, Yo, 1), W = W(xo, Yo, t), which fulfils the initial condition z(0) = (xq, y,),
satisfies the inequalities (g, y(t)) = 0 for k= 1,2,...,s and for all €0, co).
We call this game the differential game of evasion with constraints given by the system
(9), the subspace M and the constraints (10).

Now, let us rewrite the system (9) into the form
(11) z = Po(z) + F{z,u, w,v),
where z = (x, y), Po(z) = (A(x, ¥), By), F(z, u, w, ) = (B(z, u, w, v}, g(z, u, w, v) +
+ f(u, w)). We assume that
(a) 4 is C-differentiable (i.e. P, is C'-differentiable)

(b) The mapping P(z, u, v) = Po(z) + F(z, u, v) satisfies the conditions (A)—(C).

We define recurrently: Co(z) = id (the identity), Ci(2) = D Py(z) (the Jacobian
of Py at z), C(z) = D C;_4(z) Po(z) for i > 1.

Let us formulate the so called evasion conditions:
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(E 1) For any Z = (&, j) ¢ M there exists a linear subspace L = L(2) in B"*™ ortho-
gonal to M, dim L = 2, an open neighbourhood U; of the point Z and a natural
number p = p(z) < r such that the following conditions are [ulfiled:

(i) {m C{(2) F(z, u, w,v): (u,w,0)eU x W x V} = {0} for all zeU, and
and all j = 0,1,..., p — 2, where = = n(Z) is the orthogonal projection
of R**™ onto the subspace L(Z)

() N Nco{nC,_(Z) F(Z,u, w, v): ve V} contains an interior point with
ucU weW
respect to L{Z)), where co B is the convex hull of B.

(E 2) There exists a point  in the set () f(u, W) such that (w, q,) Z 0and l|g(z, u, w,
U

uel
)| £ (o, q)ffla] for k=1,2,...,s and for all (z,u, w,v)e R"*" x U x
x W x V, where f(u, W) = {f(u, w): we W}.

Theorem 2. Suppose that for the differential game of evasion given by the system
(9). a linear subspace M of R"*™ and the constraints (10), the conditions (a), (b) and
the evasion conditions (E 1), (E 2) are fulfilled, where codim M = n + m — dim M2
= 2. Then there exist closed sets W, W, in R"*™ such that M < int W, < int W,
a positive function y: [0, ) x [0, ) - R, a positive function T:[0, o) » R
with values in the interval (0, 1) and an evasion strategy (w¥(z, -), v"(z, +)) such that
for any measurable function u e .#(I, U) each corresponding solution z(1) = (x(),
¥(1)) of the system (11) satisfies:

(1) If zg = (xo, yo) ¢ W, then o{z(2), M) 2 y(e(zo, M), |z,]) for all ¢ = 0 and
2(T(||zo]))) ¢ W, where o(z, M) is the distance of the point z from the subspace M.

(2) If z(t,) ¢ Wior some t; € [0, ), then z(1) ¢ W, forall t = t,.

(3) If z(z,) € W, then there exists a t, €[ty t; + T([z(1,)])] such that z(1,) ¢ W.

(4) If zo = (X0, ¥o) ¢ M is the initial value for the solution z(f) = (x(), y(¥)) and
(2 ¥0) 20, k=1,2,...,s, then (q,, y(t) 2 0 for all k= 1,2,...,s and all
t€[0, ).

Remark. General results for nonlinear evasion games without constraints of that
kind as we have formulated in the previous theorem were proven by B. Kaskosz [5]
(see also [6], [7]). We are using her method in the proof of the theorem. This method
is somewhat related to the one developed by R. V. Gamkrelidze and G. L. Khara-
tishvili (see [4]). Both methods are applicable also to evasion games described
by some systems of integro-differential equations of Volterra type (sce [9], [10])
and similar results to those contained in the theorem may be proven also for the
evasion game with constraints described by these integro-differential equations.
Some results concerning the evasion game with constraints of the form (10) described
by the system of quasilinear differential equations

%= Ax; + By, + fi{w,v), i=1,2,...m,
y =By +fm+l(u’ ") B
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x; € R™, y e R", A;, B; are constant matrices, 4, v are control parameters, are obtained
in the paper [12].

Before proving the above theorem, we define so called extended evasion game
and formulate some indispensable lemmas.

Let us denote by (EG) the evasion game described by the system (11), the subspace
M and the constraints (10).

Definition 3. By the extended cvasion game corresponding to the evasion game
(EG) we mean the evasion game described by the system of differential equations

ntm+1

(12) 2="Pyz) + Y wF(z,u,wv),
i=1
where z = (x, ), ueU, weW, v,eV, i=12,..,n+m+ 1, u= (s s ...
M
s ) EHE BTN =1, 20, =12, ,n4+m+ 1} (ueU

is the control parameter for the pursuer and ¥ = (i, fa. .5 Hyrmas 1> Ws Uy Vs o.

cUyime1) €A X WX V x Vx ...x Vis the control parameter for the evader),
by the subspace M and by the constraints (10). We denote this game by (EG),,.
An evasion strategy for the game (EG),, is denoted by 4z, 1) = #(r) = (uj{1), ...
oo g 1 () W), B0, L v (D).

Lemma 1 (see [5, Theorem 2.1]). Let #(z, -} be an evasion strategy for the game
(EG)., and T'be a given positive number. Then for any ¢ > 0 there exists an evasion
strategy v*(z, +) for the game (EG) such that for each measurable function u e
€ #(1.U) and any z, € R**" the corresponding solutions z(1), z,() of the systems
(10) and (11), respectively, satisfy the inequality

(13) lz,(f) — z5(1)] <& forall tef0,T].

Lemma 2 (see [3]). Let f: B x B — R®, (t,uy, ..., u) = f(t, 4y, ..., u,) be con-
tinuous in ¢ on the interval [0, T]. Let Q(f) be a compact set in ", which is upper
semicontinuous in ¢. Let R(t) = {f(z, u): u e Q(¢)} and y: [0, T] — R* be a mesur-
able function such that y(¢) e R(t) for all te [0, T]. Then there exist measurable
functions uy, U, ..., u, defined on [0, T] such that f(, u (1), us(1), ..., u(t)) = ()
for all t [0, T].

Lemma 3 (see [17]). Let Q be a cube in B" with center at the origin and sides
parallel to the axes and let p be a natural number. Then there exists a positive con-
stant @ such that for any curve w‘,(t) in R" whose components are polynomials of
degrees not greater than p there exists a point w, € 4 such that

fw, (1) — wot?|| 2 @1 forall tel0, ).

Proof of Theorem 2. There exists a vector w € ) f(u, W) satisfying the second

uel
evasion condition (E 2). Let u be any feasurable function defined on the interval

25



J = [0, 1] with values in the set U. Consider the equation

(14) fu(t),w) = o,

where by the solution of this equation we mean a measurable function w = w(z)
defined on the interval J with values in the set W, which fulfils this equation almost
everywhere on J. The existence of such solution of (14) follows from Lemma 2.
Denote this solution by wi(?).

Let u(t), v(t) be any measurable functions defined on J with values in U and ¥,
respectively. Let z(f) = (x(f), (1)) be a solution of the system (11) corresponding
to the functions u(f), w¥(r) and »(f), which satisfies the initial condition z(0) =
= (Xq, yo)» Where (yo,q:) =0, k= 1,2,...,s. The function y(f) has the form:

(3 {3

y(t) = ey, + J. P9 g(x(s), ¥(s), uls), wi(s), v(5)) ds +f =9 f(u(s), wis)) ds.
0 0

Since f(u(t), wi(1)) = o almost everywhere on J, we have )

t
(50 4) = M (vo, 40) + j SN, ) ds +
0

i f " EI(g(x(6), 1), uls) wE(6), o(5), ) ds =

T
= e”'(yo, 0) + (o, ‘]k)f "9 g5 —
o

t
‘J U g(x(s), 3(s), u(s), wa(s), o) Nlau] ds 2 " (vo, a1) +
o

t 't
+ (o, qk)f P ds —j N w, gi) ds = ™(yo, i) Z 0
]

0
for all £ & [0, co).

Since the constraints conditions (10) are satisfied for arbitrary measurable func-
tion ve #(J, V), we have the possibility to construct the additional components
of the evasion strategy by Kaskosz’s method.

Let us choose any point z ¢ M and let U; be its open neighbourhood, for which
the evasion condition (E 1)-(i) is satisfied. Then there is an open neighbourhood
., of the point Z, 7, = U, and a number T} & (0, 1) such that for any initial value
zo € Pz each corresponding solution of the system (11) and also of the system (12)
lies in U, for all ¢ € [0, T5]. One can show (see [5]) that if z(f) is a solution of the
system (11) satisfying the initial condition z(0) = z,, then

2(f) = 2o + Po(z0) t + <o + Cp_y(20) po(zo)g +
+ JT) l:F(Z(s), u(s), w(s), v(s)) + Cy(z(s)) F(z(s), u(s), w(s), o(s)) (¢t — s) +
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z(s z(s), u(s), w(s), vs (t =) s
o+ Cye J(»F(() () () \))( 2)I]d'+

j‘ -u(=(s)) £(s), u(s), w(s), v\s)) (t (t—s" ) -

[ e (et + R0 069, ), v<s>>(~ .

Using the evasion condition (E 1)-(i) we obtain

(15) nz(t) = wlzo, 1) + R(P*Y) +
o [ 7 ot Pt o i, ) s,

where R(1+1) = [ 7 C,fz(s)) (Po(z(s)) + F(z(s), u(s), w\s), v»\s)) (t ~ s)[ptds,

(16) [R(#TY] < Nam*t for 1e]0, T1],

N, is a positive constant, w,(zo, {) = nz, + nPy(2o) t + ... + nC,_(zo) Po(zo) .
. *[ptand = = n(Z) is the projection of B**™ onto the subspace L= L(z).

Now we shall describe a construction of a local evasion strategy near the point
Z e M. The evasion condition (E 2)-(ii) implies that there is a cube Q, with center

at the point Z and sides parallel to the axes (we suppose orthogonal coordinate
system on L) and such that

(17) 0:= N Neo{nC, y(2)F(Z,u,w,v):veV} =
uell wel¥
n+m+1
= ﬂu nw{ncp (2) Y W FEu,woo)iped eV, i=12.n+m+1}
el we

Let us put @=(1 /p.)Qi and choose open neighbourhoods V;, 7 of z and a number
T2 €(0, T2) such that if z, € V%, then any solution of (11) and (12), respectively,
with the initial value z, remains in 77 for all 1€ [0, 7] and (18)

(18) |7 Cpes(2) Flz, 1, w,0) — n Cpy(2) E(Z, 4, w, v)|| < 16:p!

forallze V2 < ¥, (we may suppose that 72 < V) and for all (u, w,v) e U x W x ¥,
where @ = @; is the positive number, for which the inequality from Lemma 3
is valid (here the point w, = w,, corresponds to the cube Q = (1/p!}Q; and to the
curve w,(z,, 1)). From (17) we obtain that if (1/p!)w,, € Q;, then for any ue U and

w e W there exists v{u, w) = (uy(t, W), .y Hywmr (1, W), 0408, WY, ooy Opimr1(4, W) €
ed x V x ... x Vsuch that

n+m+1

(19) 7 C,_:(2) i;1 pu, w) F(Z, u, w, v{u, w)) = w, p!.

Let us take a basis ¢ in RO+ DU+D (] = dim V) and choose from the set of all
solutions of the equation (19) the lexicographic maximum ve(u) with respect to the
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basis ¢. Then by Lemma 2 the function ve(u(f), w(?)) is a measurable function for any
measurable functions u(f) and w(z). Define the local evasion strategy for the game
(EG),, as the mapping vi(zo, £) = (ug(u(2), Wi}, ooy twwme(u(t), Wi(E)), wi(1),
o5 (u(t), waD), -+ s Uy 1(u(1), Wi(2))). Then for the solution Z(7) of the system (12)
with the initial value z,, corresponding to the value of the strategy we have

250 = [z ) + j

o

1 ntm+ 10

nCpo (2(1)) X wlu(s), wits)) .
i=1

. F(z(s), u(s), wifs), v{u(s), wi(s)) %_S—):)—’—] ds + R(t"*") =

t n+m+1
7 Cosl2) S mfuls) i)
i=1

= ||w,fz0, 1) + R("*1) +J~
0

L F(2, u(s), wi(s), v(u(s), wi(s)) % ds +

TS () was) [ Cpea(228) FUES), (o), wis)
(), WalS)) — 7 Cype () FIE u(s), wh(), viuls), wh(S)]

=5y

(p— 1!

— N7 2 9.7 — 6: o~ Nt = (25 - N_;z> .

i
i ds z wylzo, 1) + w,t?| — : p!

2

Obviously there exists a T. € (0, T°] such that ©,/2 — N,T; =% K, > 0 and from
the above estimation we have

(20) | #1)]| 2 Kot* forall te[0, Tr].

Choose a positive constant C; such that C; > (T,)"* and

(21 [|x(Po(2) + P(z, u, w,v))|| < 3C; forall zeV. andall
(v, w,0)eU x Wx V.

If zo € V; and t e [0, T;], then the solution z(r) of the equation (11} with the initial
value z, satisfies the inequality

(22) o(=(2), M) 2 o(zo, M) — C:[2) forall ue.#(J,U),veH(J,V),

and all we . #(J, W).
Indeed, we have

o M) = [ (0] = o + [ a(Pu(e) +

+ F(2(s), u(s), w(s), v{s)) ds|| 2 e(zo, M) —
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= [[ otpateto + R0, (9, . o] 0 2 o ) — .

If we suppose that g(z, M) < 1 for z, € V;, then (22) implies the inequality

(23) o(z(1), M) = %e(z¢, M)[2 for all 1e[0, $o(zo, M)/C;] .
For each z, € V; choose a positive number a(zo) such that
(24) Rotr = 3K.A" + e(zo) forall 1 = o(zo, M)[C .

Take the evasion strategy 0%z, f) for the game (EG),, and apply Lemma 1 for
& = &(z9) and T = T,. By this lemma there exists an evasion strategy v}(zo, 1) of
the game (FG) defined for all zo€ V;, zo ¢ M and |z(f) — 2(¢)] < &(z,) for all
1e[0, T;], where one can choose &(zy) such that also [z z(1) — n 2(1)] < &(zo)
(=(t), #(t) are solutions of (11) and (12), respectively, with the initial value z,). Then
we have o{z(1), M) = ]ln 2(1) + na2(t) — n 20| = (7 20| — [ z() — = 2(1)] =
2z K.t? — &(zo) 2 1K.#” for all t e [(C;)™* o(zo, M), T,]. Choose a positive number
K. such that K; £ 3C;, K; < 3K;. Then

(25) of=(1), M) 2 Kat?
ot M) 2 K, XM or o7,

where p = p(Z).

We have constructed the local evasion strategy near the point z. The process
of globalization of this strategy and the construction of the functions T can be
performed in the same way as in [5] and therefore we omit the rest of proof.

Example. Let the dynamic of the object O, be described by the equation

(29) o (o + 0(9) % = o
and the dynamic of the object O, is given by the equation
(30) J+ By =ab+ ¥+ p,

where x, y, pe R™, , f, 0, o, y are positive constants, ¢ is a smooth function with
real values and there exists a positive constant K such that |p{x)| < K for all x € ™.
Assume that the control parameters #, 5, W be such that #e U = {u e R™ ”u}] <1},
teV={veR™ |v] <1}, we W="'V. Let the constraints be given by the in-
equality
(31) @920,
where g€ R™ is a constant vector. If z = (zy, 25, z3) = (x — ¥, %, ), then the
system (29), (30) can be written in the form

Iy =2y — Z3

(32) Z, —(05 + (P(Zz)) z, + of
Sy = —Pzy + 0D+ P% 4+ p
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(compare it with the system (6)) and this system can be written in the form (11)
(here we have (w, v) instead of v), where Po(z) = (z, — z3, — (« + ¢(z5) 25, — Bz3)
and F(z,u, w,v) = (0, od, 67 + y% + p), Let M = {(z,, z,, z;) € R*™: z, = 0}.
The orthogonal complement to M is L= {(zy, 25, 23) € B3™: z, = 0, z5 = 0}.
The orthogonal projection 7 be as in example of Section 1 and Cofz) =% id,

01 — 1T
Cy(z) = DPy(z) = |0 Q(z,) Of,
00 —pI

I is the m x m unit matrix, Q(z,) = —(a + 9(¢,(z2) 22)[0z,). Obviously, = Cy(z) .
CF(z,u,w,0) = 0 for all (z,u,w,v)eR* x U x Wx V and thus the evasion
condition (E 1) — (i) for p = 2 is satisfied. The form of the system (32) implies
that the assumptions (A), (B), (C) concerning the existence and unjqueness and
the global existence of solutions of this system are satisfied. Obviously, = C,(z).
. F(z,u, w,v) = (il + ob + y¥,0,0)*e LIfc > g + y,thentheset N (\{z Cy(z).
uelU weW
. F(z, u, w, v): v e V} is the ball in Lwith center at the origin and radius ¢ — (¢ + y).
Hence we have shown that the evasion condition (E 1) is satisfied. The system (32)
can also be written in the form (9) (here we have (w, v) instead of v), where x =
= (24, 22), ¥ = 23, A(x, ) = (25 — 25, — (¢ + 9{z,) 2,)), B(x, y, u, w, v) = (0, gd)*
(there we have —p instead of f), g(x, y, u, w, v) = o and f(u, w) = yW¥ + p. Ob-
viously, I' = (\ f(u, W) = yW+ p and w =**  peI". If (p,q) > O and 6 < (p, q) :
uel
: g, then [lg(x, v, u, w,v)] < ¢ < (p, g)/4] and hence under these conditions
also the evasion condition (E 2) is satisfied. Therefore Theorem 2 implies that there

exists an evasion strategy for our evasion game with constraints.
(Received September 26, 1985.)
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