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KYBERNETIKA — VOLUME 7 (1971), NUMBER 1 

On Some Properties of Dynamical Systems 
PAVEL ZAMPA 

The paper deals with some basic properties of dynamical systems, important from the mathem­
atical simulating of controlled systems point of view. It specifies dynamical, causal, deterministic 
and stochastic systems. Attention is paid also to some basic properties of linear systems. 

1. INTRODUCTION 

One of the basic tasks of automation is the determination of the control algorithm 
for a given, real-life physical system. This problem can be solved in two ways — 
experimentally and by simulating. 

It is obvious, that the former will be useful for designing control algorithms to 
simple controlled systems, whereas by simulating, especially by using mathematical 
model, good results can be obtained even in constructing the control algorithms for 
more complicated controlled systems. Besides, at some controlled systems (nuclear 
reactor) a wrong control algorithm that could be used with the experimental method, 
must not be admitted in any case. 

Simulating is therefore basal for theory and practice of automatic control. It has 
also many shortcomings which are given by the fact, that every model of a real-life 
system is a certain idealisation or approximation of this physical system. A control 
system that is designed for a model of controlled system can be the optimal control 
system of this model, but it need not be a suitable system for a control of a real-life 
object. 

Good knowledge of properties of mathematical models or abstract systems that 
can be used for simulating of real-life systems is one of the conditions, necessary 
to overcome these difficulties. 

The beginnings of the study of this branch may be dated from times of Isaac 
Newton. Only later the properties of dynamical systems begin to be studied more 
generally, especially in works of Poincar6 [10], Birkhoff [2] and Nemytskii [9]. 
After the second world war the theory of dynamical systems becomes a part of 



general systems theory, the representatives of which are Bertalanffy [ l ] and Mesa-
rovic [8]. Also some works of Kalman [3], [4], [5] and Zadeh [12], [13] are devoted 
to dynamical systems from the needs of automatic control theory point of view. 

2. ABSTRACT SYSTEMS 

Searching the nature around us we usually follow certain objects, that is, certain 
elements of objective reality that can exist in various places in the space or can 
appear in various qualities, quantities etc. Generally we shall say that these objects 
may appear in various forms. 

Therefore each abstract system, that could serve as a model of a real-life system, 
should contain a set Q of the abstract forms of the object O which could represent 
a set of all forms of existence of the real-life object so that one form of existence 
of an abstract object, that is one point of set Q should be assigned to each form 
of existence of a real-life object. 

Naturally a question arises, whether all forms of existence of a real-life object 
can be differed, a question of existence of set Q and a corresponding mapping between 
real forms and elements q e Q. This problems, however, will not be dealt here with [6]. 

Each real-life object exists however not only in different forms, but it exists also 
in time. Therefore an abstract system must contain a set T which will represent 
a set of instants of time. 

Definition 1. Let Tt and Qt be given sets. If ft e T1; qt e Qt the pair 

(1) Wj = ( f . , CJ.) 

is called the occurrence of the object O t . The set of all occurrences wt is then given 
by relation Wx — T± x QL and thus w1eWl. 

Occurrence wt e Wt expresses the form of existence of the given object Oj and 
time, in which this form appeared. The occurrence is then fully defined by element 
wx e Wu without laying down any further conditions for sets Tt and Qt or Wv 

For given object Ot some occurrences are mutually exclusive, i.e. if there is an 
occurrence wx e Wt then there is such a set W[ s Wx that no further occurrence 
w[ e W[ can happen simultaneously with the occurrence wv 

Definition 2. The set of all occurrences wteWt that can exist on given object Ox 

simultaneously, and where no further occurrence can happen, shall be called the 
elementary event of the object O : on the set Wu and we shall use symbols £Wl or £ t 

for it. 

Definition 3. Let £W(i be the elementary event of object O ; on set W\. Then the set 

(2) Uw-'-U'^* 
will be called a part of the elementary event %Wij-



24 Theorem 1. Each part £WijnWik of an elementary event £,Wij on the set W\ is an 
elementary event on the set W\ n W\. 

Proof. It can be easily shown that 

(3) U ^ S W i ^ 

and that every occurrence of event £Wijn w.k belongs to set W{ n W\. 
Now we shall prove that set £wtjnWi*, given by equation (2) and satisfying relation 

(3), contains the very occurences that can happen simultaneously, and that no further 
occurrence may happen. Let us suppose the opposite. Let such occurrence w't exist, 

(4) w\ e W{ n W\ 

w\ $ £WijnWik, but it can happen simultaneously with event £WijnWik. According 
to (4), w\ e W{. As then according to supposition, occurrence w'; can happen simult­
aneously with event £,WjJnw.k, it can also happen simultaneously with event £w.j. 
Then W;e^WjJ and according to (2) and (4), w\ belongs to set £,w.Jnw.k. This is, 
however, a contradiction. 

Let us suppose now that on the contrary there is wj e £Wijn WM and that occurrence 
w'i cannot happen simultaneously with event t,Wijn Wik. Then, however, this occurrence 
cannot happen simultaneously with event £WIJ and therefore w't $ £Wij- According 
to (2) it means that w't $ £w.Jnw.k. A part of the elementary event can therefore be only 
the elementary event. 

Theorem 2. Let sets Xw.j and Xw.jnw.k be sets of all elementary events £,Wij 
and £WijnWik respectively. Then relation 

(5) ZWijnw* = iWij n W) 

defines the mapping \J/k
t of set Xw.j onto set Xw.JnWik. 

Proof. Relation (5) is the mapping of set XWij into set Xw.Jnw.k, because it is 
defined for all events €WjJ e Xw.j and according to Theorem 1 an element of set 
^W i jn W ( i is an image of this event. 

Now it is necessary to prove that every event £WijnWik e XWijnWik is an image of at 
least one event £w.j. If there is no other event on set W{ such that <!;WijnWik 
= tfUw,i), Zw,jnw,k is the event on W{ for which iw,JnWik = ^WijnWik). 

,,k — 

Theorem 3. Let set 5Pj be a set of all mappings \j/k defined in Theorem 2. Set Wt 

forms together with operation of composition ° of these mappings a commutative 
semigroup with unit element. 

Proof. From equation (5) it follows, that to every J7*e2B( where £B; is the set 
of all subsets of set Wh there exists only one mapping \\i\ e !?, and therefore exists 
mapping X : 9Bf -+ Wv 



Therefore we have following relations 

(6) tf =X(Wk,). 

(7) ft = X(Wi
I), 

(8) # • ' = X(W\ n Wj) . 

and therefore 

(9) f^nW--^W. 

(10) { » , W n , , . = ^i(^„w,fc), 

(ii) Ui^.-^U-
By composition of relations (9) and (10), by comparing with (11) and after subst­

ituting from (6), (7) and (8) we get 

(12) X(W\ n Wf) = X(W]) o X(Wl
i) . 

According to this relation, set {f ;, o} is homomorphic with set {2B;, n } , which 
evidently forms a semigroup with unit element. The same structure has theregore 
even set {F ; , °} [7]. 

As we will show later, the semigroup properties of dynamical systems are the 
result of Theorem 3. 

Occurrences that happen on the real-life object Oj very often depend on occur­
rences or events of other objects. Therefore in the following we will watch n objects O ;, 
i e N where TV = {l, 2 , . . . , n}. For various objects, various sets T; of instants of time 
tt and various sets Qt of forms qt of object will be generally defined. Occurrence 
of j-th object will be then given by a pair (tt, qt) = w;. Analogically, the subset 
£ w. £ Wt, which satisfies the terms of Definition 2, will be the event of i-th object. 
For the set of all events £w. of object O ; we will have symbol Xw.. Therefore E,w. e XWi. 

Definition 4. Let the sets XWl,..., X Wn be the sets of all events £ w. of the objects O ; 

on set Wt for i eN - {1 ,2 , . . . , n}. Let 

(13) W « Wt x . . . x Wn . 

Then the set A w, defined by relation 

(14) AwczXWl x ... x XWn. 

will be called the state of an abstract system on the set W [8]. 
For objects 0 l t . . . , O„ more states — e.g. lAw, 2AW,... can be defined on the 

cartesian product. We will introduce therefore another concept. 



Definition5. Let {'Aw), i e J be the set of states of abstract system on set W. 

Then the set 

(15) Aw = U lAw 

is called the abstract system on set W. 
Comparing the fourth and fifth definition we can see, that every abstract system 

is also a state of the abstract system. The inverse statement, however, is not generally 
true. 

As 'A w c A w, the abstract system always defines the weakest dependence among 
events of particular objects. If there is given a state of the abstract system, it means 
that relation among the elements of sets XWl,..., XWn is more close and that 
information or knowledge about the system behaviour is greater. 

Definition 6. Let nk be such mapping of set XWlJ x . . . x XWnJ onto set XWlJnWlk x 
x ••• x XWnjnWnk tha t 

(16) (£W1 w.fc, • • -, £w„/n *j) = A W , • • •, ZWn<) 

if and only if 

Wn» ( / = fc). i = l ,2 , . . . ,n . 
Then the set 

(17) Awlnwk = {n\iWlJ,..., ZWnJ) | (£W1„ ..., ZWnJ) e Awl) 

is called the part of the state of abstract system A wJ. 
According to the fact that every abstract system is also the state of abstract system, 

we can speak, in similar sense, about the part of abstract system. 

Theorem 4. Set U of all mappings nk from Definition 6 forms together with 
operation of composition ° of these mappings a commutative semigroup with unit 
element. 

Proof. The theorem is the consequence of Theorem 3 and definition of map­
ping 7T*. 

3. ORIENTED ABSTRACT SYSTEMS 

Definition 7. Let A w be the state of abstract system, defined in Definition 4. Let 
us denote 

(18) X=XWlx... xXWr, 

(19) Y=XWr+lx ...xXWr+a. 



Then if from £ e X follows that also (£,, n) e Aw, r\ g F, we call the state of the system 
A w the state of oriented abstract system. Set X is called the set of input elementary 
events, set F is called the set of output elementary events [12]. 

The oriented system to the system given is not defined univocally. It is also obvious, 
that every system defined by relation (14) where n > 1 can always be defined as an 
oriented system. In cases where n = 1 we can always form a set X, which will contain 
for example one element and then define the oriented system with its help. In the 
following we will therefore deal only with oriented abstract systems. 

4. DYNAMICAL SYSTEMS 

Definition 8. Let A w be the state of oriented abstract system 

(20) Aws= X x F . 

If the following two axioms are satisfied, the state of system is called the state of 
oriented abstract dynamical system. 

Axiom 1. Every set Tt, i = 1,2,..., n of dynamical system is a simply ordered set, 
its ordering being induced by a simply ordered set 0 ,so , that T £ 0V Further the 
isomorphic mapping xu of the simply ordered sets 0h 0f, i,j= 1,2,..., n is defined. 
For &j, Sf e 0 ; and xu is 

(21) Bj^tfjOXtpD^Xtp*) 

Mapping xu thus assigns instant of time 9f e 0f to every instant of time 9t e 0t 

so that instants of time 5; and 9j occur at the same time with respect to 0t as in 
general it is not necessary that xif = xj]1. However, very often we will have 0t = 
= ... = ©„ and xu will be supposed identical mappings. 

Axiom 2. Element £,w. is the element of set Xh i = 1,2,..., n if and only if 

(22) £Wi = {(r., x(tu) | t, e Tt, x ; : Tt -+ Q,} . 

According to Axiom 1, in every set T; it can be said about two arbitrary elements, 
which of them is predecessor of the other. This axiom considers even such depend­
ences of two objects for dynamical systems, where for instance description of every 
object is made in different time-space system. Otherwise sets can be chosen arbitrarily, 
e.g. set Tj as a discrete set and set Tk a continuous one. 

According to Axiom 2 in dynamical systems there can be as elements of set Xwt 

only such events %Wl where in a given instant of time 11 e Tt only one form of existence 
qt 6 Q; of object O,- can occur. 



5. CAUSAL DYNAMICAL SYSTEMS 

Occurrences of dynamical system Aw can be defined on various sets Wt = Tt x Q{. 
However, it is most important to use such sets T;, where tieTi=> tt _t 9 ;, i = 
= 1,2,..., n, where 3 ; are instants of time occurring simultaneously with respect 
to set 0j. 

Definition 9. Dynamical systems, whose occurrences are defined on sets Wt = 
= T; x Qf so that for every t; e T;, i = 1, 2 , . . . , n is tt = # ;, are called right-hand 
side dynamical systems and denoted A9, where 9 = (&u ..., 5„). 5 ; , i = 1,2,..., n 
are instants which occur simultaneously with respect to set 0y 

Very often we do not know the dynamical system behavior for all t{ = &t, but 
only for tt e T\ such that r; e T\ => 9j S tt < 3? where 5-, 9?, i = 1,2, ...,n are 
instants of time that occur simultaneously with respect to some set &,. These systems 
will be denoted A9i or Aj . 

Definition 10. Let A\ be the part of the state of system Ax, which is defined on set T, 
for which we have 

tt e T\ => 9\ < ti < i>? . 

If to every (£', n') € A\ is also {£,, rj) e Ax and £,' ^ £,, n' ^ n, the state A\ is called 
the causal state of dynamical system Ax on set T. If the state of system Ax is causal 
to every set T, we call the state of system Ax the state of causal dynamical system. 

The future behavior at causal systems has no influence on past behavior. These 
systems are very important in technical practice, as every physical system is a causal 
one. 

6. DETERMINISTIC DYNAMICAL SYSTEMS 

Definition 11. Let the state of right-hand side dynamical system A$ be given. 
If then the only one element (£, rj)e A$, n e Y exists to every £ e X' £ X we call 
the state of system A^ the state of deterministic dynamical system on set X'. 

If X' = X, this state of system will be called the state of deterministic dynamical 
system. 

Theorem 5. Let the state of deterministic system Aso = A0 be given. If then the 
event £0, defined for all t e T+,9C

( — tt < 9j is known, part Ax of the stdte of system 
A0 is also the state of deterministic system. We have 

(23) A, = Xl(A0, ft) . 

Proof. Let X0 be the set of all such events £0 e X0 where 

(24) £o = <Ao(£o) 



where mapping rj/0 is such mapping that assigns to event £0 P a r t £o> which is defined 
on set T+ x Q = W. Then obviously X0 £ X0-

 W e d e f ine now a new state A+ 

by relation 

(25) A+ c X0
+ x Y0 

where is an implication 

(26) (cjo, ijo) e A+ => (tj0, ••„) e 4 0 . 

State A0 is obviously the state of deterministic system, as it follows from (26) that 
A0 s JA0. Moreover, if state A0 is given, it is given also set X0 for all elements 
of which is relation (24). Then for defining the ebment £0 e X^ it is sufficient to 
know only element {, e ATl5 where (J! = t/>1(^0). 

If there is given state A0, then to every £ t 6 .Y. exists the only element (£0, >70) e A+ 

and therefore also the only element (£u t]v) e At where AY is the part of state A0 . 

Definition 12. Let At = A^AQ, ^0) be the state of deterministic dynamical system. 
Then the set 

(27) At = U A,(A0, e0) 

is called the deterministic dynamical system. 
According to (23), state At of deterministic dynamical system At is dependent 

on state A0 and on event £0. It is therefore dependent only on the past of this system. 
As the mapping (23) is not in general one-one mapping it is impossible to find the 

past of system univocally from the state given. It is possible to define only the equiv­
alent classes of past behavior, where all elements of one class have the same influence 
on the future of the system. The state of deterministic system is therefore the minimal 
amount of information of the past, which is necessary for defining the future [5]. 

Note 1. Every state AX(A0, <̂ J) of deterministic dynamical system can be considered, according 
to the proof of Theorem 5, as a part of state A0 . If then the set of all mappings n, that assign the 
part of the state to the state, forms with respect to the operation of the composition a commutative 
semigroup with unit element, also the mappings x have the same structure 

(28) A0 = Xo(A0, Q , 

(29) A, = Xl(A0, £ 0 ) . 

(30) A2 = Xz(Xi(A0, Zl), t\) • 

Note 2. Deterministic systems, that satisfy the conditions of causality are called causal determ­
inistic systems. If At is the state of deterministic system that it is also a causal system, there is 
only one (£f, rj\) e A\ to every ff. 



7. STOCHASTIC DYNAMICAL SYSTEMS 

Definition 13. Let A0 be a state of dynamical system A0 £ X0 x F0 . Let £ 0 and 9)0 

be some Borel fields chosen on sets ^;0 and F0 respectively. If there is to each X'0 e X0 

such measure P0 = P0(X0) that {F, 5)0, P0} forms a probability space, state A0 

is called the s/afe of stochastic dynamical system. 

Theorem 6. Let A0 be the state of stochastic dynamical system, Xl (Fj) input 
(output) event that occurred on interval 9-f — t{ < &). Then part Ay of the state 
of stochastic dynamical system A0 is also a state of stochastic dynamical system. 
We have 

(31) Ai-Vifa-XlYl), 

(32) P, = Ql(P0, Xl F 0 ) . 

Proof. We will prove that relation (32) is true. The rest can be proved as in the 
precedence paragraphs. Let 

(33) X$ ={£0 | £ 0 6 * 0 , ^ 0 ) 6 * 0 } , 

(34) F + = {no I no 6 F0 , VoM 6 F0} . 

Then the state of system A0, that is given by relation 

(35) A+ = {(Z0, no) I £0 6 X*, no 6 F0
+, (£0, ,„) 6 Ao} 

is obviously also a state of stochastic dynamical system. It means that there is given 
a measure P0 to each set X'0 £ X0, X'0 eX0. We define set X'0 by means of set 
X[ £ Xu X[ e Xt by relation 

(36) X'0 = {^\^0eX0
+,il,1^0)eXi}. 

Measure P0 can be defined using sets X[ and X0. The domain of measure P0 is set 9)0. 
But we must express measure P1 with domain <i)l which forms Borel field over set F , . 
Let us look for the probability Pi(Fi) of event Y[ e 9)1( supposing that events Y0, 
X0 and X[ occurred. 

Let us define the event that may occur on interval 9° ̂  f,- < co supposing, that 
on 9\ :g r, < 00 occurs event Y[. For this event 

(37) F + = { 0̂ I no 6 F0 , ^( .70) e Y[} . 

Its probability defines then probability of event Y\. If, however, event F 0 is given, 
it is possible to find a conditional probability P 0 (F + | F 0 ) for which is 

(38) ^ in)- p ; ( y ^ y ' ) ^ 1 (yo. 



As P0 depends on P0, X0 and X'0, Pt depends on P0, X0, Y0 and X[ and so really 31 
Pi = Pi(P0, X0, Y0) exists to each X[ so that Px is a probability measure on set g^ . 

8. LINEAR DYNAMICAL SYSTEMS 

Up to now property of sets g, were not specified in any way. In many cases the 
additive operation is supposed to be defined, and it forms a commutative group with 
this set. 

If now an additive operation on sets Xt will be defined with the help of this oper­
ation, even this set will form a commutative group with additive operation. 

Let then set R be the set of endomorphisms on set Xt. If R is a field then if relations 

(39) (^i + kQli = ̂ ili + %lx, 

(40) *ffa + v) = %n + %v , 

(41) '(fa,) = (%ii) v 

are satisfied for arbitrary J^h *£j e Xt and /x, v e R and if £ e R 

(42) %B = % 

set Xt forms together with set of endomorphisms R a linear space over field R. 
Element £ e R is obviously an identical endomorphism [7]. 

Definition 14. Let a deterministic system S0 be given. Let £f0 be the set of all 
states A0, B0, C0, . . . of this system. If set S0 forms linear space over field K and if 
for arbitrary A0, B0e £f0 and ji, v e K 

(43) (Zo,r,tt)eA0, ( { , , , ) e B , or (£,, ,„) e B0, (Zb,nb)eA0o 

^ (f., 1.) V- + (it, It) veC0, C0eSf0 

holds, system S0 is called a linear deterministic dynamical system over field K. 

Theorem 7. Elements A0, B0,... of set of states £f0 of linear deterministic dynamical 
system S0 over field K form disjunctive decomposition of set S0 in set of equivalent 
classes. So 

(44) either A0 = B0 or A0 n B0 = 0 . 

Proof. Theorem 7 is a direct result of Definition 14. 
For simplicity of the record let us introduce symbols (£,„, na) = a, (£b, nb) = b. 

Theorem 8. Let set S?0 be a set of all states of linear deterministic dynamical 
systemS0overfieldK.Then,ifwedefineasumA0 + B0 and a product A0[i by means 



of relations 

(45) A0 + B0 = {(a + b) | a e A0, b e B0} , 

(46) Aofi = {(an) | a e A0] , 

where A0, B0 e S*0, fi e K, then set Sf0 forms linear space over field K. 

Proof. Let us define mapping X : S0 -» cf0 so, that 

(47) A0 = X(a) oaeA0. 

As every element a e S0 is an element of some set A0 e S"0, X is defined on the whole 
set S0. According to Theorem 7 element a e S0 may be the element of the only one 
set A0 e £f0 and so just one set A0 e £?0 is assigned to each a e S0 by relation (47). 
X is therefore a mapping. 

Let a e A0, b s B0, A0, B0 e £f0. Then according to (45) and (47) 

(48) X(a + b) = X(a) + X(b) . 

X is therefore a homomorphism of sets {S0, + } , {S"0, +} and as set {S0, + } forms 
a commutative group, set {5"0, +} is a commutative group too. 

Using (46) and (47) we have 

(49) Aolx = X(aix) . 

Substituting into (49) from (47) we have 

(50) X(an) = »X(a) 

and therefore sets S0 and S"0 are homomorphic with respect to set K. Thus the proof 
is accomplished. Set £f0 forms addilive commutative group and field K is according 
to (50) also a field of endomorphisms on set S"0. By means of equations (49) and (50) 
the validity od relations (39), (40), (41), (42) can be easily verified [7]. 

According to the definition of dynamical system, every event £0 can be univocally 
defined by mapping x : T-* Q and inversely every mapping x is univocally defined 
by set £0. Instead of (^0, n0) we will introduce pair (x, v). If A0 is the state of determ­
ined dynamical system, the only one (^0, n0) e A0 exists to each £0 e X0 and so the 
only v exists to each x. This can be written in a multiplicative form as 

(51) xA = y . 

If A = M + 2A where 

(52) ^x.^A^Уy, 

(53) 
2x . 2A = 2y , 



according to (45) 

(54) (1x + 2 x ) ( M + M) = 1y + 2y 

and using (52) and (53) we have 

(55) (1x + 2x)(1A + 2A) = 1x.1A + 2x.2A. 

Product on the left side of the equation (55) is to be taken for a "scalar" product. 
Analogically from equation (46) it follows 

(56) ( 1 x.^) (M A t ) = ( ' x . M ) ^ . 

Let us deal now with the change of state od linear dynamical system. Let two 
states of deterministic system A0, B0 e S?0 be given, and also state A0 + B0e S"0. 
According to equation (23) state At e 5", can be univocally assigned to every A0 e £f0 

and to every x\. We will record this univocal assignment in multiplicative form 
as follows 

(57) A0Qx0 = Al. 

If now 

(58) °x0 . A0 = °y0 , bx0 . B0 = by0 

then analogically 

(59) A0 © ax0 = At, B0Q »x0 = Bt . 

According to (55) and (58) it can be written also 

(60) (°x0 + »x0) (A0 + B0) = °y0 + by0 

and therefore we have also 

(61) (A0 + B0) Q (°xl + bx0) = A1+B,. 

If we substitute into (61) for Ax and Bx from (59) we get 

(62) (A0 + B0) O ("x0 + bxl) = A0Q °x0 + B0 Q bx0 , 

product O must be interpreted as "scalar" product. 

Relation (57) can be obviously applied to Av Then we get 

(63) A, O x\ = A2 . 

Substituting (57) to (63) we get the multiplicative record of equation (30): 

(64) (A0 O x\) Qx\ = A0Q (x\ Q x\) . 



We derived here some relations, which characterize in general the structure of linear 
systems, and which direct every concrete record of linear system. Moreover, some 
new concrete structures of linear dynamical systems that could be succesfully applied 
in theory and practice of automatic control, are supposed to be found in this way [5]. 

9. STRUCTURE 

If A is the state of the system, then set A £ X x F defines a certain relation on set 
X X Y. This relation can be expressed for instance by tabulating all elements that 
belong to A. This is, however, very often unrealizable, especially if set A contains 
a great or often infinite number of elements. 

It will be therefore more convenient to find some other way, by means of which 
it could be possible to define relation A, using only the finite number of some con­
stants, that would gain various values Tor various relations. It is obvious, however, 
that these constants themselves cannot define a relation. It will be therefore necessary 
to define a general relation always by some suitable expression and the above mentio­
ned constants will then more closely define the relation. Application of such means 
will be more general, although far from being general. 

Relation A will be defined by choosing the set of basic relations, which will be 
called a structure of relation A and set of "constants", that will be called constituents 
of relation A at a given structure Z. The relation can be expressed then by means 
of structure Z and constituent £ of this relation at structure Z as follows [8] 

(65) A = {Z,Q. 

Let 1A, 2A be two states of system A. These relations may be expressed generally 
by using structures 1Z, 2Z and constituents *£, 2£. If, however, two states of one 
system are in question, structures *Z and 2Z will be supposed to be equal and the 
states will differ only by constituents. Let 

(66) IC = (Z ,1s), 2C = (z,V) 

where z characterizes general properties of relation A and is the same for all states, 
whereas ls and 2s specifies the specialities of states M and 2A respectively. The state 
of dynamical system can be therefore expressed by means of triple 

(67) M = {Z, z, h] . 

10. EXAMPLE 

Let us suppose, that we are to describe a dynamical system with time delay, transfer 
function of which is, as known, given by relation 



According to Pade's approximation this transfer function can be expressed by 

1 — ap + bp2 — cp3 + ... 

m- 1 + ap + bp2 + cp3 + ... 

where a,b,c,... are certain real constants. In time area a differential equation 
accords with this transfer function 

.. . cy'" + by" + ay' + y — x — ax' + bx" — ex'" + ... 

The state of the system is then often defined as vector (y, y', y"). 
A state defined in this way has, however, many lacks. At first according to Pade's 

approximation a state defined by vector (y, y', y") is just only the approximation 
of state of an actual system. Besides, there is a demand of differentiating of output 
(and input as well) function into the higher order, the more precise approximation 
is demanded. The input of real-life system naturally need not satisfy this demand. 
The state defined in this way does not give a good imagination about the physical 
essence of this concept. 

Let us use the method given in previous paragraphs for description of this system. 
At the same time this example may illustrate concepts mentioned above. 

Input and output of examined system will be denoted as object Oj and O2, respect­
ively. In order to describe behavior of these objects, it is necessary to define sets 
61(62) °f aH f ° r m s of objects Ol (O2). Let therefore 6 i = 62 = 6 = £ i where Et 

is the set of all real numbers. Analogically we define sets of instants of time Tt = 
=z T2 = T = J, where J is interval <0, 00). 

The occurrence of the object O ;, i = 1, 2 is defined then by a pair 

(f;, q) m wt, tteTi, qteQt 

it is 
w. 6 Wt = T x Q = E. x J . 

Further it is necessary to define the elementary event £; of object O ;. Let 

Z = {(t;, q,) \tteJ,qt = xt(tt)} 

where xt is the mapping of interval J into £ . . Set of all £ will be denoted X. 
The state of the system will be defined by set A w c Xl x X2 

(68) Aw = {(£., Q I x2(t) = xt(t - x) for t e <T, 00), x2(t) = s(t) for f e <0, T)} . 

Let us denote Xt = X, X2 = F According to Definition 7 the state of system A w 

can be taken for the state of oriented system, where X ( F ) i s a set of input (output) 
events. 

We can easily make sure that axioms 1 and 2 are satisfied and therefore the state 
of system A w can be considered as a state of dynamical system and according to 



Definition 10 also as a state of right-hand side causal dynamical system. We will 
have symbol A0 for it. 

As long as the expression s(t) in relation (68) is a mapping of interval <0, T) into Q, 
function x2[t) is univocally assigned to each x^t), t e Tand event rj e F i s univocalfy 
defined to each t, e X. Such state of system is then a state of determined dynamical 
system. Mapping s is obviously given by the past of the system and can therefore 
gain various values e.g. from set I of all admissible mapping on the interval <0, T). 
Set A0 = (J A0 is then called a deterministic dynamical system and set £f0 = 

sel 
= {A0(s) | s e 27} the set of all states of this system. 

Let A0, B0e S", fi, veK where K is the field of all real numbers. We can easily 
make sure that from ("£, arj) e A0, (*<*;, brj) e B0 follows that ("£n + b£v, ami + V ) e 
eC0e S"0. System A0 according to Definition 14 is a linear dynamical system. 

Using the concept structure, state A0 of system A0 can be expressed by means 
of expression A0 = (z , z, s} where Z represents all such systems, whose output 
is equal to time shifted input, z = x is the value of this shifting and s represents 
the state of the system, s(t) = xt(t — T), t e <0, T). 

The state of the system with time delay is given therefore univocally by the input 
value on interval < — T, 0). It is obvious, that this definition of state is physically 
more precise, more general but also more descriptive. 

(Received February 18, 1970.) 
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O některých vlastnostech dynamických systémů 

PAVEL ŽAMPA 

Článek se zabývá studiem některých základních vlastností dynamických systémů, 
které jsou důležité zvláště z hlediska řízení a identifikace reálně existujících soustav. 
Na základě definice obecného systému, kterou uveřejnil M. D. Mesarovic [8] jsou 
specifikovány systémy dynamické, kausální, deterministické a stochastické. Na dosti 
obecné úrovni je defimován stav a struktura systému. Pozornost je věnována i ně­
kterým základním vlastnostem systémů lineárních. V závěru článku jsou pak na pří­
kladu systému s dopravním zpožděním ilustrovány některé zavedené pojmy a do­
kumentována jejich užitečnost. 

Ing. Pavel Žampa, Katedra automatisace a regulace Vysoké Školy strojní a elektrotechnické 
(Department of Automation and Contral, College of Mechanical und Electrical Engineering), 
Nejedlého sady 14, Plzeň. 
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