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K Y B E R N E T I K A — VOLUME 3 3 ( 1997 ) , NUMBER 3, P A G E S 2 5 9 - 2 7 0 

ON THE RELATION BETWEEN GNOSTICAL 
AND PROBABILITY THEORIES 

Z D E N E K FABIAN 

A description of continuous probability distributions by means of influence and weight 
functions of distribution has been developed. The applicability of the new concepts is 
briefly discussed. It is shown that in the case of special probability distribution these func­
tions correspond to "irrelevance" and "fidelity" of the gnostical theory introduced in [10]. 
Gnostical model of uncertainty, claimed by its author to be independent of probabilistic 
concepts in [12-13], can be thus replaced by a special case of the classical probabilistic 
model. 

1. INFLUENCE FUNCTION OF A CONTINUOUS DISTRIBUTION 

R denotes real line. Let T C R be an open interval and BT the cr-field of its Borel 
subsets. Let UT be a T-valued random variable with distribution PT, distributi­
on function FT and density py. TLT denotes the set of all absolutely continuous 
distributions on (T,BT) with densities twice continuously differentiable a. e. 

Recall the concept of the score function of an H-valued random variable UR: 

M«) = x:(-iogpjt(*)) = - 5 ^ C1) 
da: PR(X) 

It is known that , for T = R and the location model, the score function is proportional 
to the influence function of the maximum likelihood estimator. 

A generalization of (1) for T-valued random variable, where T 5- R, has been 
proposed in [4]. It has been assumed tha t the set HT is an image of the set UR 
under a given diffeomorphism ip : R —> T. Then, any UT on (T,BT) has a unique 
"prototype" UR on (R,BR) given by UR = <P~1(UT)- Such UT and UR and their 
distributions we call ip-related. The relation between their distribution functions is 
obviously 

FT(U) = FR(^-1(U)). (2) 

The generalized score function belonging to UT with distribution PT £ Llj>, here 
called the influence function of the distribution of UT, is defined as an image of the 
score function of its prototype under the mapping if. 
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Def in i t i on 1. Let T C R be an open interval and Up a random variable with dis­
tribution PT G H T • Let a mapping tp : R —* T be strictly increasing diffeomorphism 
and let UR = <£>-1(Ur) be a random variable with distribution PR ~ UR and with a 
score function hR. Real-valued function hT :T —> R, given by 

hT(u) = hR((p-1(u)), (3) 

will be called the influence function of random variable Ur or the influence function 
of distribution PT ( IFD). 

An explicit form of the IFD is given by the following proposition. 

P r o p o s i t i o n 1. The IFD of random variable Ur specified in Definition 1 is given 
by 

* « = =5J 3-.<--<->w<-»- W 
where 

™-(*£-) „• (5) 

P r o o f . Denote v = <£>-1(u). According to (2), the density of Ur is 

^ T V ; dtx dv dtx L(ti) k ; 

by the formula for the inverse function derivative. By (3) and (4) 

hT(u) = hR(v) = —-—• —(-pR(v)) = —————(-L(u)pT(u)) • L(u). D 
PR{V) dv L{U)PT(U) au 

The relation inverse to (4) is 

pT(u) = c - 1 exp (- j L~\u) [hT(u) + L'(u)) duj (7) 

(supposing tha t c = JTPT(U) du exists). 

Let us consider the halfline model, where T = R+ = (0, oo) and if : R —> T is the 
exponential function ex. In this model Z = UR+ is related to its prototype X = UR 
by the formula 

Z = <p(X)=ex, 

or equivalently by X = <p~1(Z) = In Z. Denote by p(z), h(z), z G R+ the corre­
sponding density and influence function of Z. Then it follows from Proposition 1 
that 

L(z) = z (8) 
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and that the IFD of Z is given by 

h(z) = -l-zp'(z)/p(z). (9) 

The particular mapping <p proposed for T = R+ has a statistical motivation. Namely, 
positive da ta are often logarithmically transformed and there are well-known "loga­
rithmically related" pairs of distributions on R+ and R (the lognormal and normal, 
the log-Cauchy and Cauchy etc.). 

Let 0 C Rm be an open convex set and VT = {Po\9 G 0 } a parametric family 
of distributions on (T,BT), dominated by the Lebesgue measure, with densities 
{PT(U\9)\6 ~ ©} . The evaluation of influence functions of distributions for the 
family VT is straightforward: 

hr(u\9) = —±— ^-(-L(u)PT(u\e)), 9 e 6, (10) 
PT\U\U) Q.U 

where L(u) is given by (5). 

Consider now the location and scale model, where T = R and <p(x) = ax + XQ. 
Then it follows from Proposition 1 that pT(x\x0,a) = a~lp((x — xo)/a) where 
P = PR is the parent prototype density and XQ ~ R and a ~ R+ are location and 
scale parameters. The score function is, by (1), hR(x\xo, a) = a~lh((x — xo)/a) 
wh re h is the "prototype" score function. 

If PR(X\9) = PR(X\XO, 92, • • •, 9m) then we define the transformed location param­
eter UQ ~ T of any ^-related distribution PT on (T,BT) by the formula UQ = (p(xo). 
For example, in the halfline model the transformed location parameter is z0 = ex°. 
Since in this case L(z) is given by (8), it follows from (6) that the densities in the 
exponentially related transformed location and scale model are given by the formula 

PR+(Z\ZQ, O) = p(z\zo,a) = (za)~1p(a~1(\n z - In z0)) = (za)~lp(\n(z/zo)1/a). 

(11) 
According to (4), the corresponding IFDs are 

hR+(z\z0,a) = h(z\zo,a) = a~lh(\n (z /z 0 ) 1 / < 7 ) . (12) 

2. PROPERTIES OF I F D s 

We list properties of IFDs. Some of them were discussed in more details in [5]-[7]. 

i) IFD represents an equivalent description of the distribution, which is often 
simpler than the density. 

Due to assumptions, relation (4) and its inverse (7) represent a one-to-one corre­
spondence between the density and the IFD of a continuous probability distribution. 
The simplicity of IFDs is apparent from some examples given in Table 1. 
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Table 1. IFDs and densities of distributions on (R,BR) 
and of ex—related distributions on (R+ , BR+). 

hR(x) PR(~) Mf) P(~) 
x -±==.e~~x In z l -~" l n z 

/— O - 111 i. I—— o 
t2Jr V2TT z 

ex — 1 exe""eX z — 1 e_2; 

tgh(x /2) i c o s h - 2 ( x / 2 ) (z-l)/(z+l) 1 / ( 2 + 1)2 

^ * 2 ^ m e - c o s h 3 : ! ( * - - / * ) 2 K J i T 7 e - ^ + l A ) 

In the first three rows of Table 1 are standardized forms of pairs of exponentially 
related distributions: normal and lognormal, double exponential and exponential, 
logistic and log-logistic. In the fourth row Ko is the Bessel function of the third 
kind. The distribution with density PR in the fourth row seems to be new - it is 
logarithmically related to the standardized form p(z) of the Wald distribution (see 
[16]) in this row. 

ii) If the vector of parameters of a distribution contains the transformed location 
parameter, IFD is proportional to the likelihood score for this parameter. 

Recall tha t the likelihood scores are defined as 

-j(u\0) = -"---(logp(u|0)), j = l,...,m. 

P r o p o s i t i o n 2. Let «o be the transformed location parameter of a parametric 
family {PTB\0 G 6 } on (T,Br), where 0 = (u0,a), a = 62,... ,9m. Let the likelihood 
score r\(u\uo,a) exists. Then 

hT(u\u0,a) = L(u0)ri(u\u0,a). 

P r o o f . Let PTe = <P(PR6,) where 6' = (<p~l(u0),a) and denote v = <p~l(u) -
9?_1(uo). Analogically to (6), PT(U\0) = L~1 (u)pR(v\a). Then 

= 1 dPT(u\9) = L(u) d^-'^p^a)) dv 

Pr(u\9) du0 PR(V\O) dv du0 

= -P~^L~1(uo) = hR(v\a)L-1(uo) = L~1(uo)hT(u\e). D 
PR(V\Q) 

iii) The IFD-moments sometimes better numerically characterize continuous ran­
dom variables than the classical moments. 

Consider T and ip specified in Definition 1. Let PT be the density and hT the 
influence function of random variable UT with distribution PT6 G U*T. Let k G jV. 
The fcth IFD-moment of random variable UT has been defined in [4] by the integral 

Mk(0) = I hT(u\0)pT(u\6) du. (13) 
JT 
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It has been proved in [7] tha t under the considered conditions the IFD-moments exist, 
even for distributions with non-existing usual moments (Cauchy and log-logistic 
distributions, for instance). 

Let C\ = inf{u :u£T},c2 = sup{u : u G T } . By (4) and (6), 

Mx = / hT(u)pT(u) du = -L(u)pT(u)\cJCl = -*>*(*) . -«, = 0- (14) 
JT 

(14) obviously holds in the parametric case, too. All the other IFD-moments (13) are 
expressed by means of parameters only and not by functions of parameters, which 
is typical for the usual moments. This is important when estimates 6 of the true 
parameter 8° are defined as solutions of the equations 

n 

n"1 J2 hT(Ui\§) = Mk(9), k = l,...,m, (15) 
j = i 

where u\,..., un are observed values of independent, identically distributed (i.i.d.) 
random variables with distribution Pgo. In the hairline model the equations (15) 
take on according to (14) and (12) the form 

n 

n - 1 ^ A ( l n ( z i / i o ) 1 / " ) = 0, (16) 

i = l 

n 

n - 1 J2 h2(ln (Zi/z0)
1/d) = <r2M2(zQ,a). (17) 

i=i 

According to Proposition 2, the first moment equation (16) is identical with the max­
imum likelihood equation for the transformed location parameter. It has been shown 
in [6] that if estimates (15) exist (e.g. when h is monotonous) then they are consis­
tent and asymp otically normal. Moreover, in cases of distributions with bounded 
IFDs, the asymptotic variances of estimates (15) are near to the Cramer-Rao bound. 
Simultaneously, IFD-moment estimates of both location and scale parameters are 
robust, whereas the ML estimates of the scale parameter are known to be sensitive 
to the outliers. 

iv) The second IFD-moment is proportional to the Fisher information of a distri­
bution. 

The Fisher information is usually defined and interpreted in parametric models. 
The non-parametric Fisher information (the Fisher information of the distribution) 
is defined as mean value of the score function (e.g. [ l ,p .494]) . An alternative 
definition of the Fisher information of the distribution has been proposed in [5], 
namely 

M2= hT(u) PT(U)(1U. 

T 

M2 is defined for distributions on arbitrary (T, BT) even in parametric models, where 
M2(6) = f hT(u\6) pT(u\6) du is finite for all Cramer-Rao regular distributions. The 
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advantage of the definition using IFD is that , according to Proposition 2, M2(6) in 
the transformed location model is proportional to the classical Fisher information 
FI(u0), M2(u0) = L-l(i*o) FI(u0) even when T -- R, 

3. DERIVATIVE OF T H E IFD 

By means of the IFD, a reasonable distance of points u\, u2 £ T can be introduced 
by the formula 

p(ui,u2\e) = \hT(u2\6)-hT(u1\e)\= J 2 gT(u\e)du (18) 
• / t i l 

where 

gT(u\9) = dhT(u\9)/du. (19) 

By Proposition 2, (18) is proportional to a distance introduced in the sample space 
by the likelihood function of transformed location parameter. If / IT is continuous 
and strictly increasing, (18) is a metric. The space (T, p) is in such a case a one-
dimensional Riemannian metric space. 

Let gR be a derivative of the score function of a distribution PR £ UR. It follows 
from the direct differentiation of (10) and Proposition 1 that the derivative of the 
IFD of the ip—related distribution on (T,BT) is given by 

gT(u\9) = L-'^gR^-1^)). (20) 

In the spirit of the Riemannian geometry, the term 

WT(u\9) = gR(<p-1(u\e)) (21) 

may be called a weight function of the distribution PT9 (WFD) . It represents a 
relative importance of an observed point u £ T under the assumption tha t the 
distribution is PT9 • 

Consider for simplicity a distribution without parameters, with density PT(U) and 
IFD / I T ( W ) , SO tha t gT(u) = d/i<r(w)/du. Taking derivatives of (1) and (9), (20) are 
on (R,BR) and (R+,BR+) expressed by densities as 

\PR(X)J 

PR(X) / Ч / Ч P'(z) 
Щ4> 9R+(z)=g(z) = -^Ң+z 
pR(x) p(z) 

P'(Z)Y P"(z) 

P(z) J P(z) 

Weight functions of distributions from Table 1 are given in Table 2. 

Table 2. Weight functions gR of distributions PR 
and w(z) = zg(z) of the exponentially related distributions. 

PR(X) gfl(g) P(z) w(z) 
e-$x'2 1 - J ^ e - 5 l n ^ 1 

\/2~тгг y/2ҡz 
exe~єX Єx Є~z Z 

| c o s h - 2 . r | c o s h - 2 x l/(z+ì)2 2/(zll2 + z-1'2)2 

c o s h ^ 2 Ж 7 T T 7 e " ł ( г + 1 / г ) * ( * + - / * ) 2KQ(1) " Z _ l _ . 2K0(l)z^ 2_ 
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Finally, using (12) and (20), it holds in the case of the transformed location and 
scale model on (R+,BR+) 

gR+(z\z0,a) = g(z\zo,<r) = <r-1dh(\n(z/zo)1/a)/dz = a^z^-g^z/zo)1'0) (22) 

where g = h' is the "prototype" weight on (R,BR). 

4. GNOSTICAL THEORY 

A nonstandard theory of data processing was presented by Kovanic [10]-[13]. The 
aim of his "gnostical" theory is the same as that of statistics: to make inferences 
from data observed under the influence of uncertainty. The theory was proposed by 
the author as non-probabilistic. 

Kovanic introduced a mathematical model of an individual uncertainty which is 
contained in a single positive data item z in the form 

z = z0e
sn (23) 

where z0 £ R+ is an "ideal value" of z and i ] £ i j the uncertainty, scaled (in [13]) by 
a parameter s G H+. Since (23) seems to be a general parametric model of positive 
data items and any real measured data are in fact positive, Kovanic considered that 
(23) is a universal mathematical model of data "suffering from uncertainty". Based 
on his model, he derived two individual "gnostical" data characteristics that depend 
on the uncertainty. They are "fidelity", given by the expression 

f(z\z0,s) = cosh"1(2fi) = 2/ [(z/z0)
2/s + (*/zo)-2/5] , (24) 

and "irrelevance", given by 

>.(^. , . )=-tgh(2i . ) = -^g;-(^:;;; . m 
(z/zoY's + (z/zo) l's 

These are the two basic gnostical characteristics of one data item when the model 
(23) is known, mutually related by 

h\(z\zo,s) = \-f2(z\zo,s). 

Having a sample Zn = (z\,..., zn) of data from one source (23), each data item 
Zi can be characterized, after Kovanic, by its fidelity and irrelevance. They are 
in a latent form because of the unknown parameters ZQ,S which can, however, be 
estimated from the data sample Zn. The simplest gnostical estimate of the ideal 
value ZQ is obtained by Kovanic's requirement of zero average irrelevance of the 
sample Zn. This gives the estimation equation 

n 

n'1^2he(zi\zo,sa) = 0, (26) 
i=i 
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where sa is a prior est imate of the scale parameter s. The function he is bounded, 
|/ie(z|zo)), s)\ < 1. A consequence of this fact is the insensitivity of estimates (26) 
to outlying values in data, without introducing any of the robustifying functions 
of robust statistics. The fact that the gnostical estimator (26) can be useful, was 
demonstrated by its comparison with a large set of robust statistical estimators. 
They were all applied to the well-known collection of Stiegler's da ta [18]. The gnos­
tical estimator, giving quite realistic estimates, was found in [14] to achieve the 
smallest mean square error. 

Other gnostical data characteristics and estimation procedures take various forms, 
some of them being restatements of well-known statistical principles with one basic 
difference: instead of raw data, the irrelevances are substituted into formulas. As 
an example, the "gnostical correlation coefficient" is 

n — k 

Ce(k) = ^ he(zj\z0,s) he(zi+k\z0,s). 
Tt /C 

; = i 

In some of procedures Kovanic uses the square of fidelity as the weight of data. 
The more advanced gnostical estimation procedures, which we do not discuss in 
the present paper, are based on the "data composition law" of the gnostical theory, 
which states that the "composite event" zc of a data sample Zn is given by 

he(zc\z0,s) = ^he(zi\z0,s)/we, (27) 

where 

we = 

n 2 

^2f(Zj\z0,8) + 
г ' = l 

Y^he(zj\z0ìs) 
1 = 1 

1/2 

i.e. tha t the irrelevance of the composite event is the weighted sum of individual 
irrelevances. 

Kovanic argues that the "gnostical data processing" principally differs from the 
data processing folllowing the principles of mathematical statistics ([13], p. 657). He 
asserts that it can be used even in situations when a probabilistic model of the data 
is unknown and cannot be guessed ("Let data speak for themselves", [13],p. 658). 

The first statistical light was thrown on this assertions in [3]. The author of the 
present paper noticed tha t the square of fidelity (24) is similar to the density of a 
certain probability distribution, later identified as log-logistic. He also showed that 
gnostical estimators are identical to the maximum-likelihood estimator or to the a-
estimators introduced by Vajda [19], for the log-logistic family. Based on this result, 
Vajda [20], [21] and Novovicova [15] were able to establish asymptotic statistical 
properties of gnostical estimators. They proved that the gnostical estimators are 
the usual statistical M-est imators , strongly consistent and asymptotically normal, 
and they derived the corresponding asymptotic variances. 

The success of the estimator (26) applied to the Stiegler data sets can be explained 
as follows. The influence function of the robust estimator (26) is, contrary to the 
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usual robust estimators, non-symmetrical. This fits well the clear non-symmetry of 
the Stiegler's data. 

Nevertheless, some questions concerning gnostical theory remain unanswered. 
Wha t does it the "fidelity" and "irrelevance" of one data item really mean? Why 
the gnostical estimator (26) belongs to the class of statistical M-estimators, although 
the maximum likelihood principle is not postulated in gnostical theory? In the next 
section we try to answer these questions. 

5. STATISTICAL MEANING OF T H E GNOSTICAL IRRELEVANCE 
AND FIDELITY 

In the previous section we mentioned only one of the Kovanic's irrelevances. In 
fact, there are two. By means of "estimating irrelevance", given by (3), there are 
constructed robust gnostical estimates. The second type is the "quantifying irrele­
vance" , given by 

hq(z\z0, s) = sinh(2Q) = i \(z/z0)
2/s - (z/zo)-2/s] . (28) 

The requirement of zero average of quantifying irrelevances of a data sample provides 
sensitive gnostical estimates [13]. 

T l a o r e m 1. Probability densities corresponding to two types of Kovanic's irrele­
vances (25),(28) are 

V ^ 1 
P I ( * I * O , * ) - Z 5 r 2 ( 1 / 4 ) [(z/z0)y° + (z/z0)-y°}^ ( 2 9 ) 

P:(z\zo,s) = -*i-e-M«r''H't»r«-]t (30) 
z s A o ( l / 2 ) 

respectively. 

P r o o f . Let 
hRl(u) = tgh(2u), hR2(u) = sinh(2u) (31) 

be the score functions of distributions on (R, BR) (they are modifications of score 
functions of distributions in last two rows in Table 1). The corresponding densities 
are, according to (1), 

Pm(x) = c^e-ft^2^dx = c^cosh-1/2(2x) (32) 

PR2(U) = c - l e - / s i n h ( 2 x ) d , = c ? : l e _ I c o s h ( 2 , ) ( 3 3 ) 

Norming constants are given by integrals (see e.g., [17]) 

f^ codT'oz dx = rry(2\ r e-"co_-«d, = 2a-1KoM 
j-oo a I V ) J_oo 
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where V is the gamma function. According to (12), the IFDs of the exponentially 
related distributions on R+ are given by the substitution 

u = ln(z/z0)1 / 5 (34) 

into (31). We obtain 

hi(x\xot s) = s-hgh(\n(z/z0)
2^) = -s-lht(z\zQ,s) (35) 

h2(z\zo, s) = s -1sinh(ln(z/z0)2/*) = s-1hq(z\z0l s), (36) 

where — he and hq are gnostical irrelevances (25) and (28). The opposite sign of the 
estimating irrelevance with respect to IFD, as well as the constant factor, plays no 
role in practical applications of gnostical algorithms (e.g. equation (26)). By (11), 
one obtains the densities corresponding to IFDs (35) and (36) from the prototype 
densities (32) and (33) after the substitution (34) and division by z, which gives (29) 
and (30). • 

Theorem 2. Square of the gnostical fidelity is, apart from the constant, the weight 
function of the family (29). 

P r o o f . Weight functions of distributions with densities (32), (33) are, using (19) 
and (31), 

flfi(u) = 2cosh"2(2w), g2(u) = 2cosh(2u). (37) 

After substitution (34) and by the use of (21), 

gi(z\z0, s) = 2s- 2z- 1cosh- 2( ln(z/z 0) 2 / ' ) = 2s~2z-1 f2(z\z0, s) (38) 

g2(z\z0,s) = 2s-2z-1cosh(ln(z/z0)2 / a) = 2 s - 2 z - 1 / - 1 ( z | z 0 , s), 

where / is the fidelity (24). Apart from the factor 2 s - 2 , /2(z |z0 , s) is the weight func­
tion (21) of the distribution (29) (and, similarly, / - 1 (z | zo , s ) is the weight function 
of the distribution (30)). • 

6. CONCLUSIONS 

Given a model of a statistical experiment in the form of a parametric set VT, the 
observed values u\,...,un, the realizations of i.i.d. random variables U\,...Un 

with distribution Pgo G VT are no longer merely an observed collection of data 
items. We propose a model which prescribes for each data item U{ some a priori 
data characteristics: the value of the IFD, hT(u{\9°), and the value of the WFD, 
u>T(ui\9°). They are, similarly as the likelihood, in a "latent form" because of the 
unknown true parameter value 9°. However, they can be approximately specified by 
using an appropriate estimate 9 of 9°. 

With the help of this model, theorems in the previous section give a possible 
statistical explanation of gnostic characteristics of data. The "ideal value" zo can be 
understood as the transformed location parameter, the "scale" s as the usual scale 
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parameter and the "irrelevance" and "fidelity" as the IFD and the square root of 
the W F D of distributions (29) and (30). We thus give an explanation of Kovanic's 
"non-statistical" notions of irrelevance and fidelity of individual da ta in a rather 
unexpected way by including their general equivalents into the probability theory. 

The Kovanic's heuristic estimate given by (26) appears to be the first IFD-moment 
estimate in the special model (29). By iii) of Section 2, (16) yields the maximum 
likelihood estimate of the location parameter without the need to apply directly 
the maximum likelihood principle (e. g. without the need of differentiation with 
respect to the location parameter) . Good performances of the gnostical estimator of 
the location parameter can be at t r ibuted to this fact, and to the boundedness of the 
influence function of distribution (29)). The difficulties with the gnostical estimation 
of scale parameter (which are not mentioned in this paper) could be circumvented 
by the use of the second IFD-moment estimation equation (17). 

It should be noted tha t we did not explain Kovanic's estimation procedures based 
on his "data composition law". We suppose that , in the probabilistic terms, the 
composition law (27) can be considered as a "finite equivalent" of a limit theorem 
concerning sums of i.i.d. random variables, weighted in a special way. "Qualita­
tively", (27) asserts that the weighted sum of i.i.d. random variables is distributed 
according to the original probability law. But this problem remains to be open. 
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