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EXTENDIBLE META-INTERPRETERS 1 

R O M A N B A R T Á K AND P E T R Š T Ě P Á N E K 

Meta-programming is a well-known technique widely used in logic programming and 
artificial intelligence. Meta-interpreters are powerful tools especially for writing expert sys­
tems in general and for writing their inference machines in particular. While the traditional 
approach to meta-interpretation is based on the syntactic definition of a meta-interpreter, 
new approach presented in this paper corresponds more to the meaning of the prefix meta. 

We analyze the structure of expert systems (problem solvers) to specify a general de­
scription of a meta-interpreter. On that basis, we define the concept of an extendible 
meta-interpreter. The extendible meta-interpreter is divided into two parts the kernel and 
its extension. While the kernel codes the functions that are common to most interpreters, 
the extension specifies the domain-specific functions of a particular interpreter. 

1. I N T R O D U C T I O N 

Meta-interpretation is one of the widely used programming techniques for writing 
rule-based expert systems. There are obvious reasons for extensive use of meta-
interpreters: they are simple to use and understand, and, at the same time, they 
are very powerful. Many meta-interpreters have been written for special purposes 
([16], [17], [19]). 

In this paper, we concentrate on meta-interpreters motivated by the construction 
of expert systems. We try to find a uniform paradigm for writing such a type of 
meta-interpreters which we call extendible meta-interpreters. The extendible meta-
interpreter consists of two parts, the kernel and its extension. The kernel gives 
a description of functions common to most meta-interpreters. Usually, it has an 
imperative character. On the other hand, domain-specific functions of a particular 
interpreter are encoded in the extension. The extension typically has a declarative 
character. Hence, an extendible meta-interpreter is fully specified by the extension 
of its kernel. By this way, the emphasis is put more on the declarative style of 
programming. On the other hand, the hierarchical structure of the kernel helps in 
coding the imperative part of the meta-interpreter. Some examples of the P R O L O G 
source code for the kernels and their extensions are given. P R O L O G is one of 
the languages t h a t are widely used for writing rule-based expert systems and their 

1 This work was supported by the grant No. 201/96/0197 from the Grant Agency of the Czech 
Republic. 
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inference machines. Thus in what follows, we use P R O L O G to express our ideas 
about meta-intepreters, but our concepts are not confined to the logic programming 
paradigm. 

The paper is organized as follows. In Section 2, the traditional definition of a 
meta-interpreter is recalled and a well-known example of so called vanilla meta-
interpreter is given. We use some other examples to motivate a different approach 
to meta-interpretation. This new concept of a meta-interpreter, which we call an 
extendible meta-interpreter, is outlined in Section 3. We give an informal defini­
tion of the extendible meta-interpreter in Section 4 and we also compare extendible 
meta-interpreters with traditional meta-interpreters there. In Section 4.1, we define 
the extendible meta-interpreter and we describe its structure. We also present a 
road map to the structure of the extendible meta-interpeter there. We give some 
examples of extendible meta-interpreters written in P R O L O G in Sections 4.2 and 
4.3. We conclude with an overview of related and future research in Sections 5 and 
6 respectively. 

2. T H E M E T A - I N T E R P R E T E R CLASSICS 

Recall the s tandard definition of a meta-interpreter t h a t is based on the following 
idea. Given an interpreter I of a programming language L, there are at least two 
ways how to write another interpreter I\ of the same language L. First, we can write 
Ii as a completely new interpreter. This may be a complicated and a time consuming 
process, in particular, if there is only a little difference between the interpreter I and 
the interpreter I\. In most cases, the process of developing I\ is ineffective and the 
experience in developing the original interpreter / is of little help. A better solution 
to the problem consists in writing a program P in L tha t changes the behaviour of 
the interpreter I to the behaviour of the interpreter I\. The program P is called 
a meta-interpreter. The above two ways to writing a new interpreter are shown in 
Figure 2.1. 

} interpréter I, 

F i g u r e 2.1 (two approaches to writing a new interpreter). 

Hence, if we want to write another interpreter, we simply write a new program 
P. It is easier than programming a new interpreter. Here is the definition of the 
meta-interpreter. , 

Def in i t ion 1 . (see Sterling [13]) A meta-interpreter of a given programming lan­
guage L (or of a subset of L) is an interpreter of L (or of the subset of L) that is 
written in L. 
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As you can see, the above definition is very simple. In fact, it is the relation 
between the language of the interpreter and the interpreted language what is essential 
for the definition of the meta-interpreter. For this reason, we speak about the 
syntactical basis of this definition. There is a philosophical problem related to the 
above definition: the definition which is rather syntactical by its nature, does not 
state what is an interpreter. More precisely, it does not say whether the interpreter 
is a program or a machine or both. 

Comparing interpreters with meta-interpreters, we conclude that the interpreter 
is a program. It follows from the fact that , meta-intepreters represent a particular 
case of interpreters and according to the above definition, they are programs written 
in the interpreted language. Hence interpreters are programs, too. 

We may still ask, however, where the machine was lost? Each program is simply 
a text, a code. It is like a word, and a word by itself cannot hurt, but saying a word 
can. To say a word we need a person, to interpret a program we need a machine. 

When speaking about an interpreter, we assume that there is a machine tha t 
executes it. On the other hand, when speaking about a meta-interpreter, we assume 
that there is a machine with an appropriate interpreter that executes the program 
of the meta-interpreter (see Figure 2.1). Hence, there is a difference between the 
concepts of an interpreter and of a meta-interpreter. The standard definition does 
not take this difference into account and considers meta-interpreters and interpreters 
at the same level. 

VVe recall two well-known examples of meta-interpreters now. They are written in 
PROLOG. As we already noted, PROLOG is a language suitable for writing meta-
interpreters, and, more generally for writing meta-programs which are programs that 
use other programs as data . A meta-interpreter is a special case of a meta-program. 

In PROLOG, we have the same structure of the program and the operated data. 
This is an obviors advantage for purposes of meta-programming. As the code of an 
"object" program represents the data for its interpreter, the above feature of the 
language makes the task of writing a meta-interpreter easier. 

However, this is not an exclusive property of PROLOG, it is well-known that 
LISP and some other languages have similar features, too. 

The first example (the Program 2.1) shows the simplest meta-interpreter for PRO­
LOG programs. It only calls a s tandard PROLOG interpreter. 

s o l v e ( G o a l ) : - c a l l ( G o a l ) 

P r o g r a m 2 .1 . 

Although Program 2.1 is a meta-interpreter according to the above definition, 
there is no visible advantage of using it instead of the standard PROLOG interpreter. 

The following meta-interpreter is written on another level of abstraction which 
is usually called the clause reduction level. Meta-interpreters on that level make 
explicit the choice of clauses being used to reduce a goal, and the choice of a literal 
to generate the resolvent. Unification and backtracking are still handled implicitly, 
by the standard interpreter of PROLOG [16]. Most other meta-interpreters are 
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derived by making extensions of this basic form. For this reason, the "basic" meta-
interpreter (see below) is usually called the vanilla meta-interpreter in an obvious 
analogy with the ice cream flavors [12]. 

s o l v e ( t r u e ) . 
s o l v e ( ( A , B ) ) : -

s o l v e ( A ) , 
s o l v e ( B ) . 

s o l v e ( G o a l ) : -
c l a u s e ( G o a l , B o d y ) , 
s o l v e ( B o d y ) . 

P r o g r a m 2.2 (the vanilla meta-interpreter). 

The clause reduction level mentioned above represents only one of many possible 
levels of abstraction on the computation of a meta-interpreter. When analysing the 
structure of meta-interpreters, one can identify various levels of abstraction. In what 
follows, the notion of an abstraction level will be very important and we shall give 
it a more precise description. For practical reasons, we shall identify the abstraction 
levels with granularity. 

Def in i t ion 2 . (see Sterling [13]) The granularity of a meta-interpreter corresponds 
to the level of access to the computation of the underlying interpreter. The higher 
the level of the access to the computation of the underlying interpreter, the finer the 
granularity of the meta-interpreter. 

According to the above definition, the most rough granularity is at tr ibuted to 
meta-interpreters that use the computations of the underlying interpreter directly 
and with no visible access to any of its internal functions (like Program 2.1). The 
meta-interpreters that make visible the access to some of the functions of the un­
derlying interpreter are of a finer granularity. Note that the vanilla meta-interpreter 
from Program 2.2 has a finer granularity than the simple meta-interpreter from the 
Program 2.1. 

The concept of granularity is important for classifying meta-interpreters. The 
finer the granularity of a meta-interpreter, the more it is able to change the com­
putation of the underlying interpreter. In most cases, the fine granularity implies 
slower interpretation because the meta-interpreter itself has to be interpreted by 
an interpreter which we call a core interpreter of the programming language (see 
Figure 2.1). Thus the key problem in choosing an appropriate granularity consists 
in finding a suitable compromise between the granularity of the meta-interpreter, 
that is implied by the requirements on changing the behaviour of the underlying 
interpreter, and the speed of its computation (i.e. interpretation). 

It should also be noted that the meta-interpreters are doubling the space. We 
have already mentioned that a meta-interpreter is using two interpreters, a core 
interpreter of the language and a meta-interpreter to simulate another interpreter by 
changing the behaviour of the core interpreter. For this reason, many procedures may 
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be doubled as they exist both in the core interpreter and in the meta-interpreter. It is 
obvious tha t this may cause a slow down of the computation. Although compilation 
usually solves problems of speed, note that the compiled meta-interpreter is not a 
meta-interpreter according to the above definition. 

3. A NEW A P P R O A C H T O M E T A - I N T E R P R E T A T I O N 

The following example (Program 3.1) presents a program that simulates the compu­
tat ions of a finite automaton. It motivates a different view on meta-interpretation. 

We call this program an interpreter because it interprets some code, in particular, 
the general description of an arbitrary finite automaton. It is not a meta-interpreter 
according to the above definition, however, since there is a difference between the 
interpreted language, i.e., the description of the finite automaton, and the language 
of the interpreter. 

s o l v e ( Q , [ ] ) : -
f i n a l _ s t a t e ( q ) . 

s o l v e ( q , [ H | T ] ) : -
r u l e ( q , H , N e w q ) , 
solve(NewQ,T). 

P r o g r a m 3.1 (the finite automaton simulator). 

Note that the Program 3.1 has a similar structure as the vanilla meta-interpreter 
(Program 2.2). The possibility of making changes to the mechanism of the inter­
preter and mak: lg derivative programs is also saved. 

The above examples demonstrate the main advantage of meta-interpreters con­
sisting in an easy and simple access to the mechanism of the interpreter. One might 
be tempted to say that a meta-interpreter is an interpreter that gives an easy access 
to its own computation mechanism. Obviously, this is not a definition of a meta-
interpreter since it does not say what means easy, but we think that it describes 
the character of meta-interpreters or a feature that users like on them more accu­
rately. The core of that "definition" consists in the close relationship between the 
interpreter and the mechanism of this interpreter. 

Our description of the concept of the extendible meta-interpreter will be closely 
related to the meaning of the prefix meta. This prefix is frequently used in construc­
tions as a meta-program, a meta-theory, a meta-variable and it means something 
over the object level [1]. A meta-theory is a theory over another theory, a meta­
variable is a variable that ranges over the (object) variables and a meta-interpreter 
is an interpreter of another interpreter. More precisely, the meta-interpreter is an 
interpreter that interprets a code, hence a description, of another interpreter. We 
shall explain this in more detail in Section 4.1. 

In the following section we shall combine ideas of the above two pseudo-definitions 
into a compact definition of an extendible meta-interpreter. 
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4. THE STRUCTURE OF THE EXTENDIBLE META-INTERPRETER 

Let us compare our two pseudo-definitions. 

A meta-interpreter is an interpreter which: 

(a) enables an easy access to the mechanism of the interpreter, 

(b) interprets a code (a description) of some interpreter. 

The pseudo-definition (a) is a consequence of the definition of the meta-interpreter. 
A meta-interpreter written in the interpreted language enables in many cases an easy 
access to the mechanism of the interpreter. The definition (a) is user-oriented, for 
users like everything what is easy. But we know that the meaning of the word easy 
was not explained in (a), however. 

The pseudo-definition (b) is based on the meaning of the prefix meta. It could be 
a definition not only a pseudo-definition, if we defined what it is an interpreter and 
what it is a description of the interpreter. However, there is still another problem 
with the pseudo-definition (b): it depends on the interpreted program only, not on 
the interpreter itself. 

It turns out that the role of an arbitrary interpreter is twofold: 

- it is a meta-interpreter when it interprets some description of another inter­
preter and, 

- it is only an interpreter if it interprets a program in the language which is not 
a description of an interpreter. 

We shall show t h a t there is a big gap between the pseudo-definition (b) and the 
standard definition of the meta-interpreter (Definition 1). 

Let us have any interpreter I of a given programming language L. A meta-
interpreter of the same programming language L is a program P written in L which 
interprets the same codes (programs) as the interpreter I does, hence programs 
written in L. If we want to modify the mechanism of the meta-interpreter P, we must 
change the whole meta-interpreter (compare the Programs 2.1 and 2.2, describing 
the simplest meta-interpreter and the vanilla meta-interpreter). 

Moreover, the above interpreter I is a meta-interpreter, too. It follows from the 
pseudo-definition (b), hence we shall call it a b-meta-interpreter if it interprets the 
above program P which gives a description of the interpreter. 

Note that if we want to modify the mechanism of the b-meta-interpreter, we 
need not change the b-meta-interpreter 7, but only the data, the code (i.e., the 
description) of the interpreter P. However, this is not a typical example of using the 
pseudo-definition (b). It only shows that the pseudo-definition (b) covers the classical 
approach, as well. It is well-known that changing data is easier than changing a 
program. Therefore, transforming the mechanism of the b-meta-interpreter should 
be easier. 

The following table compares the concepts from the pseudo-definition (b) with 
the classical approach. 
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classical approach pseudo-definition (b) 

program P meta-interpreter description of interpreter 
interpreter I interpreter meta-interpreter 

We explain the approach, based on the pseudo-definition (b), in more detail in 
the following section where we try to bridge the gap by introducing a new concept 
of an extendible meta-interpreter. 

4 .1 . Problem solving and meta-interpreters 

We shall show that similar result as above can be obtained by a different method. 
Namely, we shall reconsider the concept of a meta-interpreter and we shall use it 
as a program that interprets a code of an interpreter. We will call the resulting 
meta-interpreter an extendible meta-interpreter. The following sequence of Fig­
ures describes a top-down construction of (the structure of) an extendible meta-
interpreter. 

Program 
(Problém Solver) 
(Expert System) Oui put 

(Result) 
(Answer) 

Figure 4.1 (program). 

Figure 4.1 shews the structure of an arbitrary program, or a problem solver or 
an expert system as a black box. 

Interpreter 
(General Problem Solver) 

(Inference Machine) 
• Program : 

Cb:|>ealriiJ J3rt)bk-m Desurtptton) -
.(KnovvlcdalBiise) 

F i g u r e 4 .2 (the structure of the program). 

Figure 4.2 also shows the structure of an arbitrary program (a problem solver, 
an expert system) but in more detail. The program has two parts: an interpreter 
and a program description. Let us call the step from the description in Figure 4.1 
to Figure 4.2 the specification step applied to a given program. The specification 
step describes more formally our previous discussion of using the prefix meta. 

Figure 4.2 corresponds to the current state in expert systems research. An empty 
expert system contains an inference machine and a knowledge base. A particular 
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expert system can be defined by specifying a particular knowledge base. One does 
not change the inference machine but it is possible to specify the knowledge base. 

However, sometimes we need to change the inference mechanism of the expert 
system. This can be obtained by performing the specification step to the interpreter. 

Meta-Interpreter 

1 Output Inteфreter Description 1 Output 

Ptшr.im Ptшr.im 

Figure 4.3 (new approach to meta-interpreters). 

Figure 4.3 shows the result. An interpreter is divided into two parts : a meta-

interpreter and a description of the interpreter. In terminology of expert systems, we 

can speak about a general inference machine (a meta-inference machine) and about 

a description of a particular inference machine. We need easy and user friendly 

descriptions of the interpreter and of the inference machine respectively. It would 

be reasonable if both the program and the knowledge base could have an access 

to the mechanisms of the interpreter and of the inference machine through their 

descriptions. 

Figure 4.3 corresponds to the pseudo-definition (b). Of course, we could now 

continue in performing further specification steps which would result in a meta-meta-

interpreter with the description of the meta-interpreter, etc. There is no visible gain 

of doing it, however. 

Now, we shall discuss some problems concerning terminology. We are trying to 

follow two goals: we would like to have a terminology consistent with the tradit ional 

approach to meta-interpretation and, at the same time, we would like to general­

ize the concept of the meta-interpreter. We should note a difference between the 

standard approach and t h a t one adopted here. The classical approach is based on 

specialization while the approach adopted here uses generalization. The difference 

between the concepts of these two approaches is shown in Figure 4.4. We think that 

the latter approach is more general, because generalization includes specification, as 

shown in the discussion at the beginning of Section 4. 

Interpreter 

Meta-Interpreter 

U— Program 

A) classical approach 

Meta-Interpreter 

Interpreter Description 

ІPíÔІÉЃàЃЃť; 

B) new approach 

F i g u r e 4 . 4 (comparison of the approaches to meta-interpretation). 

There is a simple solution to the above terminology problem which is based on 
renaming the concepts of the new approach: 



Extendible Meta-lnterpreters 299 

the meta-interpreter —+ the kernel of the extendible meta-interpreter 
the description of the interpreter —» the extension of the kernel. 

We can now describe an extendible meta-interpreter by simple equation: 

e x t e n d i b l e m e t a - i n t e r p r e t e r = k e r n e l + e x t e n s i o n . 

Input 

Kernel 

Extension Output 

F igure 4.5 (the structure of an extendible meta-interpreter). 

Figure 4.5 displays the structure of an extendible meta-interpreter. We may ask 
whether it is possible to write a fixed kernel and complete it by various extensions to 
various interpreters. We shall explain roles of all parts shown in Figure 4.5. There 
is a program describing an algorithm to solve a particular problem. It is written 
in a programming language L. The extension of the kernel represents a description 
of a particular interpreter, e.g., in P R O L O G or LISP of the given programming 
language L. 

Now, we shall compare extendible meta-interpreters to more traditional meta-
interpreters. First, the structure of the extendible meta-interpreter is scalable. Fig­
ure 4.6 explains what does it mean. 

8ááááááá^SŠ$fc$ŮŮS \ extension 

hardware (machine) interpreter a) classical interpreter 

b) classical meta-interpreter 

c) generalized meta-interpreter 

d) classical extendible 
meta-interpreter 

7 7 7 

F i g u r e 4.6 (scalable structure of the extendible meta-interpreter). 

Note that t h e parts a) and b) represent current approach to interpretation. We 
discussed above some problems of tradit ional meta-interpreters, in particular we 
noted t h a t it is difficult to change their behaviour (part a) and that they are less 
efficient and are doubling the space (part b). Extendible meta-interpreters from the 
parts a) and b) and meta-interpreters have one feature in common: the extension has 
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an imperative character and therefore it is difficult to change the extendible meta-
interpreter. The part b) also shows that the classical approach to meta-interpretation 
can be expressed in terms of the extendible meta-interpreter. 

The parts c) and d) are more interesting. We shall discuss the part c) later in this 
paper (Section 4.2), as it is similar to a traditional meta-interpreter. Therefore it 
inherits some less favourable features of meta-interpreters, in particular inefficiency 
and doubling memory space. 

The part d) represents the structure of extendible meta-interpreters with the 
kernel written in the object (machine-oriented) language and the extension written 
in any high-level language. We will prefer to write the extension in the interpreted 
language because then it will be easy to change the interpreter's mechanism and the 
interpreted program can influence the interpreter's mechanism through the exten­
sion. The classical extendible meta-interpreter (the part d) of Figure 4.6) removes 
the problems with inefficiency and doubling, because there is only one interpreter, 
hidden in the object kernel, that can be influenced through the extension. 

We shall give examples of extendible meta-interpreters with the structure similar 
to the part c) of Figure 4.6 which show that it is easy to write the meta-kernel and 
the extension in a high-level language. By compiling the meta-kernel and linking 
with an interpreter we can simple get an object-kernel and so remove the inefficiency 
and doubling. We speak about the object-kernel and the meta-kernel because they 
are only parts of the kernel. The object-kernel is written in an object language while 
the meta-kernel is written in the interpreted language. 

Now we can give a general definition of an extendible meta-interpreter. 

D e f i n i t i o n 3. An extendible meta-interpreter of a given programming language 
is an interpreter of that language which is set up of two parts: the kernel and the 
extension. The extension is written in a superset of the interpreted language. 

The power of an extendible meta-interpreter is obtained by the separation of the 
kernel and its extension. Features which are common to various interpreters can 
be hidden in the kernel, while the extension contains domain-specific information 
for a particular interpreter, the extension being encoded either in the interpreted 
language or in its superset. Such an organization of the extendible meta-interpreter 
gives an easy access to the mechanism of the interpreter. 

The definition of an extendible meta-interpreter covers all parts of Figure 4.6. 
For example, a LISP machine (the kernel) and a LISP interpreter (the extension) 
written in LISP make an extendible meta-interpreter. Its structure corresponds to 
the part a) of Figure 4.6. All P R O L O G meta-interpreters make the extensions of 
extendible P R O L O G meta-interpreters. Nevertheless, these two examples are not 
typical for extendible meta-interpreters because of the imperative character of the 
extension. 

We prefer the declarative style of programming of the extension because it is 
easier to write a declarative description of the interpreter than an imperative one. 
For the same reason, we also prefer meta-interpreters consisting of the meta-kernel in 
an imperative style and the extension in a declarative style (see the part c) of Figure 
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4.6). We call an extendible meta-interpreter an easily extendible meta-interpreter if 
it has a declarative extension. 

In what follows, we shall discuss only easily extendible meta-interpreters. They 
have the structure shown in the part c) of Figure 4.6, where the kernel consists of a 
machine, an interpreter and a meta-kernel. In this case, we shall call the meta-kernel 
simply the kernel. 

In the following section, we try to find the PROLOG code of the meta-kernel and 
of the interface to the extension respectively. We will concentrate on the hierarchical 
structure of the program, as well. 

4.2. Extendible meta-interpreters in PROLOG 

In this section we shall present some examples of easily extendible meta-interpreters 
in PROLOG. We shall show some PROLOG kernels (meta-kernels) and their ex­
tensions. So far, we have used examples of meta-interpreters, that were mostly 
derivatives of the vanilla meta-interpreter. We did so to find out what these meta-
interpreters have in common, to grasp these common features and encode them in 
the kernel. 

The simplest feature that can be identified in many meta-intepreters consists in 
using the predicate solve in programming meta-interpreters or interpreters. We shall 
call this feature a Zero Level Kernel, since it implies an empty meta-kernel and it 
CO'responds to the case b) from Figure 4.6. The Zero Level Kernel is specified by 
the following predicate: 

solve(Goal) 

or more generally by the binary predicate 

solve(Goal,Result). 

The arguments of the predicate solve of the meta-interpreters can be divided 
into two groups: input (goal) and output (result) arguments. It follows that, almost 
every current meta-interpreter is an extension of the Zero Level Kernel and we can 
say that the Zero Level Kernel corresponds to current state of art in programming 
meta-interpreters. 

Obviously, the Zero Level Kernel is not very interesting from the point of view of 
extendible meta-interpreters. We shall discuss now a more powerful kernel which we 
call the Half Level Kernel. It is non-empty and reflects the fact that every goal can 
be solved in three possible ways. First, primitive (empty) goals are solved in one 
step (for example true in PROLOG). Second, more complex goals are transformed 
to other (preferably simpler) goals. Third, some goals have no solutions. The Half 
Level Kernel consists of a (PROLOG) program that implements these three ways. 
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solve(Task, Result):-
empty_goal(Task.Result). 

solve(Task, Result):-
t r a n s f o r m _ t a s k ( T a s k , N e w T a s k , F r o n t i e r ), 
solve(NewTask.SubResult), 
customize_solution(Frontier,SubResult,Result). 

solve(Task,Result):-
rest_solution(Task,Result). 

Program 4.1 (the Half Level Kernel). 

The Half Level Kernel is appropriate for implementing some simple search algo­
rithms. We shall show the extension of the Half Level Kernel which describes the 
depth-first search. The resulting program (Program 4.1 and Program 4.2) can be 
seen as an extendible meta-interpreter that interprets a program consisting of the 
description of a particular graph (the edges) and a set of final nodes. 

empty_goal(Node,yes):-

final_node(Node). 
transform_task(Node ,NewNode ,not_used):-

not final_node(Node), 
edge(Node,NewNode). 
c u s t o m i z e _ s o l u t i o n ( n o t _ u s e d , y e s , y e s ) 

r e s t _ s o l u t i o n ( _ , n o ). 

Program 4.2 (the extension for search). 

We can also write an extension of the Half Level Kernel implementing a simple 
P R O L O G interpreter corresponding to the vanilla meta-interpreter. 2 

e m p t y _ g o a l ( t r u e , y e s ) . 

transform_task((A ,B),NewGoal,not_used):-
transform_task(A,NewA,_), 
and(NewA,B,NewGoal). 

transform_task(A,B,not_used) :-
A\=true,A\=(_,_), 
c l a u s e ( A , B ) . 

c u s t o m i z e _ s o l u t i o n ( n o t _ u s e d , y e s , y e s ) . 
r e s t _ s o l u t i o n ( _ , n o ) . 

Program 4.3 (the extension for the interpreter of PROLOG). 

2goals of the form (true,(true,true)) and like are not processed by this extension 
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In the above extension as well as in many other meta-interpreters, the process 
of transforming the goal consists of three steps: selection of a subgoal, expansion 
or reduction of this subgoal, and, finally, making a new goal. This simple idea is 
reflected in the First Level Kernel. 

so lve (Task ,Resu l t ) : -
empty_goal(Task,Result). 

so lve (Task ,Resu l t ) : -
se lec t_subgoal (Task,Goal ,Front ier ) , 
expand_goal(Goal,ExpandedGoal,Rule), 
make_task(Frontier,ExpandedGoal,NewTask), 
solve(NewTask,SubResult), 
customize_solut ion(Frori t ier ,Rule,SubResul t ,Resul t ) . 

so lve (Task ,Resu l t ) : -
r e s t_so lu t ion (Task ,Resu l t ) . 

Program 4.4 (the First Level Kernel). 

Some new notions appear in the Program 4.4, namely the Frontier (also used in 
the Half Level Kernel) and the Rule. The variable Frontier contains information 
about the choice of the selected atom from the goal, which is used in the process of 
coi >tructing a new goal. Sometimes, we need to add some additional information 
to the Frontier in the process of constructing a new goal. This information is used 
later when customizing the solution. 

The variable Rule contains information about the transformed goal, for example 
the description of the rule (the clause) used in the transformation. This information 
is used when customizing the solution, too. 

Now, it is nov difficult to write an extension of the First Level Kernel by imple­
menting a simple PROLOG interpreter. In fact, it will have the same power as the 
extension of the Half Level Kernel described by Program 4.3. 

empty_goal( t rue,yes) . 
se lec t_subgoal ( (A,B) ,Goal , [BlRes t ] ) : -

select_subgoal(A,Goal ,Rest) . 
se lect_subgoal(Goal ,Goal , [ ] ) : -

Goal \=true ,Goal \=(_,_) . 
expand.goal(Goal,ExpandedGoal,not_used):-

clause(Goal,ExpandedGoal). 
make_task([BlRest],ExpandedGoal,NewTask):-

make_task(Rest,ExpandedGoal,A), 
and(A,B,NewTask). 

make_task([ ] ,Goal ,Goal ) . 
cus tomize_solu t ion(_ ,_ ,yes ,yes) . 
r e s t_so lu t ion(Task ,no) . 

Program 4.5 (the extension for the interpreter of PROLOG). 
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Note that the higher is the level of the kernel, the more complex structure has 
its extension. This is an obvious consequence of the increasing power of higher level 
kernels and of their finer granularity. The hierarchy of kernels is partially based 
on their history: we started with the Zero and the First Level Kernels, because we 
mostly worked with meta-interpreters of PROLOG. Then we added the simplified 
version of the First Level Kernel which we called the Half Level Kernel. We did it 
for the sake of implementing search. We have used the term Half Level, because 
we wanted to preserve the hierarchy of levels. We stopped at the Second Level 
Kernel. Note that adding the higher level kernels is also possible. It should be said, 
however, that kernels of levels higher than two become increasingly dependent on 
the interpreted language. 

Now, we shall say a word about the interface between the kernel and its extension. 
In the above examples, the interface consists of the list of predicates. It is due to 
our choice of PROLOG as the language for writing extensions. The user defined 
predicates make hooks in the kernel where the user can hang the procedures that 
modify the behaviour of the kernel. Then the corresponding extension consists of 
definitions of (the programs for) these predicates. 

We shall consider the interfaces to the above mentioned kernels. Obviously, the 
interface to the Zero Level Kernel is the simplest. It consists of the only predicate 

solve. 

We have already noted that for this reason, almost every PROLOG meta-interpreter 
is an extension of the Zero Level Kernel. The interface to the Half Level Kernel is 
more complicated. It consists of the predicates 

empty_goal, transform_task, customize_solution and r e s t _ s o l u t i o n . 

The interface to the First Level Kernel is still more complicated. It consists of 
the following predicates: 

empty_goal, select_subgoal, expand_goal, make_task, customize_solution 

and 

rest_solution. 

4.3. O t h e r extensions a n d t h e second level kernel 

We start this section with a more complicated example of extension of the First Level 
Kernel. This extension (Program 4.6) and the First Level Kernel (Program 4.4) fully 
describe an extendible PROLOG meta-interpreter that computes proofs.3 We also 
use this extension to present possible structure of the Frontier. This extension has 
the following property: it requires some additional information when a new task is 
created and this information is used again later in the process of customizing solution. 
Note that the First Level Kernel (Program 4.4) and this extension (Program 4.6) 
make the core of the above mentioned Second Level Kernel. 

'goals of the form (true,(true,true)) and like are not processed by this extension 
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e m p t y _ g o a l ( t r u e , f a c t ) . 

s e l e c t _ s u b g o a l ( ( A , B ) , G , C ( B , _ ) | T ] ) : -
s e l e c t _ s u b g o a l ( A , G , T ) . 

se lec t_subgoal (G ,G ,C ] ) : -
G \ = ( _ , _ ) , G \ = t r u e . 

expand_goal(A, B,A-B):-
clause(A,B). 

make_task(C(B,Ch)IT],Goal,Task):-
make_task(T,Goal,A), 
and(A,B,Task) , 
i f _ t h e n _ e l s e ( A = t r u e , C h = c o l l a p s e d , 

Ch=not_collapsed). 
make_task(C ] , G o a l , G o a l ) . 

customize_solution(C(_,not_collapsed)|T],Rule,(SProofA,ProofB), 
(ProofA.ProofB)):-

customize_solution(T, Rule,SProofA,ProofA). 
customize_solution(C(_,collapsed)|T],Rule,ProofB,(ProofA,ProofB)):-

ProofB\=failed, 

customize_solution(T,Rule,fact,ProofA). 

customize_solution(C ],A-B,ProofB,A-ProofP):-

ProofB\=failed. 

rest_solution(_,failed). 

Program 4.6 (the extension for the interpreter of PROLOG with proofs). 

We can also use the same kernel (Program 4.4) for writing a completely differ­
ent extendible meta-interpreter. The only thing we have to do is to write a new 
extension. The following program is an example of using the First Level Kernel for 
a quite different interpreter. The program is similar to Program 3.1: it simulates a 
finite automaton. 

empty_goal(C ] - Q , a c c e p t ) : -
f i n a l _ s t a t e ( Q ) . 

se lec t_subgoal (CH|T ] -Q,H-Q,T ) . 
expand_goal(A-Q,NewQ,not_used):-

rule(Q,A,NewQ). 
make_task(T ,Q,T-Q). 
customize_solution(_,_,accept,accept). 
rest_solution(_,no). 

Program 4.7 (the extension for the finite automaton with proofs). 
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If we do not include the predicates of the interface that are not used in the 
bodies of the clauses the interpreted language consists of only two predicates, namely, 

f i n a l _ s t a t e and r u l e . This approach corresponds to the standard description 
of a finite automaton (the finite automaton is fully described by the set of final states 
and the set of transformation rules). 

However, there is a difference between Programs 4.6 and 4.7, the later is rather 
declarative while the former is imperative. Therefore the First Level Kernel is sat­
isfactory for the simulator of a finite automaton, but it is not suitable for the easily 
extendible P R O L O G meta-interpreter (the extension should have a declarative char­
acter). We introduce the Second Level Kernel to save the declarative character of 
the extension. 

Note that , there are three predicates of imperative character in Program 4.6, 
namely, 

s e l e c t _ s u b g o a l , make_task and c u s t o m i z e _ s o l u t i o n . 

The structure of these predicates is determined by the structure of the Frontier 
and vice-versa. We have chosen the structure of the Frontier as simple as possible, 
namely as a list of pairs. This list (the Frontier) arose from a process of subgoal 
selection where the first components of the pairs of the list were instantiated while 
the second components remainded free (see Programs 4.6 and 4.8). The second 
components of the pairs can be instantiated in the process of making a new task 
where the first components are already used (see again Program 4.6). Finally, the 
Frontier can be used in customizing the solution (like in Program 4.6). Note that , 
the length of the Frontier is determined by the "depth" of the task which is equal 
to the number of steps which are used to find a subgoal of this task. By this way, 
the depth of the task is determined by the structure of the task and by the strategy 
of subgoal selection. 

We introduce here new concepts, namely, the meta task and the simple task. One 
can select directly the subgoal from the simple task using the predicate 

c u s t o m _ g o a l _ s e l e c t i o n . Therefore, the structure of the simple task is invisible 
to the extension, i.e., to the meta-level, and the depth of the simple task is equal to 
one. The opposite concept to simple task is the meta task. The m e t a task can be de­
composed into some "independent" subtasks using the predicate g o a l _ s e l e c t i o n . 
By this way, the structure of the m e t a task remains visible to the extension, i.e., 
to the meta-level, and the depth of the meta task is at least two. For example, 
the conjunction of goals is a m e t a task while the primitive goal is a simple task in 
extendible P R O L O G meta-interpreter. 

Now, we can write the P R O L O G code of the Second Level Kernel. 

s e l e c t _ g o a l ( T a s k , G o a l , C ( S , _ ) | T ] ) : -
m e t a _ t a s k ( T a s k ) , 
g o a l _ s e l e c t i o n ( T a s k , S u b T a s k , S ) , 
s e l e c t _ g o a l ( S u b T a s k , G o a l , T ) . 

s e l e c t _ g o a l ( T a s k , G o a l , C ( S , _ ) ] ) : -
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simple_task(Task), /* not meta_task(Task) */ 

custom_goal_selection(Task,Goal,S). 

m a k e _ t a s k ( [ ( S , C h ) | T ] , G o a l , T a s k ) : -
m a k e _ t a s k ( T , G o a l , S u b T a s k ) , 
comb ine_ t a s k (S , SubTa sk , Tas k ,Ch) . 

m a k e _ t a s k ( [ ] , G o a l , G o a l ) . 

c u s t o m i z e _ s o l u t i o n ( [ F | T ] , R u l e , S u b S o l , S o l ) : -
d e c o m b i n e _ s o l u t i o n ( F , S u b S o l , S o l l , S o l 2 ) , 
c u s t o m i z e _ s o l u t i o n ( T , R u l e , S o i l , S S o l l ) , 
c o m b i n e _ s o l u t i o n ( F , S S o l l , S o l 2 , S o l ) . 

c u s t o m i z e _ s o l u t i o n ( [ ] , R u l e , S u b S o l , S o l ) : -
c o m b i n e _ r u l e _ s o l u t i o n ( R u l e , S u b S o l , S o l ) . 

P r o g r a m 4.8 (part of the Second Level Kernel). 

The Second Level Kernel consists of the First Level Kernel (Program 4.4) and of 
Program 4.8. Because of the fixed structure of the Frontier, the Second Level Kernel 
is suitable for interpreting languages that satisfy the following criterion: 

"The process of subgoal selection fully determines the processes of making a new 
task and customizing solution." 

PROLOG is an example of language that satisfies this criterion. In most cases, 
we do not need customize the solution explicitly. However, the languages that do 
not satisfy the above criterion can be interpreted by the Second Level Kernel as well, 
but they are not supported, i.e., the programmer has to code all the user defined 
predicates even if the extendible meta-interpreter will not use them all. We mean 
all tasks can be simple and thus the power of Frontier is not used. 

The Second Level Kernel can be used for a wide range of extendible meta-
interpreters. It is easy to prove that every extendible meta-interpreter, tha t can 
be written with the use of the Second Level Kernel, can also be written with the use 
of the First Level Kernel and vice-versa. We also hope that the Second Level Kernel 
is suitable for writing the inference machines of the rule-based expert systems. The 
Second Level Kernel would then represent a shell of the inference machine. 

5. RELATED RESEARCH 

In this section, we shall compare the idea of extendible meta-interpreters with a 
similar approach based on skeletons. The theory of skeletons is a significant part 
of a methodology for systematically building complicated PROLOG programs from 
standard components [15]. 

Skeletons ae basic PROLOG programs with a well-understood control flow. Ap­
plying a technique, a s tandard PROLOG programming practice, to a skeleton creates 
an extension of the skeleton. It is possible to create different extensions of the same 
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skeleton, each for a specific feature of the desired program. Finally, separate ex­
tensions of the same skeleton can be automatically or semi-automatically composed 
into a single program. An example of using skeletons in development of a PROLOG 
tracer can be found in [8]. 

At the beginning, we should note that skeletons are used for a slightly different 
purpose than the extendible meta-intepreters are. While the skeletons are primary 
dedicated to simplifying the process of complicated PROLOG program development, 
extendible meta-interpreters are more oriented to the area of meta-interpretation 
and interpretation in general. However, the idea of the extendible meta-interpreter, 
hence of dividing the program into the kernel and its extension, can be also used in 
the development and maintenance of complicated programs. 

The following difference between the skeleton and the kernel is more serious. 
While the skeleton is a program, a stand-alone application, and the extension of 
the skeleton is also a stand-alone application, the kernel and its extension are just 
modules of an extendible meta-interpreter. Therefore, to develop an extendible 
meta-interpreter one needs both the kernel and the extension of the kernel. Final­
ly, programming an extension of the skeleton includes changing the skeleton, i.e., 
changing the existing code, while programming the extension of the kernel is noth­
ing else than adding a new code to the kernel. The only thing one has to follow is 
the structure of the interface between the kernel and its extension. In our opinion, 
this difference implies that the development of the extension of the skeleton is more 
complicated than the development of the extension of the kernel. 

Despite the above mentioned differences, skeletons and extendible meta-intepreters 
are closely related to each other. Identifying an appropriate skeleton is similar to 
finding a kernel, although programming the kernel could be a little bit complicated 
process because the programmer has also to design an appropriate interface between 
the kernel and its extension. But this effort is definitely paid off by easier develop­
ment of future extensions of the kernel. Since separate extensions of the same kernel 
are based on the same set of interface predicates, it is also easier to compose them 
into a single extension which includes features of parent extensions. 

6. FUTURE RESEARCH 

As we sketched above, the idea of extendible meta-interpreters can be used in the 
development and maintenance of complicated programs. However, contrary to the 
skeletons, the methods for automatic or semi-automatic composition of various ex­
tensions have not been drawn up yet for extendible meta-interpreters. So, it is the 
first open area of conceivable research. 

The second area of interest is using techniques of extendible meta-interpreters in 
the construction of HCLP (Hierarchical Constraint Logic Programming) interpreters 
[18]. Inspired by the meta-terms and attributed variables [9], we suggest to use ex­
tendible meta-interpreters in a similar manner [5]. While the meta-terms generalize 
the process of unification and they are suitable for implementing CLP interpreters 
therefore, extendible meta-interpreters generalize the whole process of interpretation 
including unification. So, extendible meta-interpreters could serve as a platform for 
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implementing various HCLP interpreters with inter-hierarchy comparison. This also 
fulfills our original goal of using extendible meta-interpreters for expert systems con­
struction because, in our opinion, HCLP with inter-hierarchy comparison is suitable 
for expert systems shell composition [4]. 

7. CONCLUSIONS 

In this paper, we have described a new approach to meta-interpretation, based on the 
concept of an extendible meta-interpreter. The extendible meta-interpreter preserves 
the positive features of meta-interpreters, namely, an easy access to the mechanism 
of the interpreter and, at the same time, the possibility to suppress the slow down 
of the computation and doubling the memory space. 

The idea of an extendible meta-interpreter is based on the separation of the 
general part of an interpreter from the domain-specific one. The extendible meta-
interpreter consists of two parts: the kernel and its extension. The hierarchical 
structure of the kernel, makes it possible for the user to select the level (granularity) 
that best suits his or her needs without loss of speed typical for meta-interpretation. 
The hierarchical structure of the kernel can be also used for the classification of 
(meta-)interpreters. 

A uniform frame for writing (meta-)interpreters helps the programmer to con­
centrate on features of a particular (meta-)interpreter without troubles with general 
principles of interpretation. The idea of the extendible meta-interpreter can also 
help as a consolidating element in the reflective programming. Our approach can 
help in composing interpreters or developing program modulants, enhancements and 
mutants [16], too. 

We have concentrated mostly on using extendible meta-interpreters as a tool for 
the construction of inference machines of expert systems and problem solvers. An 
example of the extendible meta-interpreter for search, a standard technique used 
for construction of expert systems, has been given. The concept of an extendible 
meta-interpreter was originally motivated by the research into meta-interpreters for 
building expert systems. Using an extendible meta-interpreter simplifies and speeds 
up the construction both of a particular inference machine and of a particular expert 
system. 

Throughout the paper, we used PROLOG to demonstrate some examples of meta-
programs. This does not imply tha t the results of the paper are confined to the logic 
programming paradigm. The above results can be applied to other programming 
environments, too. We have also presented some example programs to show that 
idea of extendible meta-interpreters is practical and useful. 

(Received July 1, 1996.) 
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