
Kybernetika

Roman Barták; Petr Štěpánek
Extendible meta-interpreters

Kybernetika, Vol. 33 (1997), No. 3, 291--310

Persistent URL: http://dml.cz/dmlcz/124714

Terms of use:
© Institute of Information Theory and Automation AS CR, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124714
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 33 (1 9 9 7) , N U M B E R 3, P A G E S 2 9 1 - 3 1 0

EXTENDIBLE META-INTERPRETERS 1

R O M A N B A R T Á K AND P E T R Š T Ě P Á N E K

Meta-programming is a well-known technique widely used in logic programming and
artificial intelligence. Meta-interpreters are powerful tools especially for writing expert sys­
tems in general and for writing their inference machines in particular. While the traditional
approach to meta-interpretation is based on the syntactic definition of a meta-interpreter,
new approach presented in this paper corresponds more to the meaning of the prefix meta.

We analyze the structure of expert systems (problem solvers) to specify a general de­
scription of a meta-interpreter. On that basis, we define the concept of an extendible
meta-interpreter. The extendible meta-interpreter is divided into two parts the kernel and
its extension. While the kernel codes the functions that are common to most interpreters,
the extension specifies the domain-specific functions of a particular interpreter.

1. I N T R O D U C T I O N

Meta-interpretation is one of the widely used programming techniques for writing
rule-based expert systems. There are obvious reasons for extensive use of meta-
interpreters: they are simple to use and understand, and, at the same time, they
are very powerful. Many meta-interpreters have been written for special purposes
([16], [17], [19]).

In this paper, we concentrate on meta-interpreters motivated by the construction
of expert systems. We try to find a uniform paradigm for writing such a type of
meta-interpreters which we call extendible meta-interpreters. The extendible meta-
interpreter consists of two parts, the kernel and its extension. The kernel gives
a description of functions common to most meta-interpreters. Usually, it has an
imperative character. On the other hand, domain-specific functions of a particular
interpreter are encoded in the extension. The extension typically has a declarative
character. Hence, an extendible meta-interpreter is fully specified by the extension
of its kernel. By this way, the emphasis is put more on the declarative style of
programming. On the other hand, the hierarchical structure of the kernel helps in
coding the imperative part of the meta-interpreter. Some examples of the P R O L O G
source code for the kernels and their extensions are given. P R O L O G is one of
the languages t h a t are widely used for writing rule-based expert systems and their

1 This work was supported by the grant No. 201/96/0197 from the Grant Agency of the Czech
Republic.

292 R. BARTÁK AND P. ŠTĚPÁNEK

inference machines. Thus in what follows, we use P R O L O G to express our ideas
about meta-intepreters, but our concepts are not confined to the logic programming
paradigm.

The paper is organized as follows. In Section 2, the traditional definition of a
meta-interpreter is recalled and a well-known example of so called vanilla meta-
interpreter is given. We use some other examples to motivate a different approach
to meta-interpretation. This new concept of a meta-interpreter, which we call an
extendible meta-interpreter, is outlined in Section 3. We give an informal defini­
tion of the extendible meta-interpreter in Section 4 and we also compare extendible
meta-interpreters with traditional meta-interpreters there. In Section 4.1, we define
the extendible meta-interpreter and we describe its structure. We also present a
road map to the structure of the extendible meta-interpeter there. We give some
examples of extendible meta-interpreters written in P R O L O G in Sections 4.2 and
4.3. We conclude with an overview of related and future research in Sections 5 and
6 respectively.

2. T H E M E T A - I N T E R P R E T E R CLASSICS

Recall the s tandard definition of a meta-interpreter t h a t is based on the following
idea. Given an interpreter I of a programming language L, there are at least two
ways how to write another interpreter I\ of the same language L. First, we can write
Ii as a completely new interpreter. This may be a complicated and a time consuming
process, in particular, if there is only a little difference between the interpreter I and
the interpreter I\. In most cases, the process of developing I\ is ineffective and the
experience in developing the original interpreter / is of little help. A better solution
to the problem consists in writing a program P in L tha t changes the behaviour of
the interpreter I to the behaviour of the interpreter I\. The program P is called
a meta-interpreter. The above two ways to writing a new interpreter are shown in
Figure 2.1.

} interpréter I,

F i g u r e 2.1 (two approaches to writing a new interpreter).

Hence, if we want to write another interpreter, we simply write a new program
P. It is easier than programming a new interpreter. Here is the definition of the
meta-interpreter. ,

Def in i t ion 1 . (see Sterling [13]) A meta-interpreter of a given programming lan­
guage L (or of a subset of L) is an interpreter of L (or of the subset of L) that is
written in L.

Extendible Meta-Interprêters 293

As you can see, the above definition is very simple. In fact, it is the relation
between the language of the interpreter and the interpreted language what is essential
for the definition of the meta-interpreter. For this reason, we speak about the
syntactical basis of this definition. There is a philosophical problem related to the
above definition: the definition which is rather syntactical by its nature, does not
state what is an interpreter. More precisely, it does not say whether the interpreter
is a program or a machine or both.

Comparing interpreters with meta-interpreters, we conclude that the interpreter
is a program. It follows from the fact that , meta-intepreters represent a particular
case of interpreters and according to the above definition, they are programs written
in the interpreted language. Hence interpreters are programs, too.

We may still ask, however, where the machine was lost? Each program is simply
a text, a code. It is like a word, and a word by itself cannot hurt, but saying a word
can. To say a word we need a person, to interpret a program we need a machine.

When speaking about an interpreter, we assume that there is a machine tha t
executes it. On the other hand, when speaking about a meta-interpreter, we assume
that there is a machine with an appropriate interpreter that executes the program
of the meta-interpreter (see Figure 2.1). Hence, there is a difference between the
concepts of an interpreter and of a meta-interpreter. The standard definition does
not take this difference into account and considers meta-interpreters and interpreters
at the same level.

VVe recall two well-known examples of meta-interpreters now. They are written in
PROLOG. As we already noted, PROLOG is a language suitable for writing meta-
interpreters, and, more generally for writing meta-programs which are programs that
use other programs as data . A meta-interpreter is a special case of a meta-program.

In PROLOG, we have the same structure of the program and the operated data.
This is an obviors advantage for purposes of meta-programming. As the code of an
"object" program represents the data for its interpreter, the above feature of the
language makes the task of writing a meta-interpreter easier.

However, this is not an exclusive property of PROLOG, it is well-known that
LISP and some other languages have similar features, too.

The first example (the Program 2.1) shows the simplest meta-interpreter for PRO­
LOG programs. It only calls a s tandard PROLOG interpreter.

s o l v e (G o a l) : - c a l l (G o a l)

P r o g r a m 2 .1 .

Although Program 2.1 is a meta-interpreter according to the above definition,
there is no visible advantage of using it instead of the standard PROLOG interpreter.

The following meta-interpreter is written on another level of abstraction which
is usually called the clause reduction level. Meta-interpreters on that level make
explicit the choice of clauses being used to reduce a goal, and the choice of a literal
to generate the resolvent. Unification and backtracking are still handled implicitly,
by the standard interpreter of PROLOG [16]. Most other meta-interpreters are

294 R. BARTÁK AND P. ŠTĚPÁNEK

derived by making extensions of this basic form. For this reason, the "basic" meta-
interpreter (see below) is usually called the vanilla meta-interpreter in an obvious
analogy with the ice cream flavors [12].

s o l v e (t r u e) .
s o l v e ((A , B)) : -

s o l v e (A) ,
s o l v e (B) .

s o l v e (G o a l) : -
c l a u s e (G o a l , B o d y) ,
s o l v e (B o d y) .

P r o g r a m 2.2 (the vanilla meta-interpreter).

The clause reduction level mentioned above represents only one of many possible
levels of abstraction on the computation of a meta-interpreter. When analysing the
structure of meta-interpreters, one can identify various levels of abstraction. In what
follows, the notion of an abstraction level will be very important and we shall give
it a more precise description. For practical reasons, we shall identify the abstraction
levels with granularity.

Def in i t ion 2 . (see Sterling [13]) The granularity of a meta-interpreter corresponds
to the level of access to the computation of the underlying interpreter. The higher
the level of the access to the computation of the underlying interpreter, the finer the
granularity of the meta-interpreter.

According to the above definition, the most rough granularity is at tr ibuted to
meta-interpreters that use the computations of the underlying interpreter directly
and with no visible access to any of its internal functions (like Program 2.1). The
meta-interpreters that make visible the access to some of the functions of the un­
derlying interpreter are of a finer granularity. Note that the vanilla meta-interpreter
from Program 2.2 has a finer granularity than the simple meta-interpreter from the
Program 2.1.

The concept of granularity is important for classifying meta-interpreters. The
finer the granularity of a meta-interpreter, the more it is able to change the com­
putation of the underlying interpreter. In most cases, the fine granularity implies
slower interpretation because the meta-interpreter itself has to be interpreted by
an interpreter which we call a core interpreter of the programming language (see
Figure 2.1). Thus the key problem in choosing an appropriate granularity consists
in finding a suitable compromise between the granularity of the meta-interpreter,
that is implied by the requirements on changing the behaviour of the underlying
interpreter, and the speed of its computation (i.e. interpretation).

It should also be noted that the meta-interpreters are doubling the space. We
have already mentioned that a meta-interpreter is using two interpreters, a core
interpreter of the language and a meta-interpreter to simulate another interpreter by
changing the behaviour of the core interpreter. For this reason, many procedures may

Extendible Meta—Interpreters *&&

be doubled as they exist both in the core interpreter and in the meta-interpreter. It is
obvious tha t this may cause a slow down of the computation. Although compilation
usually solves problems of speed, note that the compiled meta-interpreter is not a
meta-interpreter according to the above definition.

3. A NEW A P P R O A C H T O M E T A - I N T E R P R E T A T I O N

The following example (Program 3.1) presents a program that simulates the compu­
tat ions of a finite automaton. It motivates a different view on meta-interpretation.

We call this program an interpreter because it interprets some code, in particular,
the general description of an arbitrary finite automaton. It is not a meta-interpreter
according to the above definition, however, since there is a difference between the
interpreted language, i.e., the description of the finite automaton, and the language
of the interpreter.

s o l v e (Q , []) : -
f i n a l _ s t a t e (q) .

s o l v e (q , [H | T]) : -
r u l e (q , H , N e w q) ,
solve(NewQ,T).

P r o g r a m 3.1 (the finite automaton simulator).

Note that the Program 3.1 has a similar structure as the vanilla meta-interpreter
(Program 2.2). The possibility of making changes to the mechanism of the inter­
preter and mak: lg derivative programs is also saved.

The above examples demonstrate the main advantage of meta-interpreters con­
sisting in an easy and simple access to the mechanism of the interpreter. One might
be tempted to say that a meta-interpreter is an interpreter that gives an easy access
to its own computation mechanism. Obviously, this is not a definition of a meta-
interpreter since it does not say what means easy, but we think that it describes
the character of meta-interpreters or a feature that users like on them more accu­
rately. The core of that "definition" consists in the close relationship between the
interpreter and the mechanism of this interpreter.

Our description of the concept of the extendible meta-interpreter will be closely
related to the meaning of the prefix meta. This prefix is frequently used in construc­
tions as a meta-program, a meta-theory, a meta-variable and it means something
over the object level [1]. A meta-theory is a theory over another theory, a meta­
variable is a variable that ranges over the (object) variables and a meta-interpreter
is an interpreter of another interpreter. More precisely, the meta-interpreter is an
interpreter that interprets a code, hence a description, of another interpreter. We
shall explain this in more detail in Section 4.1.

In the following section we shall combine ideas of the above two pseudo-definitions
into a compact definition of an extendible meta-interpreter.

296 R. BARTÁK AND P. ŠTĚPÁNEK

4. THE STRUCTURE OF THE EXTENDIBLE META-INTERPRETER

Let us compare our two pseudo-definitions.

A meta-interpreter is an interpreter which:

(a) enables an easy access to the mechanism of the interpreter,

(b) interprets a code (a description) of some interpreter.

The pseudo-definition (a) is a consequence of the definition of the meta-interpreter.
A meta-interpreter written in the interpreted language enables in many cases an easy
access to the mechanism of the interpreter. The definition (a) is user-oriented, for
users like everything what is easy. But we know that the meaning of the word easy
was not explained in (a), however.

The pseudo-definition (b) is based on the meaning of the prefix meta. It could be
a definition not only a pseudo-definition, if we defined what it is an interpreter and
what it is a description of the interpreter. However, there is still another problem
with the pseudo-definition (b): it depends on the interpreted program only, not on
the interpreter itself.

It turns out that the role of an arbitrary interpreter is twofold:

- it is a meta-interpreter when it interprets some description of another inter­
preter and,

- it is only an interpreter if it interprets a program in the language which is not
a description of an interpreter.

We shall show t h a t there is a big gap between the pseudo-definition (b) and the
standard definition of the meta-interpreter (Definition 1).

Let us have any interpreter I of a given programming language L. A meta-
interpreter of the same programming language L is a program P written in L which
interprets the same codes (programs) as the interpreter I does, hence programs
written in L. If we want to modify the mechanism of the meta-interpreter P, we must
change the whole meta-interpreter (compare the Programs 2.1 and 2.2, describing
the simplest meta-interpreter and the vanilla meta-interpreter).

Moreover, the above interpreter I is a meta-interpreter, too. It follows from the
pseudo-definition (b), hence we shall call it a b-meta-interpreter if it interprets the
above program P which gives a description of the interpreter.

Note that if we want to modify the mechanism of the b-meta-interpreter, we
need not change the b-meta-interpreter 7, but only the data, the code (i.e., the
description) of the interpreter P. However, this is not a typical example of using the
pseudo-definition (b). It only shows that the pseudo-definition (b) covers the classical
approach, as well. It is well-known that changing data is easier than changing a
program. Therefore, transforming the mechanism of the b-meta-interpreter should
be easier.

The following table compares the concepts from the pseudo-definition (b) with
the classical approach.

Extendible Meta-Interpreters 297

classical approach pseudo-definition (b)

program P meta-interpreter description of interpreter
interpreter I interpreter meta-interpreter

We explain the approach, based on the pseudo-definition (b), in more detail in
the following section where we try to bridge the gap by introducing a new concept
of an extendible meta-interpreter.

4 .1 . Problem solving and meta-interpreters

We shall show that similar result as above can be obtained by a different method.
Namely, we shall reconsider the concept of a meta-interpreter and we shall use it
as a program that interprets a code of an interpreter. We will call the resulting
meta-interpreter an extendible meta-interpreter. The following sequence of Fig­
ures describes a top-down construction of (the structure of) an extendible meta-
interpreter.

Program
(Problém Solver)
(Expert System) Oui put

(Result)
(Answer)

Figure 4.1 (program).

Figure 4.1 shews the structure of an arbitrary program, or a problem solver or
an expert system as a black box.

Interpreter
(General Problem Solver)

(Inference Machine)
• Program :

Cb:|>ealriiJ J3rt)bk-m Desurtptton) -
.(KnovvlcdalBiise)

F i g u r e 4 .2 (the structure of the program).

Figure 4.2 also shows the structure of an arbitrary program (a problem solver,
an expert system) but in more detail. The program has two parts: an interpreter
and a program description. Let us call the step from the description in Figure 4.1
to Figure 4.2 the specification step applied to a given program. The specification
step describes more formally our previous discussion of using the prefix meta.

Figure 4.2 corresponds to the current state in expert systems research. An empty
expert system contains an inference machine and a knowledge base. A particular

298 R. BARTÁK AND P. ŠTĚPÁNEK

expert system can be defined by specifying a particular knowledge base. One does
not change the inference machine but it is possible to specify the knowledge base.

However, sometimes we need to change the inference mechanism of the expert
system. This can be obtained by performing the specification step to the interpreter.

Meta-Interpreter

1 Output Inteфreter Description 1 Output

Ptшr.im Ptшr.im

Figure 4.3 (new approach to meta-interpreters).

Figure 4.3 shows the result. An interpreter is divided into two parts : a meta-

interpreter and a description of the interpreter. In terminology of expert systems, we

can speak about a general inference machine (a meta-inference machine) and about

a description of a particular inference machine. We need easy and user friendly

descriptions of the interpreter and of the inference machine respectively. It would

be reasonable if both the program and the knowledge base could have an access

to the mechanisms of the interpreter and of the inference machine through their

descriptions.

Figure 4.3 corresponds to the pseudo-definition (b). Of course, we could now

continue in performing further specification steps which would result in a meta-meta-

interpreter with the description of the meta-interpreter, etc. There is no visible gain

of doing it, however.

Now, we shall discuss some problems concerning terminology. We are trying to

follow two goals: we would like to have a terminology consistent with the tradit ional

approach to meta-interpretation and, at the same time, we would like to general­

ize the concept of the meta-interpreter. We should note a difference between the

standard approach and t h a t one adopted here. The classical approach is based on

specialization while the approach adopted here uses generalization. The difference

between the concepts of these two approaches is shown in Figure 4.4. We think that

the latter approach is more general, because generalization includes specification, as

shown in the discussion at the beginning of Section 4.

Interpreter

Meta-Interpreter

U— Program

A) classical approach

Meta-Interpreter

Interpreter Description

ІPíÔІÉЃàЃЃť;

B) new approach

F i g u r e 4 . 4 (comparison of the approaches to meta-interpretation).

There is a simple solution to the above terminology problem which is based on
renaming the concepts of the new approach:

Extendible Meta-lnterpreters 299

the meta-interpreter —+ the kernel of the extendible meta-interpreter
the description of the interpreter —» the extension of the kernel.

We can now describe an extendible meta-interpreter by simple equation:

e x t e n d i b l e m e t a - i n t e r p r e t e r = k e r n e l + e x t e n s i o n .

Input

Kernel

Extension Output

F igure 4.5 (the structure of an extendible meta-interpreter).

Figure 4.5 displays the structure of an extendible meta-interpreter. We may ask
whether it is possible to write a fixed kernel and complete it by various extensions to
various interpreters. We shall explain roles of all parts shown in Figure 4.5. There
is a program describing an algorithm to solve a particular problem. It is written
in a programming language L. The extension of the kernel represents a description
of a particular interpreter, e.g., in P R O L O G or LISP of the given programming
language L.

Now, we shall compare extendible meta-interpreters to more traditional meta-
interpreters. First, the structure of the extendible meta-interpreter is scalable. Fig­
ure 4.6 explains what does it mean.

8ááááááá^SŠfcŮŮS \ extension

hardware (machine) interpreter a) classical interpreter

b) classical meta-interpreter

c) generalized meta-interpreter

d) classical extendible
meta-interpreter

7 7 7

F i g u r e 4.6 (scalable structure of the extendible meta-interpreter).

Note that t h e parts a) and b) represent current approach to interpretation. We
discussed above some problems of tradit ional meta-interpreters, in particular we
noted t h a t it is difficult to change their behaviour (part a) and that they are less
efficient and are doubling the space (part b). Extendible meta-interpreters from the
parts a) and b) and meta-interpreters have one feature in common: the extension has

300 R. BARTÁK AND P. ŠTĚPÁNEK

an imperative character and therefore it is difficult to change the extendible meta-
interpreter. The part b) also shows that the classical approach to meta-interpretation
can be expressed in terms of the extendible meta-interpreter.

The parts c) and d) are more interesting. We shall discuss the part c) later in this
paper (Section 4.2), as it is similar to a traditional meta-interpreter. Therefore it
inherits some less favourable features of meta-interpreters, in particular inefficiency
and doubling memory space.

The part d) represents the structure of extendible meta-interpreters with the
kernel written in the object (machine-oriented) language and the extension written
in any high-level language. We will prefer to write the extension in the interpreted
language because then it will be easy to change the interpreter's mechanism and the
interpreted program can influence the interpreter's mechanism through the exten­
sion. The classical extendible meta-interpreter (the part d) of Figure 4.6) removes
the problems with inefficiency and doubling, because there is only one interpreter,
hidden in the object kernel, that can be influenced through the extension.

We shall give examples of extendible meta-interpreters with the structure similar
to the part c) of Figure 4.6 which show that it is easy to write the meta-kernel and
the extension in a high-level language. By compiling the meta-kernel and linking
with an interpreter we can simple get an object-kernel and so remove the inefficiency
and doubling. We speak about the object-kernel and the meta-kernel because they
are only parts of the kernel. The object-kernel is written in an object language while
the meta-kernel is written in the interpreted language.

Now we can give a general definition of an extendible meta-interpreter.

D e f i n i t i o n 3. An extendible meta-interpreter of a given programming language
is an interpreter of that language which is set up of two parts: the kernel and the
extension. The extension is written in a superset of the interpreted language.

The power of an extendible meta-interpreter is obtained by the separation of the
kernel and its extension. Features which are common to various interpreters can
be hidden in the kernel, while the extension contains domain-specific information
for a particular interpreter, the extension being encoded either in the interpreted
language or in its superset. Such an organization of the extendible meta-interpreter
gives an easy access to the mechanism of the interpreter.

The definition of an extendible meta-interpreter covers all parts of Figure 4.6.
For example, a LISP machine (the kernel) and a LISP interpreter (the extension)
written in LISP make an extendible meta-interpreter. Its structure corresponds to
the part a) of Figure 4.6. All P R O L O G meta-interpreters make the extensions of
extendible P R O L O G meta-interpreters. Nevertheless, these two examples are not
typical for extendible meta-interpreters because of the imperative character of the
extension.

We prefer the declarative style of programming of the extension because it is
easier to write a declarative description of the interpreter than an imperative one.
For the same reason, we also prefer meta-interpreters consisting of the meta-kernel in
an imperative style and the extension in a declarative style (see the part c) of Figure

Extendible Meta-Interpreters 301

4.6). We call an extendible meta-interpreter an easily extendible meta-interpreter if
it has a declarative extension.

In what follows, we shall discuss only easily extendible meta-interpreters. They
have the structure shown in the part c) of Figure 4.6, where the kernel consists of a
machine, an interpreter and a meta-kernel. In this case, we shall call the meta-kernel
simply the kernel.

In the following section, we try to find the PROLOG code of the meta-kernel and
of the interface to the extension respectively. We will concentrate on the hierarchical
structure of the program, as well.

4.2. Extendible meta-interpreters in PROLOG

In this section we shall present some examples of easily extendible meta-interpreters
in PROLOG. We shall show some PROLOG kernels (meta-kernels) and their ex­
tensions. So far, we have used examples of meta-interpreters, that were mostly
derivatives of the vanilla meta-interpreter. We did so to find out what these meta-
interpreters have in common, to grasp these common features and encode them in
the kernel.

The simplest feature that can be identified in many meta-intepreters consists in
using the predicate solve in programming meta-interpreters or interpreters. We shall
call this feature a Zero Level Kernel, since it implies an empty meta-kernel and it
CO'responds to the case b) from Figure 4.6. The Zero Level Kernel is specified by
the following predicate:

solve(Goal)

or more generally by the binary predicate

solve(Goal,Result).

The arguments of the predicate solve of the meta-interpreters can be divided
into two groups: input (goal) and output (result) arguments. It follows that, almost
every current meta-interpreter is an extension of the Zero Level Kernel and we can
say that the Zero Level Kernel corresponds to current state of art in programming
meta-interpreters.

Obviously, the Zero Level Kernel is not very interesting from the point of view of
extendible meta-interpreters. We shall discuss now a more powerful kernel which we
call the Half Level Kernel. It is non-empty and reflects the fact that every goal can
be solved in three possible ways. First, primitive (empty) goals are solved in one
step (for example true in PROLOG). Second, more complex goals are transformed
to other (preferably simpler) goals. Third, some goals have no solutions. The Half
Level Kernel consists of a (PROLOG) program that implements these three ways.

302 R. BARTÁK AND P. ŠTĚPÁNEK

solve(Task, Result):-
empty_goal(Task.Result).

solve(Task, Result):-
t r a n s f o r m _ t a s k (T a s k , N e w T a s k , F r o n t i e r),
solve(NewTask.SubResult),
customize_solution(Frontier,SubResult,Result).

solve(Task,Result):-
rest_solution(Task,Result).

Program 4.1 (the Half Level Kernel).

The Half Level Kernel is appropriate for implementing some simple search algo­
rithms. We shall show the extension of the Half Level Kernel which describes the
depth-first search. The resulting program (Program 4.1 and Program 4.2) can be
seen as an extendible meta-interpreter that interprets a program consisting of the
description of a particular graph (the edges) and a set of final nodes.

empty_goal(Node,yes):-

final_node(Node).
transform_task(Node ,NewNode ,not_used):-

not final_node(Node),
edge(Node,NewNode).
c u s t o m i z e _ s o l u t i o n (n o t _ u s e d , y e s , y e s)

r e s t _ s o l u t i o n (_ , n o).

Program 4.2 (the extension for search).

We can also write an extension of the Half Level Kernel implementing a simple
P R O L O G interpreter corresponding to the vanilla meta-interpreter. 2

e m p t y _ g o a l (t r u e , y e s) .

transform_task((A ,B),NewGoal,not_used):-
transform_task(A,NewA,_),
and(NewA,B,NewGoal).

transform_task(A,B,not_used) :-
A\=true,A\=(_,_),
c l a u s e (A , B) .

c u s t o m i z e _ s o l u t i o n (n o t _ u s e d , y e s , y e s) .
r e s t _ s o l u t i o n (_ , n o) .

Program 4.3 (the extension for the interpreter of PROLOG).

2goals of the form (true,(true,true)) and like are not processed by this extension

Extendible Meta—Interpreters 303

In the above extension as well as in many other meta-interpreters, the process
of transforming the goal consists of three steps: selection of a subgoal, expansion
or reduction of this subgoal, and, finally, making a new goal. This simple idea is
reflected in the First Level Kernel.

so lve (Task ,Resu l t) : -
empty_goal(Task,Result).

so lve (Task ,Resu l t) : -
se lec t_subgoal (Task,Goal ,Front ier) ,
expand_goal(Goal,ExpandedGoal,Rule),
make_task(Frontier,ExpandedGoal,NewTask),
solve(NewTask,SubResult),
customize_solut ion(Frori t ier ,Rule,SubResul t ,Resul t) .

so lve (Task ,Resu l t) : -
r e s t_so lu t ion (Task ,Resu l t) .

Program 4.4 (the First Level Kernel).

Some new notions appear in the Program 4.4, namely the Frontier (also used in
the Half Level Kernel) and the Rule. The variable Frontier contains information
about the choice of the selected atom from the goal, which is used in the process of
coi >tructing a new goal. Sometimes, we need to add some additional information
to the Frontier in the process of constructing a new goal. This information is used
later when customizing the solution.

The variable Rule contains information about the transformed goal, for example
the description of the rule (the clause) used in the transformation. This information
is used when customizing the solution, too.

Now, it is nov difficult to write an extension of the First Level Kernel by imple­
menting a simple PROLOG interpreter. In fact, it will have the same power as the
extension of the Half Level Kernel described by Program 4.3.

empty_goal(t rue,yes) .
se lec t_subgoal ((A,B) ,Goal , [BlRes t]) : -

select_subgoal(A,Goal ,Rest) .
se lect_subgoal(Goal ,Goal , []) : -

Goal \=true ,Goal \=(_,_) .
expand.goal(Goal,ExpandedGoal,not_used):-

clause(Goal,ExpandedGoal).
make_task([BlRest],ExpandedGoal,NewTask):-

make_task(Rest,ExpandedGoal,A),
and(A,B,NewTask).

make_task([] ,Goal ,Goal) .
cus tomize_solu t ion(_ ,_ ,yes ,yes) .
r e s t_so lu t ion(Task ,no) .

Program 4.5 (the extension for the interpreter of PROLOG).

304 R. BARTÁK AND P. ŠTĚPÁNEK

Note that the higher is the level of the kernel, the more complex structure has
its extension. This is an obvious consequence of the increasing power of higher level
kernels and of their finer granularity. The hierarchy of kernels is partially based
on their history: we started with the Zero and the First Level Kernels, because we
mostly worked with meta-interpreters of PROLOG. Then we added the simplified
version of the First Level Kernel which we called the Half Level Kernel. We did it
for the sake of implementing search. We have used the term Half Level, because
we wanted to preserve the hierarchy of levels. We stopped at the Second Level
Kernel. Note that adding the higher level kernels is also possible. It should be said,
however, that kernels of levels higher than two become increasingly dependent on
the interpreted language.

Now, we shall say a word about the interface between the kernel and its extension.
In the above examples, the interface consists of the list of predicates. It is due to
our choice of PROLOG as the language for writing extensions. The user defined
predicates make hooks in the kernel where the user can hang the procedures that
modify the behaviour of the kernel. Then the corresponding extension consists of
definitions of (the programs for) these predicates.

We shall consider the interfaces to the above mentioned kernels. Obviously, the
interface to the Zero Level Kernel is the simplest. It consists of the only predicate

solve.

We have already noted that for this reason, almost every PROLOG meta-interpreter
is an extension of the Zero Level Kernel. The interface to the Half Level Kernel is
more complicated. It consists of the predicates

empty_goal, transform_task, customize_solution and r e s t _ s o l u t i o n .

The interface to the First Level Kernel is still more complicated. It consists of
the following predicates:

empty_goal, select_subgoal, expand_goal, make_task, customize_solution

and

rest_solution.

4.3. O t h e r extensions a n d t h e second level kernel

We start this section with a more complicated example of extension of the First Level
Kernel. This extension (Program 4.6) and the First Level Kernel (Program 4.4) fully
describe an extendible PROLOG meta-interpreter that computes proofs.3 We also
use this extension to present possible structure of the Frontier. This extension has
the following property: it requires some additional information when a new task is
created and this information is used again later in the process of customizing solution.
Note that the First Level Kernel (Program 4.4) and this extension (Program 4.6)
make the core of the above mentioned Second Level Kernel.

'goals of the form (true,(true,true)) and like are not processed by this extension

Extendible Meta-Interpreters 305

e m p t y _ g o a l (t r u e , f a c t) .

s e l e c t _ s u b g o a l ((A , B) , G , C (B , _) | T]) : -
s e l e c t _ s u b g o a l (A , G , T) .

se lec t_subgoal (G ,G ,C]) : -
G \ = (_ , _) , G \ = t r u e .

expand_goal(A, B,A-B):-
clause(A,B).

make_task(C(B,Ch)IT],Goal,Task):-
make_task(T,Goal,A),
and(A,B,Task) ,
i f _ t h e n _ e l s e (A = t r u e , C h = c o l l a p s e d ,

Ch=not_collapsed).
make_task(C] , G o a l , G o a l) .

customize_solution(C(_,not_collapsed)|T],Rule,(SProofA,ProofB),
(ProofA.ProofB)):-

customize_solution(T, Rule,SProofA,ProofA).
customize_solution(C(_,collapsed)|T],Rule,ProofB,(ProofA,ProofB)):-

ProofB\=failed,

customize_solution(T,Rule,fact,ProofA).

customize_solution(C],A-B,ProofB,A-ProofP):-

ProofB\=failed.

rest_solution(_,failed).

Program 4.6 (the extension for the interpreter of PROLOG with proofs).

We can also use the same kernel (Program 4.4) for writing a completely differ­
ent extendible meta-interpreter. The only thing we have to do is to write a new
extension. The following program is an example of using the First Level Kernel for
a quite different interpreter. The program is similar to Program 3.1: it simulates a
finite automaton.

empty_goal(C] - Q , a c c e p t) : -
f i n a l _ s t a t e (Q) .

se lec t_subgoal (CH|T] -Q,H-Q,T) .
expand_goal(A-Q,NewQ,not_used):-

rule(Q,A,NewQ).
make_task(T ,Q,T-Q).
customize_solution(_,_,accept,accept).
rest_solution(_,no).

Program 4.7 (the extension for the finite automaton with proofs).

306 R. BARTÁK AND P. ŠTĚPÁNEK

If we do not include the predicates of the interface that are not used in the
bodies of the clauses the interpreted language consists of only two predicates, namely,

f i n a l _ s t a t e and r u l e . This approach corresponds to the standard description
of a finite automaton (the finite automaton is fully described by the set of final states
and the set of transformation rules).

However, there is a difference between Programs 4.6 and 4.7, the later is rather
declarative while the former is imperative. Therefore the First Level Kernel is sat­
isfactory for the simulator of a finite automaton, but it is not suitable for the easily
extendible P R O L O G meta-interpreter (the extension should have a declarative char­
acter). We introduce the Second Level Kernel to save the declarative character of
the extension.

Note that , there are three predicates of imperative character in Program 4.6,
namely,

s e l e c t _ s u b g o a l , make_task and c u s t o m i z e _ s o l u t i o n .

The structure of these predicates is determined by the structure of the Frontier
and vice-versa. We have chosen the structure of the Frontier as simple as possible,
namely as a list of pairs. This list (the Frontier) arose from a process of subgoal
selection where the first components of the pairs of the list were instantiated while
the second components remainded free (see Programs 4.6 and 4.8). The second
components of the pairs can be instantiated in the process of making a new task
where the first components are already used (see again Program 4.6). Finally, the
Frontier can be used in customizing the solution (like in Program 4.6). Note that ,
the length of the Frontier is determined by the "depth" of the task which is equal
to the number of steps which are used to find a subgoal of this task. By this way,
the depth of the task is determined by the structure of the task and by the strategy
of subgoal selection.

We introduce here new concepts, namely, the meta task and the simple task. One
can select directly the subgoal from the simple task using the predicate

c u s t o m _ g o a l _ s e l e c t i o n . Therefore, the structure of the simple task is invisible
to the extension, i.e., to the meta-level, and the depth of the simple task is equal to
one. The opposite concept to simple task is the meta task. The m e t a task can be de­
composed into some "independent" subtasks using the predicate g o a l _ s e l e c t i o n .
By this way, the structure of the m e t a task remains visible to the extension, i.e.,
to the meta-level, and the depth of the meta task is at least two. For example,
the conjunction of goals is a m e t a task while the primitive goal is a simple task in
extendible P R O L O G meta-interpreter.

Now, we can write the P R O L O G code of the Second Level Kernel.

s e l e c t _ g o a l (T a s k , G o a l , C (S , _) | T]) : -
m e t a _ t a s k (T a s k) ,
g o a l _ s e l e c t i o n (T a s k , S u b T a s k , S) ,
s e l e c t _ g o a l (S u b T a s k , G o a l , T) .

s e l e c t _ g o a l (T a s k , G o a l , C (S , _)]) : -

Extendible Meta-Interpreters 307

simple_task(Task), /* not meta_task(Task) */

custom_goal_selection(Task,Goal,S).

m a k e _ t a s k ([(S , C h) | T] , G o a l , T a s k) : -
m a k e _ t a s k (T , G o a l , S u b T a s k) ,
comb ine_ t a s k (S , SubTa sk , Tas k ,Ch) .

m a k e _ t a s k ([] , G o a l , G o a l) .

c u s t o m i z e _ s o l u t i o n ([F | T] , R u l e , S u b S o l , S o l) : -
d e c o m b i n e _ s o l u t i o n (F , S u b S o l , S o l l , S o l 2) ,
c u s t o m i z e _ s o l u t i o n (T , R u l e , S o i l , S S o l l) ,
c o m b i n e _ s o l u t i o n (F , S S o l l , S o l 2 , S o l) .

c u s t o m i z e _ s o l u t i o n ([] , R u l e , S u b S o l , S o l) : -
c o m b i n e _ r u l e _ s o l u t i o n (R u l e , S u b S o l , S o l) .

P r o g r a m 4.8 (part of the Second Level Kernel).

The Second Level Kernel consists of the First Level Kernel (Program 4.4) and of
Program 4.8. Because of the fixed structure of the Frontier, the Second Level Kernel
is suitable for interpreting languages that satisfy the following criterion:

"The process of subgoal selection fully determines the processes of making a new
task and customizing solution."

PROLOG is an example of language that satisfies this criterion. In most cases,
we do not need customize the solution explicitly. However, the languages that do
not satisfy the above criterion can be interpreted by the Second Level Kernel as well,
but they are not supported, i.e., the programmer has to code all the user defined
predicates even if the extendible meta-interpreter will not use them all. We mean
all tasks can be simple and thus the power of Frontier is not used.

The Second Level Kernel can be used for a wide range of extendible meta-
interpreters. It is easy to prove that every extendible meta-interpreter, tha t can
be written with the use of the Second Level Kernel, can also be written with the use
of the First Level Kernel and vice-versa. We also hope that the Second Level Kernel
is suitable for writing the inference machines of the rule-based expert systems. The
Second Level Kernel would then represent a shell of the inference machine.

5. RELATED RESEARCH

In this section, we shall compare the idea of extendible meta-interpreters with a
similar approach based on skeletons. The theory of skeletons is a significant part
of a methodology for systematically building complicated PROLOG programs from
standard components [15].

Skeletons ae basic PROLOG programs with a well-understood control flow. Ap­
plying a technique, a s tandard PROLOG programming practice, to a skeleton creates
an extension of the skeleton. It is possible to create different extensions of the same

308 R. BARTÁK AND P. ŠTĚPÁNEK

skeleton, each for a specific feature of the desired program. Finally, separate ex­
tensions of the same skeleton can be automatically or semi-automatically composed
into a single program. An example of using skeletons in development of a PROLOG
tracer can be found in [8].

At the beginning, we should note that skeletons are used for a slightly different
purpose than the extendible meta-intepreters are. While the skeletons are primary
dedicated to simplifying the process of complicated PROLOG program development,
extendible meta-interpreters are more oriented to the area of meta-interpretation
and interpretation in general. However, the idea of the extendible meta-interpreter,
hence of dividing the program into the kernel and its extension, can be also used in
the development and maintenance of complicated programs.

The following difference between the skeleton and the kernel is more serious.
While the skeleton is a program, a stand-alone application, and the extension of
the skeleton is also a stand-alone application, the kernel and its extension are just
modules of an extendible meta-interpreter. Therefore, to develop an extendible
meta-interpreter one needs both the kernel and the extension of the kernel. Final­
ly, programming an extension of the skeleton includes changing the skeleton, i.e.,
changing the existing code, while programming the extension of the kernel is noth­
ing else than adding a new code to the kernel. The only thing one has to follow is
the structure of the interface between the kernel and its extension. In our opinion,
this difference implies that the development of the extension of the skeleton is more
complicated than the development of the extension of the kernel.

Despite the above mentioned differences, skeletons and extendible meta-intepreters
are closely related to each other. Identifying an appropriate skeleton is similar to
finding a kernel, although programming the kernel could be a little bit complicated
process because the programmer has also to design an appropriate interface between
the kernel and its extension. But this effort is definitely paid off by easier develop­
ment of future extensions of the kernel. Since separate extensions of the same kernel
are based on the same set of interface predicates, it is also easier to compose them
into a single extension which includes features of parent extensions.

6. FUTURE RESEARCH

As we sketched above, the idea of extendible meta-interpreters can be used in the
development and maintenance of complicated programs. However, contrary to the
skeletons, the methods for automatic or semi-automatic composition of various ex­
tensions have not been drawn up yet for extendible meta-interpreters. So, it is the
first open area of conceivable research.

The second area of interest is using techniques of extendible meta-interpreters in
the construction of HCLP (Hierarchical Constraint Logic Programming) interpreters
[18]. Inspired by the meta-terms and attributed variables [9], we suggest to use ex­
tendible meta-interpreters in a similar manner [5]. While the meta-terms generalize
the process of unification and they are suitable for implementing CLP interpreters
therefore, extendible meta-interpreters generalize the whole process of interpretation
including unification. So, extendible meta-interpreters could serve as a platform for

Extendible Meta-Interpreters 309

implementing various HCLP interpreters with inter-hierarchy comparison. This also
fulfills our original goal of using extendible meta-interpreters for expert systems con­
struction because, in our opinion, HCLP with inter-hierarchy comparison is suitable
for expert systems shell composition [4].

7. CONCLUSIONS

In this paper, we have described a new approach to meta-interpretation, based on the
concept of an extendible meta-interpreter. The extendible meta-interpreter preserves
the positive features of meta-interpreters, namely, an easy access to the mechanism
of the interpreter and, at the same time, the possibility to suppress the slow down
of the computation and doubling the memory space.

The idea of an extendible meta-interpreter is based on the separation of the
general part of an interpreter from the domain-specific one. The extendible meta-
interpreter consists of two parts: the kernel and its extension. The hierarchical
structure of the kernel, makes it possible for the user to select the level (granularity)
that best suits his or her needs without loss of speed typical for meta-interpretation.
The hierarchical structure of the kernel can be also used for the classification of
(meta-)interpreters.

A uniform frame for writing (meta-)interpreters helps the programmer to con­
centrate on features of a particular (meta-)interpreter without troubles with general
principles of interpretation. The idea of the extendible meta-interpreter can also
help as a consolidating element in the reflective programming. Our approach can
help in composing interpreters or developing program modulants, enhancements and
mutants [16], too.

We have concentrated mostly on using extendible meta-interpreters as a tool for
the construction of inference machines of expert systems and problem solvers. An
example of the extendible meta-interpreter for search, a standard technique used
for construction of expert systems, has been given. The concept of an extendible
meta-interpreter was originally motivated by the research into meta-interpreters for
building expert systems. Using an extendible meta-interpreter simplifies and speeds
up the construction both of a particular inference machine and of a particular expert
system.

Throughout the paper, we used PROLOG to demonstrate some examples of meta-
programs. This does not imply tha t the results of the paper are confined to the logic
programming paradigm. The above results can be applied to other programming
environments, too. We have also presented some example programs to show that
idea of extendible meta-interpreters is practical and useful.

(Received July 1, 1996.)

REFERENCES

[1] H. Abramson and M. H. Rogers (eds): Meta-Programming in Logic Programming.
MIT Press, Cambridge, MA 1989.

[2] R. Bartak: Meta-interpretation of Logic Programs (in Czech). Diploma Thesis, Fac­
ulty of Mathematics and Physics, Charles University, Prague 1993.

310 R. BARTÁK AND P. ŠTĚPÁNEK

[3] R. Bar tak and P. Stepanek: M e t a - i n t e r p r e t e r s and Expert Systems. Technical Re­
port No. 115, D e p a r t m e n t of Computer Science, Faculty of M a t h e m a t i c s and Physics,
Charles University, Prague 1995.

[4] R. Bartak: Expert Systems Based on Constra ints (in Czech). Doctoral Dissertation,
Faculty of M a t h e m a t i c s and Physics, Charles University, Prague 1997.

[5] R. Bartak: A plug-in architecture of constraint hierarchy solvers. In: Proceedings of
PACT'97, London 1997, p p . 359-371.

[6] W. F. Clocksin and C. S. Mellish: Programming in P R O L O G . Springer-Verlag, Berlin
1981.

[7] A. Jain, L. Sterling and M. Kirschenbaum: Towards reusability based upon simi­
lar computat ional behaviour. In: Proceedings of the 7th Internat ional Conference on
Software Engineering and Knowledge Engineering, Rockville 1995.

[8] A. Lakhotia, L. Sterling and D. Bojantchev: Development of a P R O L O G tracer by
stepwise enhancement . In: Proceedings of the Third Internat ional Conference on Prac­
tical Applications of P R O L O G , Paris 1995.

[9] M. Meier and P. Brisset: Open Architecture for CLP. T R ECRC-95-10, E C R C , 1995.
[10] N. J. Nilsson: Problem-Solving Methods in Artificial Intelligence. McGraw-Hil l , New

York 1971.
[11] K. Parsaye and M. Chignell: Expert Systems for Experts . Wiley, New York 1988.
[12] L. Sterling: Meta- interpre ter s : T h e flavors of logic programming? In: Proceedings of

Workshop on Foundat ion of Logic Programming and Deductive Databases, Washing­
ton 1986.

[13] L. Sterling: Construct ing meta- in terpre te r s for logic programs. In: Advanced School
on Foundat ions of Logic Programming, Alghero 1988.

[14] L. Sterling, A. Jain and M. Kirschenbaum: Composit ion based on skeletons and tech­
niques. Work presented at ILPS '93 Post Conference Workshop on Methodologies for
Composing Logic Programs.

[15] L. Sterling and M. Kirschenbaum: Applying techniques to skeletons. In: Construct ing
Logic Programs (J . M. J. Jacquet, ed.), Wiley, New York 1993.

[16] L. Sterling and A. Lakhotia: Composing P R O L O G meta- interpre ter s . In: Proceedings
of 5th Internat ional Logic P r o g r a m m i n g Conference, Seattle 1988.

[17] L. Sterling and E. Shapiro: T h e Art of P R O L O G . M I T Press, Cambridge, M A 1986.
[18] M. Wilson and A. Borning: Hierarchical Constraint Logic Programming. T R 93-01-

02a, D e p a r t m e n t of C o m p u t e r Science and Engineering, University of Washington
1993.

[19] L.U. Yalginalp and L. Sterling: An Integrated Interpreter for Explaining P R O L O G ' S
Successes and Failures. Case Western Reserve University, C E S TR-88-04, 1988.

Mgr. Roman Barták and Doc. RNDr. Petr Štěpánek, DrSc, Katedra teoretické infor­

matiky, Matematicko-fyzikální fakulta Univerzity Karlovy (Department of Theoretical

Computer Science, Faculty of Mathematics and Physics - Charles University), Malo­

stranské nám. 25, 11800 Praha 1. Czech Republic.

		webmaster@dml.cz
	2012-06-06T07:42:36+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

