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K Y B E R N E T I K A - VOLUME 25 (1989), N U M B E R 6 

A SUFFICIENT STATISTIC AND 
A NOSTANDARD LINEARIZATION 
IN NONLINEAR REGRESSION 

ANDREJ PÁZMAN 

In a nonlinear model y = q(0) + e a standard linearization consists in linearizing n(0) at 
a point 0*, and in computing the M. L. estimate T(y, 0*) in the linearized model. We propose to 
take T(Y):= (T(Y,01), ...,T(y,0k))T for some 0i,...,0k (= the sufficient statistic), linearize 
each T(y, 0l) separately, and then to compute the M. L. estimate 0(y). The variable 0(y) has 
a smaller variance than T(y, 0l), and a comparable bias. Further, 0(y) can be used to approximate 
the posterior density in a Bayesian approach. 

The construction of the sufficient statistic has a geometrical background. Possible consequences 
for nonlinear experimental design are mentioned. 

1. INTRODUCTION AND THE GEOMETRICAL BACKGROUND 

Let us consider the nonlinear regression model with normal errors 

(1) Y = t](0) + s; (0e&) 

s ~ JV(Q, £ ) 

under standard regularity assumptions: the parameter space 0 is an open subset 
of W, the variance matrix £ is regular, the regression mapping tj: 0 H-> UN (N > m) 
has continuous second order derivatives on 0, and the vectors dti(6)jd91,... dti(0)jdOm 

are linearly independent for every 0 e 0. The vector y £ UN is observed, the mapping 
tf and the set 0 are known, L is either known, or of the form £ = cW with c > 0 
unknown and W known. Statistical inference on the unknown vector 0 should be 
performed. 

A well known point estimator in model (1) is the maximum likelihood (= M. L.) 
estimator 
(2) 6 : = d ( y ) : = a r g m i n | | y - # ) | | ^ . 

0e0 

Here |a||£, := oTW~1o ; (a e RN) . 
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In the particular case when model (1) is linear, the statistic y e UN (—> 0(y) is not 
only a point estimator, it is also a sufficient statistic. If model (1) is nonlinear (more 
exactly, if the expectation surface of model (l) 

iS := {j/(0):0e<9} 

is not a "plane", the statistic 0(y) is no more sufficient. Consequently it contains less 
information about 0 than the sample vector y. (For the distributional properties 
of0(y)cf.e.g. [4,5]). 

However, it is possible to look for a statistic in model (1) which is a sufficient 
statistic, and which is somehow related to the M. L. estimator. In particular, we can 
require that this statistic coincides with 0(y) when model (1) is linear. 

In Section 2 we propose such statistics. They have the following geometrical 
origin: 

Consider the expectation surface &. It is an m-dimensional surface in the N dimen­
sional sample space UN. According to (2), the point tj(0) e $ is obtained by the W-
orthogonal projection of the point y onto i . Consider now for any 0* e 0 the set 

dtj(0*) T *:=L( *) + 
Õ 1 v: v є 

Geometrically, T0* is the tangent plane to the surface $ at the point 17(0*) e S. 
Statistically, T0* is the expectation surface of a linear model which approximates 
model ( l) : 

(3) y _ , ( 0 * ) _ _ ^ ) ( 0 _ r ) + fi 

s ~ JT(0, _) . 

The M. L. estimate in this linearized model is 

(4) т(y, 0*) : — arg min y - «(**) - i J 3 (• " •*) 
w 

It is the result of the W-orthogonal projection of the point y onto T0*. 
The statistic y 1—> T(y, 0*) is sufficient in model (3), however, it is not in model (l). 

Therefore, we proceed further by considering not one but many (eventually all) 
tangent planes to d?, and by projecting W-orthogonally the sample point y onto all 
of them. (The reader which is familiar with differential geometry see that we are 
using the "tangent space" of $). Consequently, instead of one random vector T'(y, 0*) 
we consider the set of random vectors 

(5) { T ( X , 0*); 0* G D} 

for some D <=. 0. Evidently, this is a (vector-valued) random process defined on D. 
This process will be shown to have several pleasant structural properties. 

a) It is a Gaussian random process having a covariance function which does not 
depend on 0. 
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b) Each component T(y, 0*) of this process is related to a linear approximative 
model. 

c) When D is adequately chosen, the mapping 

y e f n {x(y, 0*); 0* e D} 

is a sufficient statistic in model (1). 
In Section 3 —5 we try to demonstrate that such a process is useful. We restrict 

our attention to the case of a finite D = {01, ...,0fc), and instead of the process 
we consider a k . m dimensional random vector T(y) := (TT(y, 01), ..., TT(y, 0fc))T. 
If we linearize each component of T(y) separately, we obtain a new, nonstandard 
linearization of model (1) which is more efficient than the standard linearization (3) 
(see Proposition 2). This allows to obtain an approximative expression for the 
posterior probability density of 0 (Proposition 3). Moreover, using quadratic functions 
of T(y) we can discuss some confidence regions for 0, both for the case when £ 
is known and when S = a2\ with an unknown a. 

2. SUFFICIENT STATISTICS 

As is well known (cf. [1], Chapt. VIII. 1.), the M.L. estimate of 0 in the linear 
model (3) can be expressed in the form 

(6) x(y, 0*) = M-^0*) FT(0*) W - ! [ y - 1/(0*)] + 0* 

where 

{*•»«<«-5®: ( . - i . - . « . ;-l . . . . . .m). 

M(0):= F T (0)W" 1 F(0) . 

Consequently, (5) is a Gaussian random process with the mean 

(7) mg(0*) = M-\e*) FT(0*) W_1[i/(0) - i/(0*)] + 0* ; (0* e D) 

and with the covariance function cK(0*, 0°) where 

K(0*, 0°) = M-^0*) FT(0*) W " 1 F(0°) M-1(0°). 

We see that K(0*, 0°) does not depend on 0 (= the true value of the parameters). 
When the set D is finite, D = {01, ..., 0fc}, it is better to consider the (m . ^-dimen­

sional random vector 

(8) T : = T ( y ) : = : 

instead of the random process (5). Here each component T(y, 0') is defined according 
to (6). 
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The mean and the variance matrix of T are equal to 

me'.= Ee(r) = (ml(e1),...,ml(0k)y 

Var (T) = c S 
where 
(9) =(K(0\e1),...,K(e\ekf 

*• \K(ek, el),...,K(ek,e% 

If A is any r x s matrix, we denote by .#(A) : = {Au : u e W} the linear subspace 
of IRr spanned by the columns of A. 

Proposition 1. If for every 0 e & 

J?[F(0)] <z J?^1), ...,F(0k))] , 
then the statistic 

y e H ^ H x(y) e Umk 

is sufficient in model (l). 
Proof. Let $£ be the linear manifold in UN (the "plane") spanned by the set 

U-# . 

Let us define 
zA := zA(y) := arg min ||y — x | L 

zei? 

The probability density of y is equal to 

f(y | 0) = (2TT)-^ 2 det" ^ 2 (E) exp {- ||y - #) | |W(2c)} « 

« e x p { - | | y - z A ( y ) | | 2
v / ( 2 c ) } e x p { - | z - - # ) | | ^ / (2c} ; (0 6 0 ) . 

Hence, according to the factorisation theorem (cf. [1], Chapt. XV. 5.), the statistic 
zA(y) is sufficient in model (1). 

Denote by 
P£ := F(0 i)M-1(0 i)FT(0 i)W-1 

the W-orthogonal projector onto ^#[F(01)]. The mapping zi-^(P1(z — J;(01)), . . . 
,.., Pk(z — rj(0k)) is one-to one on S£. Indeed, take z, z* e ££ such that 

P£(z - iy(0')) = P,(z* - 1,(0')) ; (i = l,...,k). 

Multiplying by F T (0 l )W- 1 from the left, we obtain 

F T (0 ' )W- 1 ( z -z * ) = O; (i = l,...,k), 

i.e. (z - z*) is W-orthogonal to ^T[(F(01),..., F(0k))], hence to <£. Consequently, 
(z - z*)T W _ 1 ( z - z*) = 0 hence, z - z*. 

It follows that y e R*h->(P1(zA(y) - i/(01)), ... ,Pk(zA(y) - rj(0k))) is a sufficient 
statistic in model (1). 

Since zA(y) is the W-orthogonal projection of y onto $£ we have 

P.(zA(y) - n(e1)) = P.(y - >/(0'')); (i = i,...,k). 
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Further, the equality 

F(0«) <y , el) = p,(y - n(e1)) + F(O1) e'1 

which follows from Eq. (6), specifies T(y, 0J) uniquely, since F(0') is of full rank. 
Consequently the mapping T(y)h^(P.(zA(y) - i/(01)),..., Pk(zA(y) - i/(0fe)) is 
one-to-one. It follows that T(y) is a sufficient statistic in model (l). • 

Corollary 1. If D a 0 is such that 

^ [F(0) ] c ^[(F(01), ..., F(0fc))] ; (0 e 0) 

for some finite set {01, ..., 0fc) <= D, then 

y e UN i-> {T(y, 0*) ; 0* e Dj 

is sufficient. Particularly 
y e UN h-> {x(y, $*); 0* e &} 

is always sufficient. 

Corollary 2. Let n(0) be a probability density on 0 (the prior density) such that 

.#[F(0)] c ^[(F(0 1 ) , ..., F(0fe))] ; (0 e supp («)) . 
Then 

TT(0 I <y)) = n(0 | y) 

where n(0 | u) denotes the posterior density of 0 given u. 

Proof. As in Proposition 1, we can prove that T(y) is sufficient in the model 

y = i/(0) + s ; (0e supp (it)) . 

Hence / (y | 0) can be factorized, i.e. we can write 

f(Y\o) = h(Y)g(r(y),0) 

for some functions h and g. It follows that 

K(e 1 y) = __^(y \9M°) _ = _ g«x).g)^) 
' J / (y I t) Tr(t) dt I <7(T(y),t)7t(t)dt-

SUpp(7t) SUpp(jt) 

Hence y e ^ H n(0 | y) is a function of T(y). According to the definition of condition­
al distributions (cf. [7], Chapt. V. 1.) it means that n(0 | y) = n(0 I t(y)). • 

3. A NONSTANDARD LINEARIZATION 

Let us consider the random vector T(y) (the sufficient statistic) defined in Eq. (8). 
We have 
(10) t(y) - Jf(me, c S) ; (0e0) 

where m0 and S are given by (9). 
Instead of taking the linearization (3) we propose to linearize (10), i.e. to take 
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approximative^ 

(11) < / ) ~ JT(\6t c S) ; (ffeR") 

where 

J : = ( I , . . . , I ) T 

and I is the m x m identity matrix. The linearization (11) is the linearization (3) 
applied separately to each component x{y, 6l) of the vector T(y). 

To compare the standard linearization (3) with (11) take for 0* any point of the 
set {01, ...,0k}, say 0* = 01. Then consider the BLUE-s (= best linear unbiased 
estimates) of 0 in both models. The BLUE in model (3) is equal to T(y, 01), and is 
expressed in Eq. (6). Althoug the matrix S is singular (in general), and Ji{\) <£ Ji{S), 
the vector 0 can be estimated without bias in model (11), say by the estimate 

l JT <Y) • 
K 

Hence the BLUE exists also in model (11). Let us denote it by 0(y). We refere to [3], 
Theorems 5.2.2 and 5.2.5 for explicit expressions for 0(y) and Var 0(y). We have 

0(y) = Q < y ) , Var S{y) = c V 
where 
(12) Q : = [ j T ( S + J J T ) - J ] " 1 J T (S + JjT)-

V.-O^S + J D - j ] - 1 - ! 
We note that JT(S + JJTV J is nonsingular, since J is of full rank and Jt\\\ = 
= Ji\)\r~\ cz Ji\S + JJT]. In the particular case that S is regular, we have simpler 
formulae 

(13) Q = ( J T S 1 J ) 1 J T S 1 

V = ( j ^ j ) - 1 

Hence in the linearized model (11) we have 

(14) 0(y) ~ Jf{Q, c V) ; (0 e Um) 

but in the linearized model (3) we have 

(15) T ( y , 0 x ) - ^ ( 0 , c M " 1 ( 0 1 ) ) ; (0 e Um) . 

To compare what linearization is better, we shall compare the exact distributions 
of0(y)andT(y, 01). 

Proposition 2. The random vectors 0(y) and T(y, 01) are exactly distributed accord­
ing to 

(16) 0(y) ~ JT{Qme, c V) ; (0 e O) 

(17) T(y, 01) ~ Jf^O1), c M -1(0*)) ; (0 6 0 ) . 

The vectors expressing the bias 
Qm0 - 0 
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and the bias 
m^O1) - 0 

are of the sample order of magnitude. The estimator 0(y) is more efficient since 
the matrix Var [T(y, 01)] — Var [0(y)] is positive semidefinite. 

Proof. Both variables 9(y) and T(y, 01) are linear in y, hence they are normally 
distributed. The mean and the variance of T(y, 01) is given in Eq. (7). The mean and 
the variance of 0(y) follow from Eq. (12) and from the mean and the variance of 
T(y) in Eq. (9). 

The bias of 0(y) is 

Qm„ - e = Q ; - e. 

The bias of T(y, 01) can be written in the form 

m ^ 1 ) - 0 = QJ m^O1) - 0 = Q - 0 
m, .(«'); 

since QJ = I, according to (12) and (13). Thus if m^O1) — 0 is of the same order 
for every i = 1,..., k, then x(y, 01) and 0(y) have the bias of the same order as well. 

The random variable T(y, 01) can be written in the form 

T(y,01) = (l,O,...,O)T(y) 

hence it is a linear unbiassed estimator of 0 in model (11). Since 0(y) is the BLUE 
in the same model, it follows that Var [T(y, 01)] — Var [0(y)] is positive semidefinite. 

• 
Note 1. According to Eq. (7) we can write the bias in the form 

KB, 9^ 
m , ( 0 1 ) - 0 : = r ( 0 , 0 1 ) , )me - 0 = J \ 

\r(0, 9k)/ 

where from the Taylor formula for ij(0) at 0 l we obtain 

(18) r(0, 0l) : = M-x(0 ;) FT(0£) W " 1 ^ ) - i/(0£)] + 0l - 0 = 

= iM-1(0') FT(0") W-1 [(0 - Of [ g g 1 (0 - 0^1 

for some number X e (0, 1) depending on 0 and on 0'. 
The expression for r(0, 0J) is small either if [0 - 0*]T M(el) [0 - 0 ;] is small 

or if model (l) is not too much curved, since 

sup T č 2 # ) 
yl '_±_l y 

dOdoJ 

vт M(0X) v ; 0 Ф v є 
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is related to the curvatures of Bates and Watts [2] in model (l). We used here the 
notation 

T d2t,(0) d2
v(e) 

v — v : = > V; —-^-V:. 
dOdOT Vj d9id9j

 J 

It is important to note here that Eo[0(y)] = Qme is a "mixture" of the means 
of T(y, 01), ...,x(y, 8k). In some cases the "mixture" is such that the bias of 0(y) 
is much smaller than the bias of every T(y, 0l). This depends on the choice off 
e\...,ek. 

Note 2. When T(y) is a sufficient statistic (Proposition 1) we arrive to 0(y) accord­
ing to the scheme 

(1) i—> sufficient statistic T K-> (10) i—> linearization of T H» (11) i—> 

H> sufficient statistic 81-> (14) 

Example 1. We shall consider the simple nonlinear model y = ij(0) + e with 
N = 2,m = 1, 0 =(0,it), t}(e) = (cos 0, sin 0)T, _ = W = 1. (The expectation 
surface is a halfcircle). In this case we have FT(0) = ( — sin 0, cos 0), M(0) = 1; 
(0 G &). To construct T(y) take two points 6l = 9* — S, 92 = 0* + 8 for some 
fixed 3 > 0, 9* E &. By simple computations we obtain 

( \ _ f-yi s i n (d* ~ S) + yi cos (0* - 8) + 0* - 5\ 
TW) ~ \ - y i sin (0* + 3) + y2 cos (0* + 8) + 9* + 3J 

SKcoskCOSH'S^(-coW-CT (M))/^(-) 
V = ( F S - 1 ] ) - 1 = (1 + cos2(5)/2 = cos2 8 < 1 

0(y) = ( F S ^ ) - 1 F S 1 T(y) = cos 8[-yi sin 0* + yi cos 0*] + 0* 

When 8 i-> 0 we obtain T(y, 0*): 

T(y, 0*) = [-yi sin 0* + yi cos 0*] + 0* . 
Further 

-<>[%)] - e = cos 3 sin (0 - 0*) + (0* - 0) , 

, E„[T(y, 0*)] - 0 = sin (0 - 0*) + (0* - 0) . 

Hence for 8 not very large, the bias of 0(y) and of x(y, 9*) is approximative^ the 
same. The mean square error of 9(y) is equal to 

Ee[0(y) - 0]2 = cos2 8 + [cos 8 sin (0 - 0*) + (0* - 0)]2 : = ij/(8) . 

We have 

- - = - 2 cos 8 sin <5[1 + sin2 (0 - 0*)] - 2 sin <5 [sin (0 - 0*)] (0* - 0) . 
d<5 
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Hence di///d<5|5 = 0 = 0. Further 

d2x\i 

dd2 
= - 2 [ - sin2 <5 + cos2 <5] [1 + sin2 (0 - 0*)]|*=o -

= - 2 + 2[ - * - sin ( - 0*)] • 

< - 2 + 2[ * - 0 - sin (0* - 0))] • 

- 2 cos (5[sin (0 - 0*)] (0* - 0)|5 = o ^ 

= - 2 [ 1 + sin2 (0 - 0*)] + 2(0 - 0*) sin(0 - 0*) 

If 0 > 0* then 

d2i// 

dd2 

If 0 < 0* then 
d2t/> 

d<52 , = o 

Hence, if 0* is so near to 0 that 

|0 - 0*| - sin(|0 - 0*|) < 1 

then Ee[0(y) — 0]2 attains its maximum at 5 = 0. Consequently 

E e [ % ) - 0 ] 2 < E e [ T ( y , 0 * ) - 0 ] 2 . 

4. THE POSTERIOR PROBABILITY DENSITY OF 0 

Consider a normal prior density 7t(0) in model (1), 

TT(0) = (27i)-m/2 det-1 / 2 (H) exp {-#6 - 0°)T H ^ ( 0 - 0°)} , 

where H is a given matrix and 0° e © is a given vector. Denote by 7i(0 | y) the corre­
sponding posterior density. If T(y) is a sufficient static (Corollary 2 to Proposition 1) 
then 

7i(0 |y) = 7i(0 |T(y)) . 

This is not a normal density. However, using the linearization described in Section 3, 
we can write approximatively 

TT(0 | y) ± 7rlin(0 I 0(y)) 

where 0(y) is supposed to be distributed according to Eq. (14). 

Proposition 3. 7rlin(0 | &(y)) is a normal probability density with the mean equal to 

(19) 0° + H(c V + H ) " 1 (0(y) - 0°) 

and with the variance matrix equal to 

(20) H - H ( c V + H ) - 1 H 

where 0(y) and V = Var #(y) are defined by Eqs. (12) resp. (13). 

Proof. Denote by hVin(0 | 0) the probability density of 0 corresponding to Eq.(14). 
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Consider the vector 

A 
as a random vector with the joint density n(9) hlin(0 | 0) and denote by E(«) the 
operator of taking the mean with respect to this density. By simple computations 
we obtain 

E(0) = 0° 

m = Eftffil = °° 
E[(0 - 0°) (d - 0°)T] = H 

E[(0 - 0°) (0 - 0°)T = E[(0 - 0°) E,(0 - 0°)T] = H 

E[(0 - 0°) (0 - 0°)T] = E[E0[(0 - 0°) (0 - 0°)T]] = c V + H . 
Hence 

:)~-((::)CV+H;S 
According to [6], Chapt. 8. a 2, (V), the conditional density of 0 given 0 is normal 
with the mean 

0° + H(cV + H)" :(0 - 0°) 
and with the variance 

H - H(c V + H)-1 H . • 

Note. The statistic 0(y) is sufficient in the linearized model (11). Therefore we can 
write (compare with Corollary 2) 

*i.n(* 10(y)) = *Un(0 | <y)) • 

On the other hand, the exact posterior density is 

n(9 | y) = TT(0 I <y) ) . 

Hence we can compare the approximative and the exact posterior density from 

*u,.(g 1 g(y)) _ guag I </)) 
7r(0|y) 7t(0\x(y)) ' 

In 7rlin(0 | x(y)) we take E„[T(y)] = J0, in 7i(0 | T(y)) we take E„[T(y)] = m0, other­
wise the Bayes formulae for computing 7rHn(0 | T(y)) and 7i(0 | T(y)) are the same. 

5. A NOTE ON CONFIDENCE REGIONS FOR 0 

We consider confidence regions for 0 which are based on 0(y). We note that they 
are of restricted importance, since they are influence by the choice of 0* in (3), resp. 
by the choice of the points 0 1 , . . . , 0k in (8) which in fact represents a prior knowledge 
about 0. 
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From (16) we obtain that the set •' 

(21) {0: |0(y) - QmJli < cX

2

m(*)} 

is a confidence region for 0 in the case that cW is known, a is the exact confidence 

level, and Xm(a) is the a-quantile of the x2 distribution with m degrees of freedom. 

Example 2. Take the set-up from Example 1. We have 

Qmfl = Ee[0(y)] = cos <5[- cos 9 sin 9* + sin 9 cos 9*] + 9* . 

Hence 

\\8(Y) - Qme\\y = [~(yx - cos 9) sin 9* + (y2 - sin 9) cos 9*]2 . 

We see that the confidence region (21) does not depend on <5, hence the standard 
and the nonstandard linearizations are equivalent as regard to the confidence regions. 
This is by no way in contradiction to Proposition 2; the random variable 0(y) has 
a small variance, however, this has no importance for confidence reasoning. On the 
other hand, the obtained confidence region depends very much on 9*. 

To understand the situation geometrically, let us write 0~(Y) in the form 

S(Y) = Ly + / 

for some matrix L and some vector / (This is possible, since 0(y) is linear in y). 
Further we have 

c V = Var0(y) = c L W ' L T 

hence 

P:= LTV XLW * 

is a W-orthogonal projector. We can verify that 

(22) \\KY - nWlw = \RY) - <*m»\\i • 

Hence the confidence region (21) has the form 

{0:\\P[Y-tl(0)Ww<eX2M-
This confidence region, although exact, gives poor results (it is too large) if the value 

|| p[»/(0true) — l/(^*)]||w i s large. (We note, that this is zero if model (l) is linear.) 

Another consequence of (22) is that \\9(y) - Qm0\\y and |(l - P) [y - iy(0)]||w 

are independent random variables. Hence another confidence region (of the exact 

confidence level a) is of the form 

: (N - m) Щү) - QrnĄj ^ p 

lІr 
,ІV-и(a)[ 

" # - P ) [ y - # » |i 
where F m N_m(a) is the a-quantile of the F-distribution with m and N — m degrees 
of freedom. The advantage of this region comparing with (21) is that it can be used 
in the case when c is unknown. 
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6. CONSEQUENCES FOR NONLINEAR EXPERIMENTAL DESIGN 

The covariance matrix of 0(y) (Eq. (16)), and the approximative aposteriori co-
variance matrix (Eq. (20)) do not depend on the observed vector y, and are smaller 
than the corresponding variances in the standard linearization. Therefore they are 
adequate to construct optimality criteria for optimum experimental design in non­
linear models. 

(Received March 28, 1989.) 
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