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K Y B E R N E T I K A — V O L U M E 9 (1973), N U M B E R 1 

Algorithms for Solution of Equations 
PA + AP = - Q and MPM-P = - Q 
Resulting in Lyapunov Stability Analysis 
of Linear Systems 

JAN ŠTECHA, ALENA KOZÁČIKOVÁ, JAROSLAV KOZÁČIK 

The article deals with stability solution of the linear continuous and discrete systems by second 
method of Lyapunov. Two algorithms for solution of equations PA + AJP = - Q or MTPM — 
— P = — Q are asserted. The first algorithm is accepted from [4], the second one is derived. 
Both algorithms are written as open programs in the language ALGOL. They can be used 
also as procedures. In conclusion the possibility of utilization of these algorithms for optimaliz-
ation of dynamic system by quadratic cost function is shown. 

1. INTRODUCTION 

The article deals with algorithms for the solution of linear matrix equations which 
are the results of a continuous and discrete linear system stability analysis. The 
results can be also used to compute the cost function value of a given system and 
for optimal control system synthesis. 

The given linear continuous system is defined by equations of state 

(1.1) ^ = -Ax(() + B u(t), 

y(t) = c x ( ( ) , 
where x(f) is the n-vector, 

y(r) — the output m-vector, 
u(t) — the input r-vector, and 
A — n x n-dimensional system matrix, 
B, C — input or output matrices, respectively. 

For the purpose of investigating the stability analysis we are only interested in 
homogeneous equation 

(1.2) ^ = " * < ' ) • 



This means that the stability of the systems (1.1) or (1.2) depends only on the form 63 
of the state matrix A. 

The linear discrete system is defined by equation of state 

(1.3) x(fc + 1) = M x(k) + N u(k), 

y(k) = Cx(k) 

where x(fc), y(fc), u(k) are n-, m-, r-dimensional vectors of state, output and input, 
respectively, 

M — n x n-dimensional system matrix, 
N, C — input or output matrices, respectively, and 
k — a sampling constant. 
For the purpose of investigating the stability we are also interested in homogeneous 

equation 

(1.4) x(k + 1) = M x(k) . 

It is known that the continuous systems (1.1) and (1.2) are asymptotically stable 
if and only if the real parts of all eigenvalues of the state matrix A are negative. 

The discrete systems (1.3) or (1.4) are asymptotically stable if and only if the 
absolute value of all eigenvalues of the state matrix M is less than 1. 

It is no simple matter to compute the eigenvalues of square matrices A and M, 
and this is why different criteria or methods to test their stability are used. One of 
most important methods is the Lyapunov method which is most suitable for the 
non-linear systems stability analysis. Without giving a proof, we shall now introduce 
the Lyapunov theorems on the stability of systems. For the purpose of investigating 
the stability of the linear system we shall use the theorems as specified in Section 2. 

Theorem 1. — Lyapunov stability of a continuous system [1]. Let us take a system 
whose equation of state is in the form 

(1.5) '-f -fM 
at 

and let f(0, t) = 0 for all values of t. 

Let us assume that a scalar function V(x, t) exists with its continuous first partial 
derivatives. Let V(x, t) meet the following conditions: 

a) V(x, t) is positively definite and V(0, t) = 0; 

b) V(x, t) >. a([|x||) > Ofor all instances where x + 0 and all values of t, where a. 
is a continuous non-decreasing function and oc(0) = 0; 

c) derivative V is negative for all instances where x + 0 and all values of t, 
i.e. V(x, t) <. — y(|[x||) < 0; for all instances where x +• 0 and all values of t, 
where y is a continuous non-decreasing scalar function and y(0) = 0, 



64 d) there exists a continuous non-decreasing function j8(|x||), so that jS(O) = 0 

and so that an inequality ofV(x, t) > P(\\x\\) is valid for all values of t, 

e) the function a(| |x|) meets condition 

lima(||x||) = oo. 
x->oo 

Then the origin x — 0 is asymptotically stable in the large. 

Theorem 2. — Laypunov discrete system stability [1]. Let the discrete system 
be defined by equation of state 

(1.6) x(k + \)=f(x(k)) 

and let an equilibrium state be in the origin of coordinates, i.e. f(0) = 0. 
Let us suppose that there exists a scalar function V(x), continuous in x, which 

meets 

a) V(x) > 0 for all instances where x =f= 0; 
b) AV(x) < 0 for all instances where x =f= 0; 
c) V(0) = 0; 
d) lim V(x) = oo. 

IMI-co 
Then the equilibrium state, x = 0, is asymptotically stable in the large. The 
function V(x) is called the Lyapunov function. 

2. STABILITY THEOREMS OF THE CONTINUOUS AND DISCRETE 
LINEAR SYSTEMS 

Theorems 1 and 2 are only sufficient conditions but not the necessary ones. Without 
Lyapunov function V(x), meeting theorems 1 or 2, we know nothing about the 
system's stability. The quadratic form of the Lyapunov function is the simpliest one. 
For a given stable system there does not exist only one Lyapunov function. If a con­
tinuous system (1.5) is linear then its equation of state is in the form of (1.1). The 
following theorem is valid for the Lyapunov stability analysis of this system: 

Theorem 3. — Stability of linear continuous system [1, 2]. A linear continuous 
system (1.2) is asymptotically stable in its equilibrium state if and only if a positiv­
ely definite real symetrical matrix P meeting equation 

(2.1) AJP + PA= -Q 

exists for arbitrary positively definite real symmetrical matrix Q. The quadratic 
form <x, Px> is the Lyapunov function. 

As matrix P is symmetrical, the equation (2.1) is a matrix type equation for 
\n(n + 1) unknown coefficients p{j, \<.i<.n,X<.j<.n, i<.j- The equation (2.1) 



has a solution only if eigenvalues of matrix A are not equal to zero or when the sum 
of any two matrix A eigenvalues is not equal to zero. The simpliest form of matrix Q 
is the unit matrix E. In section 3 we shall convert the matrix-type equation (2.1) 
to a system of \n{n + 1) linear algebraic equations which are very easy to solve. 

For the stability analysis of linear discrete systems (1.3) or (1.4) the following 
theorem can be used: 

Theorem 4. — Linear discrete system stability [1, 2]. The linear discrete system 
(1.4) is asymptotically stable in its equilibrium state x = 0 if and only if a real 
positively definite symmetrical matrix P meeting equation 

(2.2) MrPM - P = -Q 

exists for an arbitrary positively definite real symmetrical matrix Q. 
The Lyapunov function for the given system is 

(2.3) V(x(/c)) = <x(/c),Px(/c)> 

and its first difference is 

(2.4) AV(x(/c))= -<x(/c),Qx(/c)>. 

The equation (2.2) is also a matrix-type equation for unknown coefficients, py, 
of the matrix P. In the next paragraph, we shall convert equation (2.2) into a system 
of n(n + 1) r linear algebraic equations. Investigation about the positive definiteness 
of matrix P can be done by use of the well-known Sylvester criterion of positive 
definiteness [1, 2]. A point to be mentioned is that theorems 3 and 4 provide the 
necessary and sufficient conditions for the linear system stability. 

3. ALGORITHMS FOR THE SOLUTION OF EQUATIONS (2.1) AND (2.2) 

For low-order systems, matrix-type equations (2.1) and (2.2) can be manually 
calculated elaborating equations for all the elements. For the purpose of solving 
the equation with the aid of a digital computer, algorithms must be elaborated which 
are suitable for converting the matrix-type equation into common linear algebraic 
equations. The task is to convert equation (2.1) into the linear algebraic equations 

(3.1) Sx = v, 

where the vector v is /i-dimensional, h = \n{n + 1). Its elements are equal to the 
elements q{j of the matrix Q above the main diagonal: 

* = [«11.«12. •••» «1». 322, •-., «2„> ••-, InnY • 

The elements of matrix S depend on the elements of the systems' matrix A. 



66 Algorithms suitable for computing matrix S were published in [4]. We shall introduce 
the algorithm for its computation in Algol, which is slightly different from the one 
given in [4]. 

ik:=0;h:=n*(n + l)/2; 
for k : = 1 step 1 until n do for / : = k step 1 until n do 

begin if; = 0; ik : — ik + 1; 
for ;': = 1 step 1 until n do for / : = i step 1 until n do 

begin if := if + 1; 
s[if, ik]: = if k = i and / + / then a[l, f] else 

if k 4= i and / = / then a[k, i] else 
if k 4= i and / 4= / and k = / and I + i then a[l, i] else 
if k 4= i and / 4= / and k 4= / and / = i then a [A,/] else 
if it = z and / = / and A: = / and / = i then a[k, i] else 
if k = i and / = / and /t 4= / and / 4= i then a[/t, i] + a[l, j] 
else 0; 

end; 
end; 

/ : = l ; / : = 0 ; 
sem: if / :£ h then begin 

for k : = 1 step 1 until /z do 
s[i,k]:= 2*s{i,k]; 
i:= i + « — / ; / : = / + 1; 
go to sem; 

end; 

Note. In this algoritm n is dimension of matrix A, a\i,f\ are elements of matrix A, 
s\i,j~\ are elements of matrix S. 

Vector x is the solution of equation (3.1). Elements of the vector x are equal 
to the sought coefficients p{J in matrix P. 

X = {PlL Pl2, Pl3, •••> Pin, P2L ••; Pnn)T • 

A similar algorithm can be used to solve equation (2.2). Let's now derive this 
algorithm. 

In equation (2.2) we shall first compute the product of matrices MrP = B. For the 
elements of the matrix B hold 

k-l u 

(3.2) bik = £ mnpik + £ mufti 
> = 1 i = fc 

b 

supposing that £(.) = 0 when b < a. 

For the elements of matrix C = MTPM hold 

(3.3) cIJt = £ fc^m^ 



and substituting equation (3.2) into the equation (3.3) we obtain 

j=n j-l n 

(3A) Clk = X mJk{ X mnPiJ + X milPji) • 

J = l i = l i=j 

This means that for equation (2.2) we have a system of linear algebraic equations 

(3-5) clk-plk = qlk, l g l ^ n , l ^ k ^ n , l £ h , 

where clk is defined in equation (3.4), 

Pik are unknown coefficients of matrix P, 

qlk are known coefficients of matrix Q. 

Equation (3.5) can be rewritten into the system of linear equations 

n j-l n 

(3-6) X mJi( X mnPij + X miiPjd ~ Pn = 9 u . 
j = i i = i t=j 

n J-l 

X m j2 ( X milPiJ + X mtlPji) ~ Pl2 = «12 » 
j = l i = l i = j 

X m j „ ( X W i lP . J + X m i l P j i ) - Pin = 4ln » 
J = l i = l i = j 

l. J - l n 

X m j2 ( X ml2PlJ + X m i2pj i ) - P22 = 922 . 
j = l i = l i=j 

n j - 1 11 

X ÌПJn( X ' " iгPi j + X mtzPjt) ~ P2„ = Чln , 
j ' = l i = l i = j 

n J-l n 

X mJn( X m i » f U + X m . 'nPji) - Pnn = <2m • 
j = l i = l i=J 

The vector-like form of the previous equations is 

(3.7) Dp = q, 

where 

P = [Pll,Pl2,--;Pln,P22,--;P2n,--;Pnn~]T, 

9 = [«11,«12. ••-.9l».922. •••» q2n,--;<lnnY-

It is obvious from (3.6) that for n = 3 (\n(n + l) = 6) the matrix D takes the form 



w г u m u ~ J m l i m г l + 
+ m 2 1 m u 

mlímЪl + 
+ mЪlmll 

Щim21 
m21m31 + 

+ m31m21 

mЪlmЪl 

m 1 2 m u m12m21 + 
+ m22m11-
— \ 

m12m31 + 
+ m32mxl 

m22m21 
m22m31 + 

+ mЪ2m21 

m32mъl 

' " i з m u 

m13m21 + 
+ m2зmil 

m13m31 + 

+ mЪЪmll~ 
— 1 

m23m21 

m23m31 + 
+ m33m21 

mЪЪmЪl 

m12m12 m12m22 + 
+ m22m12 

m12m32 + 

+ mъгmiг 

m22m22 — 1 m22m32 + 
+ m32m22 

m 3 2 m 3 2 

m13m12 m13m22 + 
+ m23m12 

m13m32 + 
+ m33m12 

m2Ъm22 m23m32 + 
+ mъъm22-
- 1 

mЪЪmЪ2 

m13m13 m13m23 + 

1 + mъъmiъ 

m13m33 + 
+ m33m13 

m23m23 
m2ЪmЪЪ + 

+ m33m23 

mъъmъъ~ 1 

From the form of matrix D, it is evident that it consist of row and column blocks 

of dimensions n, n — 1, n — 2,.. ., 1. The number of blocks equals n2. 

By designating 

s — the column dimension of the block, 

q — the row dimension of the block, 

r — the column index of the last element in the block of higher dimension (s + 1), 

and 

p — the row index of the last element in the block of higher dimension (q + l) 

we obtain the equation 

(3.8) d[i,j] = m[n — s + 1, i — p + n — q] m[j — r + n — s, n — q + I] + 

+ m[j — r + n — s, i — p + n — q] m[n — s + l , n — a + 1] 

for the elements of matrix D in equation (7) and for i — 1,2,..., h, i + j , j + r + 1 

and h - n(n + l) \. 

For r + 1 — j , then, 

(3.9) d[i,j] - i [m[n - s + l , i - p + n-q] m[j - r + n - s, n - q + 1] + 

+ m[j — r + n — s, i — p + n — q] m[n — s + 1, n — q + i]] , 

for i = j 

(3.10) d[i,j] — m[n — s+1, i — p + n — q] m[j — r + n — s,n — q + l] + 

+ m[j — r + n-s, i — p + n — q] m[n — s + 1, n — q + l] — 1 . 



The complete interpretation of the algorithm in Algol is: 

p : = r : = 0; q : = x : = n; h:= n*(n + 1); 
for j : = 1 step 1 until h do 

begin for i: = 1 step 1 until h do 
begin d[i,j] : = m[n — s + 1, i — /> + n — q] * ra[/ — r + n — s, n — q + 1] + 

+ m[j — r + n — s, i — p + n — q] * m[n — s + 1, n — q + 1]; 
if 7 = r + 1 then rf[i,/] : = rf[i',/]/2; 
if i = 7 then rf[j',j] : = d[i,j] - 1; 
if j" — p = g then 

begin p : = p + q; q:= q ~ 1; 
end; 

if i = h then 
begin p := 0; q:= n; 
end; 

end; 
if j — r = 5 then 

begin r : = r + s; s : = J —- 1; 
end; 

end; 

4. CONCLUSION 

The article states the algorithms for computing the matrix-type algebraic equations 
which result in stability analysis of linear continuous and discrete systems by the 
Lyapunov method. Algorithms were used for assembling programes for MINSK 22 
and NE 503 digital computers. 

The advantage of this method lies in the fact that the algorithm can be used not 
only for stability analysis of a given system but also for the synthesis of the linear 
system and computing quadratic performance measure. This fact is expressed in the 
two theorems below: 

Theorem 5. — The quadratic cost function of a linear continuous system [1]. 
Let us have the cost function for the given linear continuous system (1.2) in the 
form of 

(4.1) J - f<x(0, Q x(t)> df 
J lo 

where Q is a positively definite or semidefinite real symmetrical matrix. The cost 
function (4.1) can be expressed in the form of equation 

(4.2) J = <x(f0),Px(f0)> 

where P is a positively definite matrix and is the solution of the equation (2.1). 

Assuming the initial state x(t0) be a random variable uniformly distributed on the 
surface of the n-dimensional unit sphere, the expected value of the performance 



70 criterion for the set of such n initial state vectors x,(t0), i = 1, 2 , . . . . n is then 

(4.3) j = t r P = t p i i . 
i = i 

Quadratic cost function value of the discrete system can be expressed by means 
of the theorem below: 

Theorem 6. — The linear discrete system, quadratic cost function [1]. Let us 
assume that the cost function of the discrete system (1.4) is 

(4.4) J = f <x(fe),Qx(fe)> 
Jfc = 0 

where Q is positively definite or semidefinite real symmetrical matrix. The cost 
function (4.4) can be expressed in the form of equation 

(4.5) J = < x ( 0 ) , P x ( 0 ) > 

where P is a real positively definite matrix and is the solution of equation (2.2). 
Solution of equation (2.2) can be utilized for syntesis optimal discrete controler [7]. 
Let us choose for linear discrete system 1.4 cost function in the form 

(4.6) J = £ <x(fe), Q x(fc)> + <u(fe), R u(fe)> 
k=i 

where Q, R are positively semidefinite real symmetrical matrices. 
It can be derived by simple way [8] that optimal discrete control is determined 

by linear discrete feedback. Optimal discrete controller is determined by relation 

(4.7) u(fe) = L x(fe) 

where real constante matrix L can be calculated by iterative relations [7] 

(4.8) Vk = MjVkMk + LT
kRLk + Q , 

(4.9) Lk = (R + I S P V ^ N Y 1 NVk_rM , 

(4.10) Mk = M - NLk. 

These iterative procedures origine choosing L0 such that matrix M0 by (4.10) were 
stable. Equation (4.8) for calculation real symmetric matrix Vk has the form (2.2). 
Optimal linear feedback matrix L is determined 

(4.11) L = lim Lk . 
* - • « > 

This algorithm has quadratic convergence. The similar procedure for continuous 
system is published in [3]. 

(Received January 26, 1972.) 
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