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KYBERNETIKA — VOLUME 72(1976), NUMBER 2

Closedness Properties and Decision Problems
for Finite Multi-Tape Automata*

PeTER H. STARKE

The present paper is devoted to an investigation of closedness properties of classes of relations
which are representable by different kinds of multi-tape automata without using endmarkers
and of the (classical) decision problems of finite multi-tape automata. A similiar investigation
has been made by Fischer and Rosenberg [1] for the case when an endmarker is used.

The paper is not self-contained, the reader is assumed to be familiar at least with the paper
91

1. CLOSEDNESS PROPERTIES

Let be X a finite nonempty alphabet and n > 2 a natural number. By 4", resp. 4",
resp. 9, we denote the sets of all n-ary relations over W(X) representable by a weakly
initial resp. initial resp. deterministic ND-n-TA** and by & A", tesp. FF N, resp.
F 9, we denote the sets of n-ary relations representable by finite weakly initial resp.
finite initial resp. finite deterministic N D-n-TA. Then the following proper inclusions
and equalities hold:

) BXWX) = N, = SN, > 9, > FI,,

()] NYyD FN D FIN, 2 FD,,
3) FIN, D, > FD,,
@ IN G ONFN = FIN,.

* Part of an invited lecture held at the MFCS 75 Symposium, Maridnské Lazng (CSSR),
Sept. 1975.

** Nondeterministic n-tape automaton.
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Trivially the set 4", is closed under union, intersection, complementation, catena-
tion and catenation closure. We shall investigate the working of these operations
within the remaining five classes of relations after some preparations.

Let us first recall the definition of representability using an endmarker (cf. e.g.

(1D

Definition. Let be e¢ X and B = [n, X U {¢}, Z, 1, f, Z,, M| a ND-n-TA with
the input alphabet X U {e}. Then

R(®B) = {p| e XW(X) A J(Z. pe”) 0 M + 0}

(wheree™ = [&, &, ..., £]) is the n-ary relation represented by B using the endmarker &.
One can prove (see e.g. [2])

Lemma 1. There is an algorithm which for every finite resp. finite initial resp.
finite deterministic ND-n-TA B with the input alphabet X constructs a finite resp.
finite initial resp. finite deterministic ND-n-TA B, with the input alphabet X U {e}
such that R(B,) = R(B).

Lemma 2. There is an algorithm which for every finite ND-n-TA B, with the input
alphabet X U {¢} constructs a finite ND-n-T4 B with the input alphabet X such
that R(B) = R(B,).

Remark. In general it is not possible to construct an initial or a deterministic
ND-n-TA B with R(B) = R(B,) even in the case that B, is deterministic (consider
e.g. R(B,) = {[a, €], [e, a]}).

Next we prove that the set of all n-ary relations representable using an endmarker
by finite deterministic n-TA is closed under complementation. This assertion is given
in [1] and for the proof the reader is refered to the paper [3] although representability
in [3] is defined in a different way. Therefore we shall give a proof here.

Lemma 3. For every finite deterministic n-tape automaton A = [, X u {e}, z,
7,8, 2;, M] one can construct a finite deterministic n-TA U = [n, X U {&}, Z*,

v*, 6%, z}, M*] such that

R(A) = R(A) = XW(X)\R(%).

Proof. In the theory of ordinary acceptors (i.e. n = 1) one obtains I by replacing
in U the final set M by M* = Z \ M. This construction works only in the case that

R([n, X U {e}, Z, 1, 6, z,, Z]) = XW(X)



which in general is not fulfilled. Therefore our aim is to construct from 2 a finite
deterministic n-TA %' = [n, X U {e}, Z', 7, &, 2}, M'] with R(¥) = R(2U) and

R{n, X u{e), Z',7,8,2,2]) = Xw(X).

Without loss of generality we can assume that 9 is of Rabin-Scott type, ie. 1(z)
is a singleton for all z € Z, and that R{¥) = 0. Let be

8 ={[ee,...el.[ee e, ..l n[e e, ]},

2 =2 x (W({L ) O L)),

= [z (L],

M’ =M x {0},

and for [z, N} e Z" we put
([ N]) = «2)
8"([z, N}, x) = [8(z, %), N']

where
N~z), if zeé) and 7(z) SN,
N’ =<N, if zeX, and 1(z) EN,
{0}, else,

for allx € X, u &, with ¥(x) = 1(z), and finally
A =[n,X v}, 2,7,8, 24, M"].

Obviously for all r e XW(X) we have
n

[z, ve”] € D5 = [[z5, {L, ..., n}], "] € Dsw A &"(21, 1e”) = [8(z1,187), 0],

hence R,(A) & R(A").
Moreover one can show for all p € XW(X V] {e})

(=4, »]e Dy~ 8(z1,9) = [ N] AN * {0}) =
> 3ry 3,30, 30, (r e 1 e W(X) A P = [1100 o TaOa] A

Aoi=en Ao, =¢ A z= 8z, D))

ieN i¢N

from which it follows that R(U") = R,(Y).
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Now let be
Zo={z"|2"€Z" A Jp H(3"(z};p) = 2" A &(Z" 1)e M")} .
Since R,(U") = R(YU) * 0, z} € Z,. Moreover let be
Zoo = B*({1, ..., n}),
and for N€ Zgg, xe X} U &}
Too(N) = max N,

Soo(N,3) = N, if zeX, and ¥(x) = 1oo(N),
oo N vx), if xed, and ¥(x) = 10o(N),

Z =29V Zp,
forz’eZ, xe X} U &l withv(x) = 7(z)

{1 ren

Too(z'), if Z'€Zogo,
&"(z',x), if ZeZ, and §"(z',2)eZ,,
0'(z',2) ={N~s&z), if 2 =[z,N]eZ, and &"(z,%)¢Z,,
500(2', x), if z7eZy,
where &(x) = {i | (x); = ¢}, and finally
W=[nX0ule 2, 7,85, M nZ].

One proves without difficulties that

R(2) = R() (= R(2).
We shall show now that

Ry =g R([nX U {e}, 2,7, 0,21, Z'7) = XW(X).
Let be p e XW(X) and let be r the longest initial segment of pe~ such that [z, r] e
e Dy and §'(z], ) € Z,. An initial segment of that kind exists since z| € Z,. Let be

¥(z1,1) = [2,N] e Z,



and q that n-word with rq = pe~. We have to show that
[[z,N], a] € D5 .
Let be i, such that ([z, N]) = {io}-
Case 1. (q);, = e.

This implies (t);, = (p); &, hence ic¢ N and t(z) &£ N. Therefore we have
8"([z, N, ¥) = [¥(z, %), {0}] for allx € X} U &, with w(z) = 1(2). But, by [2, N] € Zq,
there exists a ' with §"([z, N],t) e M x {}. Now, from a state of the kind [z, {0}]
no state from the set M x {@} is reachable in A". This implies that " = e, hence
N = 0 and r = pe”, thus p e Ro.

Case II. (q);, * e.

We choose an x and a q" with

q=1x¢ and Wz) = {io}.
Then 6'([z, N], x) = N’ =4 N\ &(x) and it holds
ieN (@) +e.
Therefore 3o0(N’, q) is defined and consequently §'(z}, pe™) = (2}, rxq’) is defined
which implies p € Rq. ’
Now it is obvious that for % = [n, X U {e}, Z', ¢, &, 2§, Z'\ M"] it holds:

R(3) = XW(X)\ R(2) .

The following theorem states by a table our results on the working of some of the
usual operations on the classes of n-ary relations mentioned above, In that table the
entry in the column corresponding to the class # of relations and in the line corres-
ponding to the operation o is the least class &' € {N,, N, Dy FN ,, FIN
F2,} such that the operation o4 executed with elements from # will always yield
an element of %'

Theorem 1.
‘ IN, 2, FN, \FIN | FD,
|
union Ny Ny | FN, FN, FN,
intersection IN, 2, Ny SN D,
complementation Ny Ny N Nt FN,
catenation N Ny | FN, FN, FAN,
catenation closure FN, ‘ IN, | FNy | FIN | FIN,
\
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Proof. In some cases we give the proof only for n = 2. It is easy to see that the
same methods apply in case n > 2.

(1) Union

Let be La nonregular language over X. Then the relations R, = L x {e}, R, =
= {e} x L are elements of &, = #.4°, and R, UR, is not representable by an
initial ND-n-T4 since ({v(x)|reR; v R,\{e}} = 0. The relation R, UR, is
not 2-regular since in that case (from the so-called projection theorem) it would
follow that Py(R; U R,) = L (the projection on the first coordinate) is regular.
This proves the assertions on S.A4", and 2,. From the fact that # 4", is closed
under union and @ € # 4", we obtain the assertion on #.4",. The same argument
as above applied to a regular language L shows that initiality and determinism are
lost under union. Thus the assertions on £S5 A", and 2, hold.

(2) Intersection.

The closedness of #.A4", and 9, under intersection is a direct consequence from the
fact that for all relations R, R, € £, we have

NP [re (R, 0 R)N{e}} 2 N() [ re RN {e}} + 0,
and from the fact that the intersection of strongly mesh-free sets is strongly mesh-free

again.
To prove the assertion on & 4", consider the relations

Ry = (W(x) x {eh) v {lex]}, R. = ({e} x WX)) v {[x ]}

for a fixed x € X. We have R, R, € 45, but R, n R, = {[e, e], [e, x}, [x, e]}
is not representable by an initial 2-TA4.

The intersection of two relations representable even by deterministic n-TA is
in general not n-regular. Consider e.g. the relations

R, = {[a*ba’, a"ba"] l k,I,m = 0}
R, = {[p, ]| pe W({a, b})}

which are described by the admissible regular expressions

T, = {[a,2]>.[b,2] . <[a,1] . [a, 2> . [b. 1] . [a, 1],
T, = ([a,1].[a,2] v [b, 1] . [b, 2]>

and thus are representable by deterministic 2-TA. The relation

R, A R, = {[a*ba", a*ba*] | k 2 0}



is not 2-regular, since the language {a"ba" [ k= 0} is not regular. This proves the
assertions on FA",, FFN, and F9D,.

Remark. It is essential here that X contains at least two letters. In case that X is
a singleton the intersection of two n-ary relations representable by finite determi-
nistic n-TA with the input alphabet X is again representable by a finite deterministic
n-TA (cf. [6]).

(3) Complementation

1t suffices to show that the assertions on 9,, FS A4, and FZ, hold. Obviously
there are relations R € 9, such that RN X, = 0 thus X, € R = XW(X)\R and

therefore R is not representable by an initial ND-n-TA.

For an arbitrary language L over W(X) the relation R, = {[p, ..., p] [ pel} is
an element of @,. By a theorem in [8] from the assumption Ry e #A4, it follows
that the diagonal D(R,) = {q|[q,...,q] € R;} = {q| q ¢ L} is a context-sensitive
language. Since there are languages the complement of which is not context-sensitive,
there is a relation Ry such that R is not n-regular. Thus the assertion on 9, is proved.

Now we consider #.#.4",. The same argument as above shows that the comple-
ment of a relation R € #.4 4, need not be representable by an initial n-TA. We shall
show that the assumption

ReFSIN,~»ReFN,
will lead to a contradiction.

By the de Morgan laws &% ./, is not closed under complementation, let be Ry €
€ F A, such that Ry ¢ F4,. Then, for a fixed x € X, we consider the relation

Ry ={[x.e,....el} . Ry .

From Ry € # A, we obtain Ry e FSA,. By our assumption we have Ry e FA .
On the other hand
Ry = a[x,e,».»,e](R;)) s

since for p e XW(X) we have
n
peRo—péR,
[xe..,e]péR;
“—pe 6[x.e‘...,e](R.(')) .

The following lemma asserts that for Re #.4/, the derivative .., (R) is an
element of #.4", again. Thus from R € # 4, we obtain Ry = 8., o(Rs) € F AN,
in contradiction with the choice of R,.
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Lemma 4, For every Re #A4,, XpeX it holds ... (R)EF N,

BY Crxgre,...ef{ Ry U R2) = B e eif(R1) U Bprq c.....eo(Rz) and the closedness of #.4,
under union it is sufficient to prove the assertion for relations R which are represent-
able by a finite initial ND-n-TA B = [n, X, Z, 1, f, z;, M] of Rabin-Scott type.
If 1(z;) = {1} then obviously

Ororer.. e RB)) = R([m, X, Z, 7, f. f(zy, [Xos &, ..., €]), M]).
If o(z;) + {1} we consider the ND-n-TA B* = [n, X, Z*, t*, f*, z}, M*] with

zx=Zu(Zx{e)u{lzx]|zeZ A xeX n1(z) + {1}},
™(z) = 1(z) for zeZ,
™([z,0]) =1(z) for zeZ,oeXu{e},
fHz2) =f(z,x) for zeZ with o(z) + {1}, zeX,,
Mzx) ={[z,c]|[x=[0.e,...e] AoeX Az ef(z,x) A o(z) % {1}] v
vio=endZ(@"ef(z,x) A t(z') = {1} A 2 ef(z", )]},
for zeZ with 1(z) = {1}, xe X} (where 2, = [xo,¢,..., €]},
zx) ) ={{zhol[(e=xnzeflz,x) A d(z) + {1}) v
V(e=en(ef(z,8) nt(z)= {1} A 2 ef(Z, [x.e,...,€]))}
for zeZ with 1(z) % {1}, xe X, ze X, ,
f*([z,.e], %) =f(z,x) x {e}, forall zeZ xeX,,
=z,
M* =M x {e}.
One shows easily that R(B*) = ... .(R(B))-

Now we prove, that the complements of relations from &%, are always in F N .
Let be R € %, and U a finite deterministic n-TA representing R. Then, by Lemma 1,

_there exists a finite deterministic n-T4 A" with R;(QI') = R. Hence, by Lemma 3,

there exists a finite deterministic n-TA A" with Re(i’I” = R. Now, by Lemma 2, we
obtain that Re #.4/,.

(4) Catenation

Let L be a non-regular language over X, then {e} x L, Lx {e}€ 2, c SN,
and ({e} x L).(Lx {e}) = L x L. The relation L x L is an element of .#", but
not an element of &4, (by the projection theorem). If e€ L then L x L ¢ SN,
Thus the assertions on .£.4",, 9, are proved. In the same way one using L= W(X)
one can verify the assertions on 49, and #9,.



(5) Catenation closure

The assertion on # A", is trivial, the remaining assertions are a consequence of the
following construction.

Let B = [n,X, Z, 1, f, zy, M] be an initial ND-n-TA of Rabin-Scott-type and
let be z’, z", z] pairwise different elements not contained in Z. We consider the
ND-n-TA® =[nX,Zu{z, 2, 2}, 7, f, 2}, M"] with

(z) = o(zy), 7()=7@E") = {1},
©(z) = 7(z) forall zeZ,
0 =1, [ =19 ={],

, {}, if fzx)nM 0,
z,%) = f(z,x) U i
(&%) = 1(z3) {0, else,
M= {2} U {z1}, if z,eM,
0, else.
One can see without difficulties that R(B’) = R(B). Now we put for all z €2’ =
=Zu {z', z", 2’1}
. , {z1}, if z'ef(zx),
z,1) = f'(z,x) U
f( ) f( ) {0, else,
and obtain
R([n, X, Z', 7, f", 21, M']) = <R(B)> = <R(B)> .

Since the catenation closure of a strongly mesh-free set is in general not strongly
mesh-free (consider e.g. R = {[e, xx], [x, xx], [xx, xx]}) the remaining assertions
are proved.

2. Decision problems

In this section we investigate the sofvability of 10 decision problems. Most of
them are known from the theory of finite ordinary (one-tape) acceptors and they all
are solvable or trivial in that case. Again we give the results by a table. Thereby
e.g. the entry “solvable” in the first line and first column indicates the assertion
that there exists an algorithm which decides for finite deterministic n-TA B whether
or not R(B) is empty, and the entry “unsolvable” in the last line and last column
indicates that it is undecidable whether a relation represented by a finite ND-n-TA
is representable by a deterministic finite n-TA. Thus the corresponding problem
for regular expressions pointed out in [5] and [9] is undecidable. In the proof of the
theorem we mainly follow ideas developed by Fischer and Rosenberg [1] for the
case when an endmarker is used.
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Theorem 2.

o B, B’

B, ¥’ finite ND-n-TA deterministic | nondeterministic
Emptiness R(B) = 0?7 solvable solvable
Finiteness R(B) finite? solvable solvable
Initiality R(B)e SN,? always solvable
Universe R(B) = XW(X)? never unsolvable

e

Co-finiteness XW(X)\ R(B) finite? never unsolvable
Disjointness R(B) " R(B") = 0? unsolvable unsolvable
R(B) N R(B)e FN,? unsolvable unsolvable
Containment R(B) = R(B')? unsolvable unsolvable
Equivalence R(B) = R(B')? ? unsolvable
Determinism | R(B)e #2,? always unsolvable

|

I

Proof. 1. Emptiness

By the projection theorem for every finite ND-n-TA B one can construct an
ordinary finite acceptor 2 such that L{¥) = P,(R(B)). Since R(B) is empty if and
only if L(%) is empty from the decidability of the latter the assertion follows.

2. Finiteness

Since R(B) is finite if and only if the regular language U P,(R(B)) is finite an argu-
i=1 N

i

ment similar to that one used above applies.

3. Initiality

Here the solvability follows from the

Lemma 5. If B = [n,X,Z,f,Z,, M] is a finite ND-n-TA of Rabin-Scott type
then for every re R(B) there exists at’e R(B) such that v(x') = ¥(x) and /(') <
< (n + 1) card(Z).

Let be r € R(B) and I(r) = (n + 1) card(Z). Since B is of Rabin-Scott type the
sequence of states B runs through accepting r has the length I(r) + 1 > (n + 1).
. card(Z). Therefore in that sequence at least one state z* appears at least n + 2
times. Hence, there exist states z, €Z,, z*e Z,z' ¢ M and n-words o, ..., Ty
such that

PIECE S SN APSRE T8 ST AP N

2*ef(zy, v0), z¥ef(z* ) for i=1,..,n+1,



and
2 € f(z*, 1,42) -

Let be N; = v(r;) for j = 1,...,n + 1. Then there is a number j such that
N;€Nyu...UN; ;UN;,; U...UN,,

since otherwise the set Ny U ... U N, has to contain n + 1 pairwise different
numbers which is impossible. From this we obtain thatt’ = ror; ... 7, ¥p ... Fuss
has the following properties

&) =w(x), ') <), reR(B).
The construction of ' from r can be repeated with 1" as long as the length of the
result exceeds (n + 1) card(Z) — 1.
4. Universe
For every deterministic n-T4 9B the set R(B) is mesh-free, X#(X) is not mesh-free,

therefore the universe problem is trivial for deterministic n-TA.

Assume that the universe problem for finite ND-n-TA is decidable and let B,
be an arbitrary finite N D-n-TA with the input alphabet X U {¢} (¢ ¢ X ). By Lemma 2
we can construct a finite ND-n-TA B’ with the input alphabet X such that R(8') =
R,(B,). By our assumption we can decide whether (R(B,) =) R(B') = XW(X).

This is in contradiction with Theorem 8 in [1] which states the universe problem
to be undecidable when an endmarker is used.
5. Co-finiteness

The unsolvability of the co-finiteness problem for ND-n-TA is proved in the same
way by reduction to the case when an endmarker is used.

Let be xo € X fixed, m > 0. Every mesh-free relation over W(X) can contain at
most one of the m + 1 n-words

[e.x3, e, ..oe], [xo,x5 " e, el X0 e e ne],

thus there is no finite covering of XW(X) using mesh-free relations as elements.

Therefore, if B is a (finite) deterministic #n-T4 then XW(X)\ R(B) is infinite, since
otherwise "

{R(B)Y} u {{a} | a e )"(W(X)\ R(B)}

would be a finite covering of XW(X) with mesh-free relations.
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6. Disjointness

7. R(B) " R(B)e F N2

Both problems will be shown to be unsolvable by the same construction. Obviously
it is sufficient to prove the unsolvability of these problems for finite deterministic

n-TA.
Let be [¢, ] a Post Correspondence Problem over [4, B], i.e. A and B are finite
nonempty sets and ¢, ¥ are homomorphisms from A into W(B). Moreover let be

0,1¢AUB,X=AUBU{0,1} and
RS = {[a, ¢(a)] | ac 4}, R} = {[a,¥(a)] |ac 4},
R, = R2.<RD ([, 11} . <{[0, elp> - {[1, €]} - <{[0. 1> - {[ex 1} - <{Tes O]},

Ry =Ry . (R A1 1]} <{[0, 0], [1, 1]}> -

Hence, we have
R, = {[p. o(p)]| p e W(A)\{e}} - {[1, 1]} . {[0" 10, 0* 107 | i, j, I = O}
Ry = {[p.v(p)]]| pe W)~ {e}} - {[1, 11} - {[r 7] | re w({0, 1})} .

i

One can see easily that
R, R,eF2,.
Moreover, we obtain

R, 0 R, = {[p.0o(p)] | pe Ly} {[1. 11} - {[0* 105 0¥ 10] [ k = O},
where
Loy = {p|pe W(A)N{e} A o(p) = ¥(p)} -
Therefore it holds
Pi(R, 0 Ry) = L, {1} {04 10F |k = 0}

It is wellknown that for every regular language E and for every language F the

quotient
E[F = U 8,(E)
ueF

is a regular language since E has only a finite number of derivatives all being regular.
From the fact that if L, , +  then

Py(R, 0 Ry)[W(A). {1} = {0 10| k = 0}

is a nonregular language, we obtain that P,(R, n R,) is not regular and, hence,
R,N R, ¢ .4, in that case.



Now we have 73
R,nR,eFAN, if R,nR, =0,
iff L,,=0.
But whether or not L, , is empty is undecidable. Thus, the disjointness problem and
the problem “R(B) N R(B') e F 47,7 are unsolvable.
8. Containment

As above it is sufficient to prove the unsolvability of the problem in the determi-
nistic case. By the following lemma we reduce our problem to the containment
problem in the case when an endmarker is used. The latter has been shown to be
unsolvable in the paper [1].

Lemma 6. For every finite deterministic n-T4 U = [n, X u {e}, Z, 1, §, z;, M]
one can construct effectively a finite deterministic n-TA A’ = [n,X u {e}, zZ, 7,
&', 23, M'] such that R(A') = R(¥). {e”}.

The construction is as follows (again we assume that 2 is of Rabin-Scott type):

zZ =2z x B({L,....n}) v {z*},
2y =[z,,{1,..,n}],
M =M x {0},

@) =1,

“([z,N]) = t(z) forall [z,N]eZ’,

[6(z, %), N], if xeX, A1z) N,
[z, N], 2) = [8(z, x), NN(2)], if zed) a1z} =N,
z*, else

§'(z*%, 1) = z*

for all xe X, u &) with w(x) = ©(z), [z, N]eZ'. It is casy to see that R(U') =
=R(%).{"}.
9. Equivalence

For deterministic n-TA4 the problem is open, for the nondeterministic case one
proof of the result can be found in [5]. On the other “hand, the solvability of the
equivalence problem for finite ND-n-TA would imply the solvability of the contain-
ment problem for finite ND-n-TA since it holds

v R(B) < R(®) iff R(B)uR(B) = R(B).
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10. R(B)e 2,7
We choose ¢, /, 4, B, X, R, and R, as above in the proof of the unsolvability
of the disjointness problem. Moreover let be ¢ ¢ X and

Ry = (W(X) % WOX)SR) O (W(X) x WONR,). {[2 ]} =
= (R, R,). {[e. 5]}

Since R, R, € #9,, by Theorem 1 we obtain that

Therefore, R, is representable by a finite ND-2-TA with the input alphabet X U {e},
ie.
RieFN,.

Moreover, R, is mesh-free and strongly mesh-free (since n = 2). If L, , = 0 then
R, R, = 0, hence

Ry =(R,VUR)).{[e. €]} = (W(X) x W(X)).{[e.e]} e FP,.

Next we show, that
R, ¢ FD,
if L,y + @, so that
RieF9, iff L,, =090,

which gives the desired result.

Assume that L, , + @ and R, € #2,. One shows without difficulties that, if R,
is represented by a finite deterministic 2-T4 2 (with the input alphabet X U {e}),
then

R(%)=R,uR,.

From this using Lemma 2 and Lemma 3 one can conclude that there exists a finite
ND-2-TA B (with the input alphabet X) such that

R(B) = R(¥) = R,N R,

which contradicts L, , = 0.
This completes the proof of Theorem 2.

(Received October 20, 1975.)



REFERENCES

[1] P. C. Fischer, A. L. Rosenberg: Multitape One-Way Nonwriting Automata. J. Computer &
Systems Sci. 2 (1968), 88—101.

[2] H. Hesse, A. Steinmiiller, G. Vilkner: n-Band-Automaten. Diplom-Arbeit, Sektion
Mathematik der Humboldt-Universitat, Berlin 1975.

[3] M. O. Rabin, D. Scott: Finite Automata and Their Decision Problems. 1BM J. Res. &
Devel. 3 (1959), 125—144.

[4] A. 4. Makapesckuii, 3. 1. Crouxas: [peacTaBUMOCTb B A€ TEPMHHUPHBAHHBIX MHOTOJIEHTOY~
ubix aBromarax. Kubepreruka (Knes) (1969), 4.

[5] P. H. Starke: Uber die Darstellbarkeit von Relationen in Mehrbandautomaten. Elektron.
Informationsverarb. und Kybernetik /2 (1976), 1/2, 61— 81.

[6] P. H. Starke: Entscheidungsprobleme fiir autonome Mehrbandautomaten. To appear in
»Z. fiilr Math. Logik u. Grundl. Math.*.

[7] P. H. Starke: Uber eine Anwendung der Theorie der Mehrbandakzeptoren in der Theorie
der asynchronen nicht-deterministischen Automaten. Submitted to “Theoretical Computer
Sci.”.

[8] P. H. Starke: On the Diagonals of n-Regular Relations. Elektron. Informationsverarb. u,
Kybernetik 12 (1976), 6.

[9]1 P. H. Starke: On the Representability of Relations by Deterministic and Nondeterministic
Multitape Automata. Lecture Notes in Computer Science 32 (1975), 114—124 (MFCS *75
Conf. Rec.).

[10] 3. A. Crouxas: O MHOTOJIEHTOYHbIX A€ TEPMUHHEPOBAHHbIX ABTOMATAX 023 KOHEYHBIX MAPKEPOB,
ABTOMaTHKa u teneMexaunka (1971), 9, 105—110.

Doc. Dr. Peter H. Starke, Dept. of Math ics of the Humboldt-University, Unter den Linden 6,
DDR-1086 Berlin. German Democratic Republic.

75



		webmaster@dml.cz
	2012-06-05T02:24:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




