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KYBERNETIKA CISLO 3, ROCNIK 4/1968

“Transfer Function Measurements with
Statistical Methods by means
of Digital Computation

‘W. KREIL, W. SCHNITZLER, G. SCHWEIZER

The article describes methods of processing data which represent measurements taken from
a physical system where stochastic components are involved. Digital computer application is
discussed in some detail, with special emphasis on programming for maximum processing speed.

I. INTRODUCTION

The dynamic characteristics of linear systems, especially linear constant parameter systems,
can be described by frequency response functions. For physically realizable and stable systems,
the frequency response function of a system may replace the transfer function with no loss of
information.

Extended developments of aerospace systems require the determination of the frequency
response functions of many subsystems for the judgement of the overall performance. In some
cases, appropriate transfer functions can be obtained by analytical procedures. However, there
are many examples where the determination of the transfer function or frequency response by
analytical methods is presently beyond the state of the art. This is particularly true for physio-
logical systems.

Because of these difficulties it is common to determine the frequency response of linear systems
by empirical methods. The most straightforward approach is to subject the system to a sinusoidal
input and to measure the output-magnitude and -phase as the stimulus frequency is varied.

There are many situations during the development of aerospace systems where it is not possible
to apply sinusoidal stimuli. This applies to the majority of measurements during normal operation
(that means in-flight measurements). In this case, it is possible to establish frequency response
functions by means of inherent or artificial random input. Quite often the problems are further
complicated because open-loop measurements are not feasible. The determination of open-loop
transfer functions by means of closed-loop measurements requires usually high accuracy.

The development of a variety of aerospace vehicles and the necessity of processing enormous
quantities of test data especially from flight tests have initiated the use of digital computer pro-
grams to determine transfer functions with statistical methods at the Dornier GmbH, Friedrichs-
hafen. Hence the necessary equipment and the computer programs have been carefully planned,
great amount of data can be processed conveniently in very short time. System performance,
malfunctions of subsystems and parameter identification are investigated by means of transfer
function and power density spectra measurements.



II. DATA PROCESSING PROCEDURE
I1.1 Data Acquisition

The first step of the data processing procedure is obviously the data acquisition.
The Dornier Installations can be used to convert the phyéical parameters into
voltages and store them on magnetic tapes either in analog or digital format. The
tape-recorders can be installed on board of any vehicle or at ground stations. Signals
to remote stations are transmitted via telemetry (Fig. 1).
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Fig. 1. Data acquisition equipment of the Dornier GmbH,

Computer programs and the necessary equipment are available to feed the data
in any analog or digital format from tapes into the digital computer.

On line data acquisition of analog electrical signals from simulator or rig tests
is feasible. For this purpose a program can be used to sample 20 different signals in
a specified way in time intervals less than 1 millisecond under computer control.
Fig. 2 shows the Dornier Hybrid Computer which is used for data acquisition and
processing.

I1.2 Data Processing of Weakly Stationary Processes
Fig. 3 shows a block diagram for processing weakly stationary data with the

Dornier Installation. If there is some indication that the data could be random,
the process is plotted for a first short inspection. Then the data are tested for station-




Fig. 2. Dornier GmbH hybrid computer installation.

Data acquisition Datu processing

Data from tape in analog Transfer into the - Storuge Quick ook
< digital format digivl computer [O] 1 1he computer. by plotting or printin
or digita farmay il comp Memory or tape I » platting o printing

Test for randomnes. Elimination of
linear trends, Test for stationasity

Probability density analysis,
I Transfer Test for normality
into the computer

. Sampling and
Analog signals from
simulation or rig tests

Representation
of the results
by printing

and plotting

Cross- and Autocorrelation Analysis,

Computation of the Variance

Power-Spectral Density
Analysis

Fig. 3. Block diagram of data Transfec-function analysis
processing. Minimum  phase sysem analysis

arity, for randomness and possible linear trends. The techniques for determining
whether the data are stationary and random are straightforward and rather simple.

The sampled data are divided into several sequences. Then the statistical properties
for these sequences are computed by time averaging. If these statistical properties



do not vary significantly, the process is considered as stationary. Under two assump-
tions a sufficient stationarity test for a sequence is available by computation of the
mean- and the mean-squarevalue (or the variance):

a) The process has a Gaussian probability density function;
b) The correlation function is stationary if the variance is stationary.

These assumptions are usually valid. Furthermore the experience shows that power
density spectra and autocorrelation analysis yield good results, even if the processes
are weakly stationary. In the case where any trend of the mean values can be assumed,
linear correction for this slight nonstationary and nonrandom effects is provided
in the following way.

Ususally the data are divided into three sequences. If the three means jndicate a
nonstationary trend as shown in Fig. 4, where the individual means have increasing
values, correction is provided. For this purpose only the stochastically changing
part of the data about the straight line

(1) Xe()=i.a+f (i=1,23,..,N)
is considered within the analysis (Fig. 4).
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Fig. 4. Elimination of mean and linear trend.

%, is the mean of the first third of the data, X, the mean of the last third,
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-3 N
® : Xo = — X;.
N i=172n8/3

The random ordinates about the straight line are to be

- 3 (N N\, -
(6) yl=xi_x+ﬁ('2~_l>(x0_xu).
If random processes with trends are corrected in this way, large distortions at low
frequencies and particularly at zero frequency are avoided. The correction for linear
trends makes only sense in the presence of such a trend.
Before analyzing these data, only the overall mean value will be subtracted.
1 N
)] yi=x,—X% with £=— Yx;.
N i=1
In the data contain sinusoidal components, they can be easily detected by the auto-
correlation function.
Experience has shown that in almost any practical test the probability distribution
can be approximated by the normal (Gaussian) distribution. The validity of this
assumption is usually proved by a chi-square goodness-of-fit test [1].

IL.3 Details of Digital Computer Techniques for the Determination of Correlation
Functions and Power Density Spectra

The auto- and crosscorrelation function is obtained by means of Egs. (8) and (9)

®) o, (1) =rh-ilg z—lffi:x(t) cx(t + ) de,
©) 2.9 = tim L j :r:x(t) ot + ) de.

The auto correlation function is even:

(10) 9. (1) = D.(—7).
By substitution t + 7 = ¢ in Eq. (9) one obtains for the crosscorrelation function
the relation

(11) Bo(—7) = D7) -

For digital calculations the data have to be sampled. Therefore only discrete values
for the correlation functions can be computed. The data {x} and {z} are only available
for positive times. If one has the data available for a length of N . At, good accuracy
can be expected for correlation times M . At where M < 0,1N.



For numerical computations, Egs. (8) and (9) become 23

N-m
(12) Pyy(m) = N —m Zl Vi-Viems 0Sm=M,
—m S
1 N-m
(13a) D, (m) = N ‘21)/5'-’”—"., 0EmsM,
1 N=|m|
(13b) @, (m) = m 21 Vi Vi » —MEm<0.

Hereby the data {x} and {z} have been converted to the normalized data {y} and
{v} by Eq. (6) or (7).

The correlation functions computed by means of Eqgs. (12) and (13) can be used
as an unbiased estimate of the true value. For the error analysis the variance of the
correlation function will be computed

(14) o2(m) = E{(@.(m) — d(m))*},
(15) 02(m) = E{(®,(m) — d7(m))*}.

If one determines the relations (14) and (15) explicitly and assumes normal pro-
bability density functions of the data {x} and {z}, the following relations will be

obtained:
N-m-1

(]6) ‘ O'fx(ﬂl) = EN——;m)z kzo (N —m=-k~-1.
[¢xx(k) + qjxx(k + m) ¢xx(k — m)] ,

(17) oz(m) = (7: m? % N —m—k—1).

[D::(k) D.o(K) + Dk + m) Do~k + m)].

2 N-m-1

Egs. (16) and (17) cannot be evaluated in their present form since the correlation
functions are only calculated for —M < m < M. For practical purposes, however,
one can assume the correlation functions to be zero for m + M. The upper summation
index can therefore be limited to M — m.

Fig. 5 shows the auto-correlation function of the output and Fig. 6 the cross-
correlation function between output and input of a lag network excited by white
noise. The variance for different observation length is shown. The sampling time was
0-2 sec. The lag time constant of the network is 0-5 sec. The variance is smaller with
longer observations.

Unfortunately the length of the observation time is more determined by practical
considerations during flight tests than by statistical requirements only. In many
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Fig. 5. Output autocorrelation function of a lag network.
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Fig. 6. Crosscorrelation function (output-input) of a lag network.

cases, however, good results are obtained even if the length of observation is not
sufficient. Fig. 7 shows two correlation functions. Both have been obtained by
analyzing the stick deflection of two different pilots during flight. In the second
correlation function a sinusoidal component introduced by one of the pilots can be
detected.
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Fig. 7. Autocorrelation functions of stick deflection during hovering flight (two pilots).

Power Density Spectra. The cross power density spectrum is defined as the Fourier
Transform of the crosscorrelation function

+ o0
(18) S.(f) = J‘ &, (t) e dr.
-
For evaluation the real and imaginary part have to be calculated separately

(19) Re S.(f) = .r ’ @.(7) cos wr de,

~®



+ oo
(20) L.S.(f) = —J‘ @,.(1)sinwrdr.
According to Eq. (10) it is sufficient to undergo only a cosine transformation for
obtaining the auto power density spectrum

+

(1) . S.a(f) = 2J. @ (7) cos wr dr .

—w

The integrals must be calculated numerically. As the process has been sampled at
equally spaced intervals At, the highest signal frequency which could be detected
is f = <fr]2 = % At. Therefore, Egs. (19)—(21) can be evaluated only for the foll-
owing frequencies:

(22) fo=sofr (“Msns M)

Using digital calculations for power spectra analysis, one has to consider that the
correlation functions are only available at discrete time intervals. This means that
one obtains due to aliasing effects all the frequency spectra

(23) Sa(f) = f wsn(f — mfy),

(24) SN = % Sulf — miy).

Evaluation power density spectra by digital means f1 has to be chosen sufficiently
high so that no aliasing of the side bands can occur. Using any numerical integration
method for Eqs. (19)—(21), only a raw estimate of the spectrum can be obtained
because m is restricted to values m < IM| A good smooth of the estimate may be
obtained by frequency smoothing called hamming:

(25) Se(fa) = 034S{f,) + 0235, (fu-1) + 0235lfus1) »
(26) Se(f) = 0:54S,:(f) + 0235.(f,- 1) + 0235.(fuss) -

The raw estimate of the power spectra is calculated by means of Egs. (27) and (28)
using trapezoidal integration

(272) ReS.(f,) = At {4&,(0) + Mgi[(px:(m) + @ (m)].

. cos %w'f n o+ (_Tl) [@,.(M) + <1>"(M)]},



(@) InS,.(f)) = Ar {“z [9.r) = 0. )] sin 2 =}
0=msM),

(28)  S,.(f) = At {qsn(o) +2 ng»,,(m) cos% T+ O (M) (- 1)”}.
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Fig. 8. Power density spectra of a harmonic. Parameters: maximum correlation time (M),
sampling frequency (fy).

Fig. 8 shows a few characteristic results. In (a) and (b) a single harmonic oscillation has been
analyzed. In (a) the maximum number of correlation lag values has been kept constant to M =
= 100. The analyzed record length was 1500 samples. The sampling frequency was varied,
fr= 5Hz, 10 Hz and 20 Hz. If f; is increased, the bandwidth of the spectrum will increase
according to Eq. (22). However, if M is kept constant, the number of independent spectral

235



236

estimates will be the same. That means that the intervals Af== f/2M where the spectrum is
estimated are wider if f is increasing. In the present case with only one harmonic oscillation
the energy which is constant is dissipated in a wider interval as f increases.

If £ is kept constant and the maximum number of correlation lag values M is varied to values
M = 100; 50; 25 one encounters to the same situation (Fig. 8b). Decreasing M means increasing
the intervals in which the energy of the spectra is estimated. Therefore the results shown in Fig.
8 are identical because it is the same if one varies M in the ratio 4: 2: 1 or frintheratio 1:2: 4.
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Fig. 9. Power density spectral of a square-wave (0.1 Hz).

Before analyzing a record, thoughts have to be given to how many independent spectral
estimates have to be detected and to what the bandwidth will be. This is particularly true in the
case of period phenomena in the spectrum.

Fig. 9 shows the analyzed spectrum of a square wave with a fundamental periodic of 0-1 Hz.
The harmonic oscillations of the square wave will be 0-1; 0-3: 0-5; 0-7; ... Hz. For spectral densi-
ty analysis the following sampling frequencies were chosen f = 5 Hz; 10 Hz and 20 Hz. Evalua-
tion with M = 100 lag intervals yields power density estimates at intervals Af= 0-025 Hz;
0-05 Hz and 01 Hz. It is obvious from Fig. 9 that overlapping problems will increase with Af
increasing because the constant power of each single harmonic is sperad over a wider frequency
range.



If the signal frequency band extends half the sampling frequency aliasing occurs, This is shown
in Fig. 10 where the power density spectrum of a square-wave with a fundamental periodic of
1-5 Hz is given. Sampling with f; = 30 Hz yields an unaliased power density spectrum. Strong
aliasing occurs at a sampling frequency of f; = 10 Hz. In this case the sampling theorem is
only valid for the fundamental and the third harmonic.

To avoid aliasing the sampling frequency has to be chosen twice the highest signal frequency.
A signal with unknown frequency bandwidth must be modified by a low pass filter in order to
prevent aliasing effects of noise and energy rich disturbances of higher frequencies.
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Fig. 10. Spectral density analysis of a square-wave 1.5 Hz-aliasing problems.

III. DIGITAL IMPLEMENTATION OF CORRELATION AND POWER
SPECTRA CALCULATIONS

Digital implementation of correlation and power spectra calculations can con-
siderably benefit from the use of hybrid or process control computers. There are
two specific difficulties when the correlation and power spectra calculations are
implemented on such a computer: The enormous number of individual digital
operations to be performed and the large storage capacity needed for handling large
quantities of data. In the following it will be shown how these problems have been
solved on the Dornier SDS 9300 computer with a 8096 twenty-four bit memory and
two magnetic tapes. This computer is mainly used for data processing and hybrid
simulation.
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TI.1 Some Consideration on Time Optimisation

With A— D converters analog data can be quantized at 10% scale units; that means the computer
words will have about 13 useful bits of information. As the normal computer words of the SDS
computer and most of the process computers have 24 or in some cases 18 bits, one should not
use double precision length which is required for floating point operations, thus increasing the
computer data artificially to 48 or 36 bits, where only 13 bits are used.

Fixed point implementing of all the numerical calculations requires careful investigation
during programming in order to avoid any possible overflow. There are special summing routines
in the program where double-precision appears to be necessary. But even then, fixed point
operations are usually considerably faster than floating point operations, c. g. in the case of the
SDS 9300

addition (fixed point 24 bit word length) 3-5 psec
addition (fixed point double precision) 5-2 psec
addition (floating point) 10-5+19 psec

As the input data are principally digitalized from analog form at 10* ‘scale units, one may
avoid any overflow associated with the fixed point computation of the correlation and power
spectra.

By inspecting the machine code program produced by a Fortran Compiler it was learned
that the Fortran II compiler using double precision operation does not make full use all of the
possibilities of the available instructions especially in connection with the index-registers. There-
fore the whole program was written in machinecode. Investigating all the procedures with regard
to minimum computer time and making full use of the three index registers, time for the overall
computations could be saved. This is particularly true in the case of certain inner loops which
are run very often.

1.2 Consideration on the Memory Requirements

The Fortran Compiler at hand requires 4000 24 bit memory words for the monitor. There-
fore memory considerations, too, rule out the use of Fortran for programming. The length of
the program written in machine code instructions with all the necessary subroutines required
for the calculation of the means and variances, the probability density functions, some tests for
randomness and stationarity, the correlation and power spectra functions uses roughly 4 500
twenty-four-bit-words. 3 000 words are reserved for two arrays of the digitized data of two
stochastic processes. 1 500 sampled values from a weakly stationary process yields, as the expe-
rience shows enough information, provided the adequate sample interval has been chosen. The
correlation functions are computed up to a maximum correlation lag value of 150.

During computation the input data are firstly normalized and possible trends are removed.
After this the original data are no longer required and the storage capacity of the input data
can be used for the normalized data. If the raw estimates of the correlation function have been
calculated, the normalized data are no longer needed for the computations. The memory capacity
can now be used for the power spectra calculations.

This technique using the memory during the different phases of the computations several
times, allows the handling of large amounts of data even with a relatively small computer.

If magnetic tapes are evailable, the amount of data which can be handled, could be increased.
So far we use one tape for data input and one tape for output. It is difficult to make assertions
to the influence of the use of tapes on computer time. A rather sophisticated data organisation



for the tapes is necessary in every case in order to make full use of the computer’s data transfer
rate of nearly 300 000 words per second.

The use of magnetic tapes as output for the results and printing out the data later on in off-
time operation, both can help to save computer time and memory capacity because all output
subroutines with the one exception of the tape handling programs are no longer needed.

Some characteristic values for the computer time used with the program written at Dornier
GmbH shall be given. 43 sec are used for analyzing two stochastic processes each having 1000
sample values. The correlation function values are computed for a maximum lag of 75. The
program will give the following results for each of the two arrays:

means and variances,

probability density functions,

estimates for the auto correlation functions,

variance for the estimates of the correlation functions,

auto-power spectra,

estimates for the cross correlation function between the two processes,

variance for the estimates of the cross correlation function,

cross power spectrum,

amplitude and phase of the frequency response (calculated only for linear systems if necessary).

The 43 sec used for the data processing are split up into 14 sec for the effective computer time,
5 sec for the data exchange from the input of the tape into the memory of the computer and 24
sec for the on-line output of the results on the printer. One observes that considerable time
could be saved by using the tapes with off-line operation for the printing as output device discussed
above.

IV. PROBLEMS INVOLVED WITH THE APPLICATION OF STATISTICAL
METHODS FOR IN-FLIGHT MEASUREMENTS

Statistical methods have been applied to a large extent during the investigation
of the hovering mode for VTOL aircraft at the Dornier GmbH. The following
methods have been used:

a) Transfer function measurements during flight for investigating the dynamics
of the system and system components.

b) Transfer function measurements during flicht for detection of any mal-
function of systems,

¢) Measurements to investigate the main sources of disturbances.

IV. 1 Transfer Function Measurements

Stability analysis requires the determination of the open loop transfer function
of the attitude-stabilized hovering rig from in-flight measurenmets (FigA 11). The
block diagram is shown in Fig. 12. As it is absolutely impossible to perform an open
loop transfer function measurement with any stimuli with a plant having a double
pole in the origin, the open loop transfer function was determined by measuring the




closed loop. This yields

'Fg

29 Fo=_"9_
(9) o=

(Fo — frequency response of the open loop transfer function, F , — Irequency res-
ponse of the closed loop transfer function).

Fig. 11. Hovering rig of the Dornier GmbH.

It is difficult to ensure sufficient accuracy applying Eq. (29). It is known that a
closed loop control system should be very insensitive against changes of the open
loop characteristics. This means that errors of the open loop transfer function
measurements will have normally only negligible effects on the accuracy of the closed
loop transfer function computed by the open loop data. If it is required to determine
the open loop from the closed loop transfer function, the reverse effect occurs. Any
errors of the closed loop measurement are amplified if the open loop transfer function
is computed with these data. This fact may be recognized by inspecting the denomi-
nator of Eq. (29) 1 — F, and remembering that in the interesting frequency range
F, should be flat and equal to 1, if the control system performs nicely.

There was sufficient knowledge of the attitude control loop as to assume that the
system was of a minimum phase type. The problem which had to be decided was,
whether to use magnitude and phase information of the closed loop or only magnitude
or phase information for the determination of the open loop. The missing phase



of magnitude can be computed by means of

+ o0
(30) D) = lf dlnFy, ctg hjulf2 du
n)_n dn
with
u=holo,
2 [ o*¢p(o*) — oe(w
(31) [F(@)] = [F()] - 2 j o _(fﬁ)___w_z_(_) do* .

A theoretical investigation of the attitude control system shows that using magnitude
information only will give the best results for the open loop transfer function. The
reason for this fact will be explained shortly.
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Fig. 12. Block diagram of the attitude-stabilized rig.
The open loop transfer function is determined by
F | ei®s
(32) Fy = L ol -
1- [F yl e

where @, is phase of the closed loop transfer function.

Fig. 13 shows an illustrative example of an open loop transfer function of the
attitude stabilized ring.

By partial differentiation and substitution of F, by F, in an adequate form one
obtains

(33) AFg = (1 + Fo) Fy -A;F—g +J(1 + Fo) Fo Ag,
g

I I
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242 The resulting error AF,, is plotted in Fig. 14. It is assumed here that A|F,|f|F,| = 0-1

and Ag, = 10°.

If one measures the magnitude one may calculate the phase ¢, with the aid of
Eq. (30). The phase error due to the magnitude error of e. g. 0-1 can be computed,
too. A quick look at Fig. 14 shows that the overall error AF, is considerably smaller,
compared wit the measurement of both phase and magnitude.

According to this theoretical analysis and to practical experience in the majority
of inflight measurements where minimum phase system could be assumed only
magnitude information is used at Dornier GmbH for transfer function analysis.
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IV.2 Measurcment of the Sources of Disturbances

Transfer function measurements can provide a very successful tool to investigate
the main sources of disturbances in a system. During the operation of the hovering
rig, the nature and the source of the disturbances had to be investigated. From the

.} Magnitude
Measurement with
20
e—s—s artificial noise
161 % - } inherent noise

Fig. 15. Source of disturbances detect-
~1 jon by two different measurements.
Magnitude- and phaseplots cf the at-
0 02 04 06 08 10 12 14 16 sHg - titude-stabilized hovering rig.

block diagiam (Fig. 12) it is obvious that three major sources of disturbances will
disturb the attitude control system. These are the pilot-introduced noise, the gusts
and the jet engine noise. To investigate the main source of the disturbances, the
following measurements have been made. The closed loop transfer function was
determined by applying artificial pseundo-random signals as stimuli with the stick
as input and the attitude as the output. After this, tests have been made measuring
the ratio stick input to roll attitude of the closed loop without artificial stimuli by
means of calculation Skq,/S,‘k. Assuming the inherent noise sources as in Fig. 12 these
measurements must yield

. 1 - FjF, g,@
(349 Slie) _ ) ——— Sl
Su(@) 1+ |FF? Saol®)

Spi@)
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(Fs — frequency response of the attitude stabilized rig, F, — frequency response of
the human operator, S,, — power spectra of the gusts and jet engine noise, S,, —
power spectrum of the pilot induced noise, F;FS — complex conjugate).

Fig. 15 shows some results. No remarkable difference between the measurements
with and without artificial stimuli is observed. Therefore one can conclude that
Spp < Saa"

V. CONCLUSIONS

Digital data processing of stationary stochastic processes proved to be a successful
tool for in-flight measurements. Many problems could be investigated with these
methods within the frame of a VTOL transport development program.

At the present time the problems of the regression analysis are studied, toinvestig-
ate whether the regression analysis or the statistical methods of the control theory
described here are more powerful for parameter identification.

(Received March 3rd, 1967.)
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VYTAH

UrcCovani pfenosi statistickymi metodami s pouZitim &islicového
pocitace

W. KreIL, W. SCHNITZLER, G. SCHWEITZER

Cldnek je vénovén problematice vypodtu statistickych charakteristik ndhodnych
procesii a jejich pouZiti pro ur8ovdni prenosit leteckych konstrukei. Vychdzi se
z 0daji naméfenych na fyzikdlnim systému s ndhodnymi komponentami. PouZiti
¢islicového potitae se diskutuje zejména z hlediska programu pro nejrychlejsi
zpracovdni tdaji.

Kromé teoretického odvozeni a popisu metodiky &ldnek uvddi i uspofdddni
experimentli a nékolik uZiteénych postieht, které vyplynuly z praktického ov&feni
a které autofi podloZili i teoretickou vivahou.

Dipl.-Ing. W. Kreil; Dipl.-Phys. W. Schnitzler; Dr.~Ing. G. Schweitzer; Dornier GmbH, 799
Friedrichshafen, Postfach 317. DBR.
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