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K Y B E R N E T I K A — VOLUME 28 ( 1992 ) , NUMBER 3, P A G E S 1 9 1 - 2 1 2 

DISCRETE-TIME MARKOV CONTROL PROCESSES 
WITH DISCOUNTED UNBOUNDED COSTS: 
OPTIMALITY CRITERIA 

O N E S I M O H E R N A N D E Z - L E R M A AND M Y R I A M M U N O Z D E O Z A K 

We consider discrete-time Markov control processes with Borel state and control spaces, unbounded 
costs per stage and not necessarily compact control constraint sets. The basic control problem we 
are concerned with is to minimize the infinite-horizon, expected total discounted cost. Under easily 
verifiable assumptions, we provide characterizations of the optimal cost function and optimal policies, 
including all previously known optimality criteria, such as Bellman's Principle of Optimality, and the 
martingale and discrepancy function criteria. The convergence of value iteration, policy iteration and 
other approximation procedures is also discussed, together with criteria for asymptotic optimality. 

1. I N T R O D U C T I O N 

This paper deals with discrete- t ime Markov control processes (or M C P s for short) with 

Borel s ta te and control spaces. The basic optimal control problem (formalized in § 3) is 

to minimize the total expected discounted cost. Given tha t the cos t -per -s tage function 

is unbounded, and tha t the control constraint sets are not necessarily compact, the main 

questions we are concerned with are: 

1. If V* denotes the optimal ( i .e. , minimum) cost function, what are the conditions 

for V to be a solution to the optimality equation (OE)? (See equations (3.4) and 

(4.1).) 

2. If v is a function that satisfies the OE, how are v and V* related? 

3. How can we "approximate" V*l 

4. Wha t are the conditions for a control policy to be optimal? In other words, may we 

characterize an optimal control policy? 

5. Is it possible to decide when a control policy is "close" to being optimal? 

All these questions have been dealt with in the li terature, in one form or other, but 

usually separately, and under very restrictive conditions (such as conditions Co, C\ and 

C 2 hi § 4), which exclude some important control problems - e .g. the "linear regulator" 
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problem, which has (quadratic) unbounded costs and an unbounded control set (see 

Example 2.5). Thus our main objective in this paper is to study questions 1 to 5 from 

a unified viewpoint, under a set of easily verifiable assumptions tha t includes - to the 

best of our knowledge - virtually all the previous works on MCPs with Borel s ta te and 

control spaces and unbounded costs-per-stage. 

We begin with some preliminaries in §§ 2 and 3: § 2 discusses the basic Markov control 

(or decision) model we will be dealing with, and § 3 introduces the corresponding control 

problem. The main developments are presented in §§ 4 to 7. In § 4 we discuss the 

optimali ty equation and provide some answers to questions 1 to 4 above. § 5 is mainly 

concerned with question 3, whereas § 6 is mainly related to question 4; the main result 

in tha t section (Theorem 6.1) relates several well-known optimali ty criteria, including 

Bellman's principle of optimality, and a martingale criterion. Finally, in § 7 an answer 

to question 5 is given in terms of "asymptotic optimali ty". 

R e l a t e d l i t e r a t u r e . The stochastic control problem we are interested in is quite 

s tandard - see any of the textbooks in the references - ; but the studies on questions 1 

to 5 appear scattered in the literatures on stochastic control, operations research, and 

applied probability. Thus there is no "main reference" for §§ 4 to 7 and, therefore, each 

of these sections is provided with its own set of Comments and related references. 

N o t a t i o n . Given a Borel space, i .e. , a Borel subset of a complete separable metric 

space, its Borel s igma-algebra is denoted by B(X), and "measurable" always means 

"Borel-measurable" . L(X) stands for the family of l.s.c. (lower semicontinuous) func­

tions on X, bounded from below, and L(X)+ denotes the subclass of nonnegative func­

tions in L(X). 

2. T H E C O N T R O L MODEL 

Let (X, A, Q, c) be a Markov control (or decision) model with s tate space X, control (or 

action) set A, t ransit ion law Q, and cos t -per-s tage c satisfying the following conditions. 

Both X and A are Borel spaces. To each x € A" it is associated a non -empty set 

A(x) £ B(A) whose elements are the feasible control actions when the system is in the 

s ta te x. The set 

K := {(x,a) \x g X,a 6 A(x)} (2.1) 

of admissible s ta te-ac t ion pairs is assumed to be a Borel subset of X x A. T h e transit ion 

law Q(B | x, a), where B € B(X) and (x,a) £ K is a stochastic kernel on X given K 

[3], [11]; tha t is, for each pair (x,a) € K , Q(-\x,a) is a probability measure on X, 

and for each B £ B(X), Q(B\ •) is a measurable function on K . Finally the cos t -pe r -

stage c(x,a) is a measurable function on K bounded from below. In fact, wi thout loss 

of generality, we will assume that c is nonnegative. To s ta te one of main hypotheses 

(Assumption 2.1 (a) below) we require the following definition: A real-valued function 

v on K is said to be inf-compact on IK if the set 

{a G A(x)\v(x,a) < r } is compact (2.2) 
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for every x £ X and r £ IR. (For instance, if the sets A(x) are compact and v(x,a) is 

lower semicontinuous (l.s.c.) in 0 6 A(z) for every x £ X, then v is inf-compact on K . 

Conversely, if v is inf-compact on K , then v is l.s.c. in a £ A(x) for every x £ X.) 

A s s u m p t i o n 2 . 1 . (a) c(x,a) is nonnegative, lower semicontinuous (l.s.c.) and inf-

compact on K; 

(b) The transit ion law Q is weakly continuous; i .e. for any continuous and bounded 

function u on X, the map (x,a) —» / u(y)Q(dy \ x, a) is continuous on K; 
Jx 

(c) The multifunction (or set-valued map) x —+ A(x) is lower semicontinuous (l.s.c); 

tha t is, if xn —> x in X and a £ A(x), then there are a„ £ A(xn) such that 

In the remainder of this section we will briefly discuss important facts related to 

Assumption 2.1. 

R e m a r k 2 .2 . Let L(X) be the class of all functions on X that are l.s.c. and bound­

ed from below. A function v belongs to L(X) if and only if there is a sequence of 

continuous and bounded functions un on X such that un | v. Using this fact one can 

easily verify tha t Assumption 2.1 (b) is equivalent to: For any v £ L(X), the map 

(x, a) —> / v(y)Q(dy \ x, a) is l.s.c. and bounded from below on K . 

E x a m p l e 2 . 3 . Consider a stochastic control system of the form 

xt+1 = F(xt,at,{t), t = 0 , 1 , . . . , (2.3) 

where {£(} is a sequence of independent and identically distributed (i. i. d) random vectors 

with valued in a Borel space S. In (2.3), xt £ X and at £ A(xt) denote the s tate of 

the system and the control variable at t ime t, respectively, and F is a given measurable 

function from K x S to X. Denoting by u the common distribution of the disturbances 

£i, the transit ion law of the system can be writ ten as 

Q(B\x,a) = / IB[F(x,a,s)]u(ds), B £ B(X), 

where IB denotes the indicator function of B. It is then clear that if (a:, a) —• F(x,a,s) 

is continuous on K for every s £ S, then Assumption 2.1 (b) holds. 

E x a m p l e 2 .4 . Assumption 2.1 (c) holds if, e.g., K is convex (cf. [17, Lemma 3.2]). 

In turn , the la t ter convexity condition holds in many applied control problems: invento­

ry/product ion systems, water resources management, etc.; see [1,2,9,11]. 
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Example 2.5. ( The linear regulator problem.) Instead of (2.3), consider the stochas­
tic linear system 

x.+i = fxt + fiat + 6, (2.4) 

with X = S = R", A = A(') = Rm; 7 and fi are matrices of appropriate dimensions. 
By the Examples 2.3 and 2.4, it is clear that the Assumptions 2.1 (b) and (c) are satisfied 
in this case. Moreover, the quadratic cost c(x, a) = x'px + a'qa (where "prime" denotes 
transpose) satisfies Assumption 2.1 (a) if p and q are nonnegative and positive definite, 
respectively. For other specific control systems satisfying Assumptions 2.1, see e.g., the 
references in Example 2.4. 

Definition 2.6. F denotes the family of measurable functions / from X to A such 
f(x) e A(x) for all x 6 X. 

The following lemma summarizes some important facts to be used in later sections. 

Lemma 2.7. (a) If Assumption 2.1 (c) holds and v is inf-compact (cf. (2.2)), l.s.c. and 
bounded from below on K, then the function v*(x) := mia€A^v(x, a) belongs to 
L(X) and, furthermore, there is a function / 6 F such that 

v*(x) = v(x,f(x)) V x e l . 

(b) If the Assumptions 2.1 (a), (b) and (c) hold, and u 6 L(X) is nonnegative, then the 
(nonnegative) function 

u(x) := inf fc(x.a) + / u(y)Q(dy \ x, a)\ 
«e^M L Jx J 

belongs to L(X), and there exists / € F such that 

u*(x) = c(x,f(x)) + Ju(y)Q(dy\x,f(x)) V x € l . 

(c) For each n = 0 , 1 , . . . , let vn be a l.s.c. function, bounded from below and inf-
compact on K. If vn | t>o, then 

lira inf vn(x,a) = inf v0(x,a) V i f X 
n-xx> aZA(x) aeX(x) ' 

Proof . Part (a) is Lemma 3.2(f) in [17]. 
(b) By Remark 2.2 and Assumption 2.1 (a), if u € L(X) is nonnegative, then 

v(x,a) := c(x,a) + f u(y)Q(dy \x,a) 
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is nonnegative, l.s.c. and inf-compact on K . (Note that u > 0 implies that 

{a € A(x)\v(x,a) < r} is a closed subset of the compact set {a e A(x) | c(x, a) < ?•}.) 

Thus (b) follows from part (a), 

(c) Let us define, for a: € A , 

l(x) := lim inf vn(x,a), and v*(x) := inf v0(x,a). 

Clearly, l(x) < v*,(x). TO prove the reverse inequality, fix an arbitrary x € A', and for 

each n > 0, let (cf. (2.2)) 

An := {a & A(x)\vn(x,a) < v*(x)}. 

The inf-compactness hypothesis, together with vn f u0, implies tha t the An are compact 

sets such tha t An J. A0. On the other hand, by part (a), for each n > 1, there is an € An 

such tha t u„(a:,an) = inf vn(x,a). Thus there exists a subsequence {an } of {an} and 
V ^ a£/l(x) V ' I . J I J 

a0 € A0 such tha t a„. —» a0. Now, using again that vn is monotone increasing, we have 

vn,(x,ani) > vn(x,ani) V nt > n, 

for any given n > 1. Letting i —• oo, the lower semicontinuity assumption yields 

/(a;) > vn(x,a0). 

This implies /(a;) > u0(a;,ao) = v
0(

x), f ° r ^n T y
0. Since a; € A was arbitrary, this 

completes the proof. Q 

C o m m e n t s . It is worth noting tha t the main difference between our present as­

sumptions and those in the previous li terature lies in the inf-compactness in Assumption 

2.1 (a) and the l.s.c. in Assumption 2.1 (c). Inf-compactness, allows non-compact con­

straint sets A(x), but still it allows to use "compactness-like" arguments , as in the proof 

of Lemma 2.7 (c). Assumption 2.1 (c), on the other hand, is used to show tha t "minimal" 

functions, such as v* and u* in Lemma 2.7, are lower semicontinuous; without such an 

assumption, we can only ensure that v* and u* are measurable (cf. [17, Lemma 3.2], [27, 

Corollary 4.3]). 

3. T H E C O N T R O L P R O B L E M 

Let xt and at denote, respectively, the s tate of the system and the control action applied 

at t ime t = 0 , 1 , . . . . A rule to choose the control action at at each t ime t is called a 

control policy and is formally defined as follows. 

A control policy IT is a sequence {nt} such tha t for each t = 0 , 1 , . . . ,irt(- \ ht) is a 

conditional probabili ty on B(A), given the history ht := (x0, a0,..., Xt-i, at-i, xt), tha t 

satisfies the constraint trt (A(xt) \ ht) = 1. The class of all policies is denoted by p j . 



196 O. HERNANDEZ-LERMA AND M. MUNOZ DE OZAK 

Let F be the class of functions in Definition 2.6. A sequence {/(} of functions ft £ F 

is called a Markov policy. A Markov policy {/.} is said to be a stationary policy if it is 

of the form / ( = / for a l i i = 0 , 1 , . . . for some / G F ; in this case we identify {/<} with 

/ € F . 

Let (fl,J~) be the measurable space consisting of the sample space ft := X x A x 

X x A x . . . , and the corresponding product sigma-algebra T. Then for an arbi trary 

policy 7T € Yl and (initial) state x g X, a standard argument using a theorem of C. 

Ionescu Tulcea (see e. g. [18, p.80]) shows the existence of a unique probability measure 

P£ on (Sl,T), which is concentrated on the set of all sequences (x0, a0,x\, a\,...) with 

(xt,at) € K for all t = 0 , 1 , (K is defined in (2.1).) Moreover, P£ satisfies tha t 

P£(x0 = x) = 1, and for every t = 0 , 1 , . . . 

Ps(a, 6 C\ht) = n(C\ht) VCeS(A) (3.1) 

PI (xt+x 6 B\ht,at) = Q(B\xt,at) VBeB(X). (3.2) 

(ti,T,P£,{xt}) is called a (discrete-time) Markov control process. The expectat ion 

operator with respect to P£ is denoted by EJ. 

R e m a r k 3 . 1 . If IT = { / J is a Markov policy, then the s tate process {xt} is a Markov 

process with transition kernel Q (• | a ; , / e (x) ) ; that is, 

P ; (*,+, e B|x0,...,*.) = PI (xt+i €B\xt) = Q(B\xu/.(*.)) 

for all B g >8(X) and i = 0 , 1 , In particular, if / € F is a stationary policy, then 

{xt} has a t ime-homogeneous transition kernel Q (• \x,f(x)). 

R e m a r k 3 .2 . If 7r = { /} is a Markov policy, then expressions such as Q (• \ x, ft(x)) 

and c(x,ft(x)) will usually be written as Q (• \x,ft) and c(x,ft), respectively. 

P e r f o r m a n c e cr i ter ion . Given IT e [ J and x £ X, let 

V(w,x) := Elf^atc(xuai) (3.3) 
(=0 

be the total expected discounted cost when using the policy 7r, given the initial s ta te 

x0 = x. The number a € (0,1) in (3.3) is called the discount factor. 

The optimal control problem we are concerned with is to find an optimal policy w* £ TJ, 

i .e. , a policy w* such tha t V (w*,x) = V*(x) for all x € X, where 

V*(x) := infV(7r,aO, x € X, (3.4) 

is the optimal cost (or value) function. 

The main objective of the following sections is to give several characterizations of an 

opt imal policy, as well as of the optimal cost function V*• We will also consider a concept 

of asymptotic optimality, which has proved to be very useful in e. g. adaptive control 

problems, i .e., problems in which the control model depends on unknown parameters . 
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4. T H E O P T I M A L I T Y EQUATION 

If the cost per stage c.(x, a) is bounded, then the optimal cost function V*(x) is the unique 

bounded function tha t satisfies the optimality equation (abbreviated: OE) 

V*(x) = mill \c(x,a) + a f V*(y)Q (dy\x,a)\ , x € X, (4.1) 
aEA(x) I J J 

and moreover, a policy ir* is optimal if and only if its cost V (n*, •) satisfies (4.1). These 

are well-known results tha t go back to the earlier works in the field (e.g. [5]). It is also 

known, on the other hand, tha t if c(x,a) is unbounded, then the OE (4.1) may not have 

a unique solution [1,2], or an optimal policy may not exist [19]. Thus it is impor tant to 

characterize the optimal policies or the solutions to (4.1) that coincide with V*. To do 

this we will suppose throughout the following that Assumption 2.1 and Assumption 4-1 

(below) hold. 

A s s u m p t i o n 4 . 1 . There exists a policy 5? such that V(TT,X) < co for each x € X. 

For instance, each of the conditions C0, C\, C2 in Definition 4.5 below implies As­

sumption 4 .1 . Another sufficient condition is the following: there exists a policy 7? such 

tha t the long-run expected "average cost" 

n - l 

l i m s u p n - 1 E* y . c(xt,o-t) 
n-^00 ( = 0 

is finite for each x £ X; see e.g. [13]. 

Assumption 4 .1 , together with (3.4), guarantees that the optimal cost function is 

finite-valued: 0 < V*(x) < 00 for each x £ X. 

To s ta te our next result we introduce some notation: Let L(X)+ be the class of 

nonnegative and l.s.c. functions on X, and for each u 6 L(X)+ define a new function 

Tu by 

Tu(x) := rain \c(x,a) + a f u(y)Q(dy\x,a)\ . (4.2) 
°ZM*) [ Jx J 

By Lemma 2 .7(b) , the operator T defined by (4.2) maps L(X)+ into itself. We al­

so consider the sequence {vn} of value iteration (VI) functions defined recursively by 

v0(-) := 0, and v„ := Tw„_, = Tnv0 for n = 1 ,2, . . . . That is, for n > 1 and x € X, 

vn(x) := min c(x, a) + a / vn-i (y)Q (dy \ x, a) \. (4.3) 
°eA(x) [ J J 

Note tha t , by induction and Lemma 2.7(b) again, vn £ L(X)+ for all n > 0. From 

elementary Dynamic Programming [2,3,9], vn(x) is the optimal cost function for an 

n-stage problem (with "terminal cost" v0(-) = 0) given x0 = x; i .e. , 

vn(x) = inf Vn(n,x), (4.4) 



198 O. HERNÁNDEZ-LERMA AND M. MUŇOZ DE OZAK 

where 

Vn(ҡ,x) := E* Ş ^ a ' c(xt,at) (4.5) 

Theorem 4.2. Suppose that Assumptions 2.1 and 4.1 hold. Then: 

(a) vn t V*; hence 

(b) V* is the (pointwise) minimal function in L(X)+ that satisfies the OE (4.1), or 
equivalently 

V* = TV*. (4.6) 

(c) There exists a stationary policy /* £ F such that /*(x) € y4(x) minimizes the r.h.s. 
(right-hand side) of (4.1) for all x € X, i.e. (using the notation in Remark 3.2) 

V(x) = c(x, /*) + « / V*(y)Q (dy | x, / * ) , (4.7) 

and /* is optimal. Conversely, if /* € F is an optimal stationary policy, then it 
satisfies (4.7). 

(d) If ir* is a policy such that V (n*,-) is in L(X)+ and it satisfies the OE and the 
condition 

lira anUxV(v*,xn) = 0 VTT € R and x e X, (4.8) 

then V (IT*, •) = V*(-)\ hence TT* is optimal. 

Before proving Theorem 4.2 let us note the following. 

Remark 4.3. (a) If V* is not finite-valued, the convergence in Theorem 4.2 (a) may 
not hold; see e.g. [2, p.233, problem 9]. 

(b) By part (b) of Theorem 4.2, if TT* £ Yl is a n optimal policy, then V (n*, •) = V*(-) 
satisfies the OE (4.1 )=(4.6). However, the converse is not true in general: In [2, p.215, 
Example 3] a policy n* is given such that V (ir*, •) satisfies the OE, but TT* is not optimal. 
Such a policy n* does not satisfy (4.8), of course. 

(c) Observe that (4.8) trivially holds if c(x, a) is bounded, for if 0 < c(x, a) < M 
V(x,a) € K, then, from (3.3), 0 < V(ir,-) < M/(l -a) VTT, (Other conditions implying 
(4.8) are given in Theorem 4.6 below.) 

Lemma 4.4. (a) If v G L(X)+ is such that v > Tv, then v > V*. 

(b) If v is a measurable function on X such that Tv is well defined and is such that 
v < Tv and 

lim anE:>(xn) = 0 VTT,X, (4.9) 

then v < V*. 
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Proof , (a) Suppose that v > Tv, and (see Lemma 2.7(b)) let / G F be a stationary 
policy that satisfies 

v(x) > c(x,f) + ajv(y)Q(dy\x,f) Vx. 

Iterating this inequality we obtain 

n - l 

v(x) > El^atc(xt,f) + anElv(xn), Vn,x, 
(=0 

where E^(x n) = v(y)Qn (dy \x,f), and Qn(B \x,f) = P / (xn <E B) denotes the n-

step transition probability of the Markov chain {xt}; see Remarks 3.1 and 3.2. Therefore, 
since v is nonnegative, 

n - l 

»(-0 >- -*So*«(*i./) V"-1. 
1=0 

and letting n —> oo, (3.3) and (3.4) yield 

v(x) > V(f,x) > V'(x) Vx. 

This proves (a). 

(b) Let 7T € n a n d x e X b e arbitrary. Then, from (3.2), 

El{at+lv(xi+,)\ht,at] = at+1 jv(y)Q(dy\xt,at) 

= a' \c(xt,at) + a v(y)Q (dy \xt,at) - c(xt,at)\ 

> a'[v(xt) - c(xt,at)], 

since, by assumption, Tv > v. Hence 

atc(xt,al) > - El [at+1v(xt+1) - a'v(xt) | ht,at] . 

Thus taking expectations E"(-) and summing over t = 0 , . . . , n — 1, we obtain 

n - l 

yja 'EJc(x( ,a . ) > v(x) — anE^u(xn), Vn. 
t=a 

Letting n —* oo, the latter inequality and (4.9) yield V(ir,x) > v(x), which implies (b), 
since n and x were arbitrary. D 
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P r o o f of T h e o r e m 4 .2 . (a) - (b). To begin, note tha t the operator T in (4.2) is 

monotone on L(X)+, i .e. , u > v implies Tu > Tv. Hence the VI functions vn form 

a nondecreasing sequence in L(X)+ and, therefore, there exists a function u in L(X)+ 

such tha t vn f u. This implies (by the Monotone Convergence Theorem) that 

c(x, a) + a I Vn-i(y)Q (dy \x,a) | c(x, a) + a u(y)Q (dy \x,a), 

which combined with Lemma 2.7 (c) and (4.2) - (4.3) yields 

u = Tu, (4.10) 

i .e . « £ L(X)+ satisfies the OE (4.1) - (4.6). We will now show that u = V*. 

Indeed, from (4.10) and Lemma 4.4(a) , u > V*. To prove the reverse inequality 

observe tha t , from (4.4) - (4.5), 

vn(x) < Vn(x,x) < V(T,X) Vn,ir,x, 

and letting n —> oo, we get u(x) < V(ir,x) V ir,x. This implies u < V*. We have 

thus shown that u = V* satisfies part (a) and the OE (4.10)=(4.6). 

Finally, to complete the proof of (a) - (b), note that u = V* is indeed the minimal 

solution to the OE, for if u' 6 L(X)+ is such that u' = Tu', then Lemma 4.4 (a) yields 

u' > V*. 

(c) The existence of a stationary policy /* G F satisfying (4.7) follows from Lemma 

2 .7(b) . Now iteration of (4.7) shows (as in the proof of Lemma 4.4(a)) tha t 

V*(x) = E>* X V C Í ; * . . / * ) +anEÍ'V*(xn) 
Í=O J 

|vc(z.,r)L 

Letting n —» oo, we obtain V*(x) > V (f*,x), which combined with (3.4) yields V*(-) = 

V (/*,•)) ' - e - ; f* is optimal. Finally, the converse follows from the fact tha t , for any 

stationary policy / € F , the cost V ( / , •) satisfies (by the Markov property; see Remarks 

3.1 and 3.2) 

V(f,x) = c(x,f) + a I V(f,y)Q(dy\x,f). (4.11) 
Jx 

(d) Apply Lemma 4.4 (b) to v(-) '.= V (T*, •). D 

To close this section, we will show that each of the conditions C 0 to C 3 defined next 

implies (4.8). 
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Def in i t i on 4 .5 . C (i = 1,2,3) stands for the following condition: 

Co- c(x,a) is bounded (cf. Remark 4.3(c)) . 

C\. There exists a number m > 0 and a nonnegative measurable w on X such tha t , for 

all (x,a) G IK, 

(i) c(x,a) < mw(x), and (ii) I w(y)Q (dy \x,a) < w(x). 

C2. C(x) := V^c t ' c^x ) < oo for every x £ X, where 
(=0 

ct(x) := sup / ct-\(y)Q(dy\x,a) V t = 1, '2 , . . . , 
a£A(x)J 

and co(a;) := sup c(x,a). 
aeA(x) 

C3. lim anEZV(n',xn) = 0 V7r,7r' G JJ, and x G X. 

T h e o r e m 4 .6 . (a) C, implies C;+ ] for i = 0 ,1 ,2 and C3 implies (4.8). Hence: 

(b) If any of the conditions C0 to C3 hold, then a policy ir* is optimal if and only if 

V (if*, •) satisfies the OE. 

P r o o f , (a) Co implies C\. This is obvious: let m > 0 be an upper bound for c(x,a) 

and take w(-) = 1. 

Ci implies C2. If C\ holds, then a straightforward induction argument shows that 

ct(x) < mw(x) for all x G X and t = 0 , 1 , . . . . Thus 

C(x) < mw(x)l(\ — a) < oo for each x. 

C2 implies C3. Suppose tha t C2 holds, and let 7r G n a n d x £ X be arbitrary. We 

will first show tha t 

V(K,X) < C(x). (4A2) 

To begin, observe tha t , from (3.2), 

E^[co(a;(+i) | ht, at] = Co(y)Q (dy\xt,at) < C\(xt) 

and, therefore, EJc 0 (x ( + i ) < ExC\(xt). This kind of argument yields 

Elco(xt) < E ; C l ( x t _ i ) < ••• < Elct(x0) = ct(x). (4.13) 

Thus, since c(xt, at) < co(xt), we obtain 

Elc(xt,at) < Exc0(xt) < ct(x) Vi . 

This inequality, together with (3.3) and the definition of C(x) implies (4.12). 
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Let us now show that 

- S c > n ) < JTa ' - n c ( (_) V n - - 0 , 1 , . . . . (4.14) 
t = n 

For n = 0, (4.14) follows from the definition of C(x). For n > 1, (3.2) gives 

E:(c(xn)|ftn_,,an_i] = Jc(y)Q(dy\xn^,an.1) 

- f v tct(y)Q(dy\xn.1,an.l) 
*=o •! 

< ] ^ a ' c . + i ( x n _ i ) . 
t=o 

Hence, taking expectation E£(-), 

E_o(*») < f ; a ( E ; c ( + , ( x n _ i ) . 
e=o 

However, as in (4.13), E£c(+i (xn_i) < E£c(+2(xn_2) < ••• < c(+n(x), so that 

E:G(xn) < £>'_.+-(-•), 
(=0 

and (4.14) follows. 
Finally, let T and T ' be two arbitrary policies. Then from (4.12) with T' instead of 7r, 

and (4.14), we obtain 

E : V ( T ' , X „ ) < UxC(xn) < ^ a ( - " c ( ( x ) . 
(=n 

This in turn yields 

anElV(ir',xn) < y^a'c^x) —» 0 as n —> oo, 
i=n 

since C(x) is finite. Thus G2 implies C3. 
C3 implies (4.8). This is obvious, since 7r and T ' in (73 are arbitrary. This completes 

the proof of part (a). 
(b) Follows from (a) and Theorem 4.2 (b), (d). -

Comments . 1. Theorems 4.2(d) and 4.6(b) extend all previous results relating 
an optimal "general" policy T* € P| (as opposed to an optimal stationary policy; see 
Theorem 4.2(c)) to the OE (4.1), and they also clarify the role of the "growth condi­
tion" (4.8). For finite-state, finite-action MCPs, and dealing only with Markov policies, 
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another characterization of optimal policies is given in [21]. Related results appear in 

[23]. 

2. As already noted at the beginning of this section (see also Remark 4.3 (c)) Theorem 

4.2 is well-known in the bounded cost case (condition Co). The condition C\ was intro­

duced by Lippman [22] to reduce the unbounded (in the supremum norm) cost problem 

to a bounded problem, which is done by defining a weighted supremum norm, where the 

"weight" is the function w in C\. Lippman's approach has been used and extended by 

many authors; see e.g. [14,29] and their references. 

3 . It is interesting to note tha t the condition C\ (ii) on w implies tha t {w(xn)} is a 

P J - s u p e r - m a r t i n g a l e for any 7r £ r j and x £ X. That is, for any n = 0 , 1 , . . . , (3.1) -

(3.2) and C, (ii) yield 

E:[w(xH+\)\hn} = J J w(y)Q(dy\xn,an)*n(dan\hn) 

A X 

< w(xn) P* — a.s. 

In Systems Theory, a function w satisfying C\ (ii) is called a Lyapunov function and its 

relation to some "stability" and recurrence properties are well-known [6,10,16,25] . It 

would be interesting to investigate what kind of information (if any) Ci(ii) gives on the 

"stabil i ty"propert ies of t he controlled process {xt}. 

4. Condition C 2 has also been used by several authors, e.g. [1 ,4 ,7 ,14] . 

5. Another sufficient condition for (4.8) can be obtained by analogy with related 

results for controlled diffusion processes. For instance, Kushner 's [20] Theorem 3 can be 

res ta ted in our context as follows: 

(*) Suppose t h a t there is a nonnegative measurable function F on R such t h a t 

F(r)/r | oo as r —•» oo, and 

J F(u(y))Q(dy\x,a) < F(u(x)) V(x,a)eK, 

where u(x) := V(ir*,x). Then (4.8) holds. 

T h e proof of (*) is similar to the proof for diffusions. 

5. APPROXIMATIONS 

T h e study of approximations to the optimal cost function V* is impor tant for both theo­

ret ical and computa t ional purposes. For instance, in Theorem 4.2 (a) we have seen tha t 

V* is the limit of the monotone increasing sequence of value i teration (VI) functions, 

from which we immediately conclude some properties of V* (see Theorem 4.2 (b)). It is 

also worth not ing that the VI approximation scheme is defined recursively and tha t it 
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amounts to approximate V by problems with a, finite number of stages (cf. (4.3) - (4.5)). 

In this section we consider three more types of approximations to V*. The first one is 

via infinite-horizon problems with bounded (or "truncated") costs cn(x,a) f c(x,a), and 

the second one is a combination of bounded costs and finite-horizon (Vl-like) approxi­

mations. These two are monotone increasing approximations to V*. Finally, the third 

one is the s tandard Policy Iteration (PI), which provides decreasing approximations. 

Assumptions 2.1 and 4.1 are supposed to hold throughout the following. 

B o u n d e d c o s t s . Let {cn(x, a), n = 0 , 1 , . . . } be a sequence of nonnegative, bounded 

functions on IK such that c" j c and, for each n, Assumption 2.1(a) holds when c is 

replaced by c". (For instance, the truncated cost cn(x,a) := min {c(x,a), n) satisfies 

Assumption 2.1 (a) if the sets A(x) are compact.) Now, instead of (3.3) - (3.4), consider 

the corresponding cost functions 

U71(TT,X) := El^Talcn(xt,at), and U*(x) := i n f ! / « ( * , * ) . (5.1) 
(=0 

For each n, the optimal cost function U*(x) is the unique bounded function in L(X)+ 

tha t satisfies the OE (cf. (4.1)=(4.6)) 

U* = TnU*n, (5.2) 

where, for v g L(X)+, 

Tnv(x) := min \cn(x,a) + a f v(y)Q(dy\x,a)\ . (5.3) 
a€A(x) [ J J 

R e c u r s i v e b o u n d e d c o s t s . The VI equation (4.3) suggests to introduce a sequence 

{u n } defined recursively as u0 := 0, and un := Tnun_i for n > 1; tha t is, 

un(x) = min c"(.T,a) + a un^(y)Q (dy | x, a)\ . 
aSA(x) l J J 

(5.4) 

P o l i c y i t e r a t i o n ( P I ) . Let f0 £ F be a stationary policy with a finite-valued 

discounted cost V (f0, •) =: w0(-) € L(X)+. As in (4.11), we may write 

w0(x) = c(x,f0) + a I w0(y)Q(dy\x,f0) Vx € X. (5.5) 

Now, with T being the operator defined in (4.2), let fx g F be such that 

c(x,h) + ajw0(y)Q(dy\x,f) = Tw0(x), (5.6) 

i .e . (cf. Lemma 2.7(b)) , 

c(x,fi) + a f Wo(y)Q(dy\x'fA = ™™x) \
c(x,«) + o J w0(y)Q (dy \ x, a)\ . 
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Write w1(-) := V (/.,•). In general, given /„ € F , suppose that u>„(-) := V (/„,•) is in 
L(X)+, and let /„+i € F be such that 

c(x,fn+1) + afwn(y)Q(dy\x,fn+1) = Twn(x) 

= min c(z,a) + a / u)„(y)Q(du|a;,a) . (5.7) 
aG/4(ar) [ J ' c ^ J 

Theorem 5.1. (a) Each of the sequences U* and u„ is monotone increasing and 

converges to V*. 

(b) There exists a measurable nonnegative function w > V* such that wn j w, and w 
satisfies the OE w = Tw. If, moreover, w satisfies 

lim a"E>(x„) = 0 V7r,.t, (5.8) 

then w = V*. 

Proof , (a-) Let us first show that Un f V*. To begin with, note that, since c" | c, 
it is clear from (5.1) that Un is an increasing sequence in L(X)+ and, therefore, there 
exists a function u € L(X)+ such that (7* T u- Moreover, from Lemma 2.7(c), letting 
n —* oo in (5.2) we see that u = Tu, i. e., w satisfies the OE. This implies that u > V*, 
since, by Theorem 4.2 (b), V* is the minimal solution in L(X)+ to the OE. On the other 
hand, it is clear from (5.1) that Un < V* for all n, so that u < V*. Thus u = V*, i.e. 
U* | V*. Finally, a completely analogous argument shows that u„ f V*. 

(b) Let us now consider the sequence of PI functions wn. We will first show that this 
sequence is decreasing. From (5.5), 

w0(x) > min c(x,a) + a Wa(y)Q (dy\x,a)\ 
aeA(x) I J J 

= Tw0(x), 

so that, by (5.6), 

u-o(x) > c (x, /j) + a J w0(y)Q (dy \ x, h). 

As in the proof of Lemma 4.4(a), the latter inequality implies 

w0(x) > V(/.,-) =: w,(x). 

In fact, a similar argument clearly holds for arbitrary n, so that, from (5.7), 

wn > Twn > wn+1 Vn > 0. (5.9) 

Hence, by monotonicity, there is a nonnegative measurable function w such that u>„ J. w. 
Clearly, w > V*, since wn > V* for all n. Now, from [18, Lemma 3.4] (or [17, Lemma 
3.3]) if hn is a sequence of functions on K such that hn J. h, then 

lim inf hn(x,a) = inf h(x,a). 
n^K,aZA(x) V ; aCA(x) V ' 



206 O. HERNANDEZ-LERMA AND M. MUNOZ DE OZAK 

T h u s applying this result to (5.9), we get w > Tw > w, i .e., w satisfies the O E 

w = Tw. Finally, the last s ta tement in part (b), assuming (5.9), follows from Lemma 

4.4(b) . O 

C o m m e n t s . 1. Each of the conditions C0, Ci and C2 in Definition 4.5 implies (5.8), 

in which case w = V*. In general, however, w > V*. This kind of "abnormal" behavior 

of upper, decreasing approximations wn (as opposed to the "nicely behaved" increasing 

approximations in Theorems 5.1 (a) or 4.2 (a), which do converge to V*), has been noted 

by several authors in related contexts [1,17,30]. 

2. For M C P s satisfying C0, C] or C2, or with some particular s tructural property - e. g. 

convexity -, many other types of approximations are possible [2,7,11,12,14,15,17,28 -

30]. 

6. O T H E R O P T I M A L I T Y C R I T E R I A 

Let us rewrite the O E (4.1) as 

min Ф(x,a) = 0. (6.1) 
aЄД(x) 

I'here 

* ( * , a) := c(x, a) + a [ V*(y)Q (dy \x,a) - V*(x) (6.2) 

is t h e so-called discrepancy function. This name for $ comes from the fact that 

V(w,x) - V*(x) > $ ( x , a ) ( > 0) (6.3) 

for any policy n = {wt} with initial action 7r0(x) = a € A(x) when x0 = x. Thus 

$>(x,a) bounds from below the "deviation from optimality" of the policy •K (see [7, §5], 

or Lemma 6.2(c) below). 

The objective in this section is to present optimality criteria in terms of $ and also in 

te rms of the sequence {Mn} defined as 

n - i 

Mn := V V c ( X ( j a ( ) + a
nV*(xn) for n = 1 , 2 , . . . , (6.4) 

(=0 

with M0 := V*(a:o)-

To begin, let us note tha t if 

Vn(n,x) := ElYja
t-nc(xt,al) (6.5) 

(=n 

denotes the total expected discounted cost from stage n onward, when using the policy 

•K and given x0 = x, then from (3.3) and (4.5) we have 

V(TT,X) = VU(TT,X) + anVn(ir,x). (6.6) 
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On the other hand, using (6.4) and (6.5) we can also write V(n,x) as 

V(ir,x) = El(Mn) + an[Vn(Tr,x) - ExV(xn)}. (6.7) 

We now state the main result in this section. 

Theorem 6.1. Let ir b e a policy such that V(ir,x) < oo for each x € X. Then the 
following statements are equivalent: 

(a) 7r is an optimal policy. 

(b) Vn(Tr,x) = En
xV(xn) Vn,x. 

(c) E*$(:rn ,an) = 0 Vn, i . 

(d) {Mn} is a T^-martingale Vx. 

To prove this theorem we will use the following result from Schal [28]. 

Lemma 6.2. Let ;r be a policy such that V(w,x) < oo for each x € X (one such 
policy exists, by Assumption 4.1). Then: 

(a) Vn(w,x) > E*xV(xn) Vn. 

(b) ^V- n E£$(a ; , , a ( ) = Vn(n,x) - E£V*(xn) Vn,x; in particular (for n = 0), 
t=n 

(c) V(it,x) - V(x) = Y^atEl^(xt,at). 

Parts (a) and (b) in Lemma 6.2 correspond to Schal's [28] Theorem 2.13 and Lemma 
2.16, respectively. Schal uses a "Lyapunov condition", similar to C\ in § 4, to obtain the 
growth condition (4.8) (see our Theorem 4.6), from which Lemma 6.2 (b) is immediately 
deduced. In our case, the latter conclusion follows from Lemma 6.2(a), which implies 

0 < anElV(xn) < anVn(w,x) -> 0 as n - o c (6.8) 

where the latter convergence is obtained from (6.6) and the assumption that V(ir,x) is 
finite. 

We also need the following elementary result. 
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Lemma 6.3. For any 7r £ Yl an<l x € X, {Mn} is a PJ-sub-martingale, i. e. 

El(Mn+i\hn)> Mn PI - a.s. Vn. 

Therefore 
E£Mn+1 > E*Mn > ••• > E*M0 m V(x) Vn. (6.9) 

Proof . From (6.2) and (3.2), 

* ( I n , a n ) = E:[c(xn ,an) + aV (xn+1) - V(xn)\hn,an}, 

whereas from (6.4)',* 

Mn+1 = Mn + an[c(xn,an) + aV (xn+l) - V(xn)}. 

Therefore, by the properties of conditional expectations, 

El (Mn+1 | hn) = Mn + anEl [«(xn, c.) | hn}. (6.10) 

This implies the desired result, since $ > 0. Q 

Proof of Theorem 6 .1 . First we show that (a) and (b) are equivalent, 
(a) implies (b). Let w be an optimal policy, i.e., V(ir,x) = V*(x) for all x. Then, 

from (6.7) and (6.9), 

V(x) = El(Mn) + o"[V*(*,») - ElV(xn)} 

> V(x) + an[Vn(ir,x) - ElV(xn)}. 

This implies Vn(n,x) < ExV(xn) and, therefore, by Lemma 6.2 (a), we obtain part (b) 
in Theorem 6.L Conversely, (b) implies (a): take n = 0. 

The equivalence of (b) and (c) follows from Lemma 6.2{L>)*. 

Finally the equivalence of (c) and (d) follows from (6.10), the*properties of conditional 
expectations, and $ > 0. • 

Comments. Theorem 6.1 puts together optimality criteria known separately for 
several classes of controlled processes. For instance, the implication (a) ==> (b) is the 
well-known Bellman's Principle of Optimality; see, e.g., [2, p. 12], [18, p. 109]. The 
equivalence of parts (a) and (d) is also well-known [26]; for continuous-time (e.g. dif­
fusion) processes see, e.g., [8]; for average-cost problems see [24]. We also note that 
the discrepancy function $ in (6.2) is the "discbunted-cost analogue" of Mandl's [24] 
discrepancy function y in the average-cost case. On the other hand, observe that (4.7) 
can be written as 

* (*, /•{») = o y-j, (6.ii) 

In other words, from Theorem 4.2 (c) and equation (6.1), we may restate the equivalence 
of (a) and (c) in Theorem 6.1 as follows: A stationary policy /* is optimal if and only if 
it satisfies (6.H). 
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7. A S Y M P T O T I C OPTIMALITY 

Sections 4 and 6 present several characterizations of an optimal policy; these results do 

not say, however, how one can compute or, at least, "estimate" one such policy. In this 

section we briefly discuss the notion of asymptotic optimality, which allows us to say 

when a given control policy is "close" to being optimal. The basic ideas were introduced 

by Schal [28] in his analysis of adaptive control problems (see also [11] Chapter 2). 

The following definition, in which $ ( x , a) is the discrepancy function in (6.2), is mo­

tivated by Theorem 6.1 (c) - see also Lemma 6.2(c) and equation ( 6 . H ) . 

D e f i n i t i o n 7 . 1 . (a) A policy -K £ t j >s s a i d t o D e asymptotically optimal (AO) if, for 

each x £ X, 

El$(xn,an) -* 0 as n -> co. (7.1) 

(b) A Markov policy - = {/„} is called pointwise asymptotically optimal (pointwise 

AO) if, for each x £ X, 

$(x,fn(x)) -> 0 as n -> oo. (7.2) 

Observe tha t , by Theorem 6.1 (a), (c), if a policy is optimal, then it is AO. On the 

other hand, from Lemma 6.2 and equation (6.7) we immediately obtain the following 

result. 

T h e o r e m 7.2 . Let w £ f j D e s u c n t n a t v' (w,x) < ° ° f ° r e a c h x- Then the following 
s ta tements are equivalent: 

(a) w is AO. 

(b) lim [Vn(*,x) - EZV*(xn)\ = 0 for eae t x. 

(c) lim ^ a < _ n E J $ ( x , , a , ) = 0 for each x. 

(d) V(ic,x) = El(Mn) + o(an) as n —> oo, for each x. 

Theorem 7.2 is the "asymptotic version" of Theorem 6.L Observe also tha t if the 

cost per stage c(x,a) is bounded, then (7.1) (hence each of (a) - (d) in Theorem 7.2) is 

equivalent to: For each x £ X, 

$ (xn, an) -> 0 in PJ-probabi l i ty as n —> oo. (7.3) 

This follows from the Dominated Convergence Theorem. In the bounded cost ease again, 

and if ir = {fn} is a Markov policy, then (7.3) holds whenever the convergence in (7.2) 

is uniform in x £ X. 

For pointwise asymptot ic optimality we do not have a general result such as Theorem 

7.2, but very often it is easier to verify (7.2) than (7.1). Let us give an example. 
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Example 7.3. Let {vn} be the sequence of value iteration (VI) functions in (4.3), 
and let it = {/n} be the Markov policy defined as follows: /o € IF is arbitrary, and for 
n = 1,2,..., / n € F minimizes the r.h.s. of (4.3), i.e., 

vn(x) = c(xjn) + aj vn^(y)Q(dy\x,fn) Vx. (7.4) 

(Recall Remark 3.2.) We will show that ir is pointwise AO. 
From (6.2), 

*(*,/„(*)) = c(x,fn) + aj V(y)Q(dy\xJn) - V(x), 

so that, from (7.4), 

*(x, /„(x)) = a J [V(y) - vn^(y)}Q(dy\xJny- \V(x) - vn(x)}. 

Thus, since vn | V (Theorem 4.2(a)), 

• (*,/.(«)) < a J [V(y) - vn„1(y)}Q(dy\x,fn) Vn,*. (7.5) 

On the other hand, from (4.1), 

V(x) < c(xjn) + aj V(y)Q(dy\xJn), 

which combined with (7.4) yields 

V(x) - vn(x) <aj (V(y) - vn.l(y))Q(dy\xJn). (7.6) 

Iterating this inequality we obtain 

V(x) - vn(x) <a2J (V(y) - vn.2(y)) Q2 (dy \ x ; /„ , /„_ , ) , 

where 

Q2(-k;/n,/n-,) = J Q(-\yJn-i)Q(dy\xJn). 
X 

In general, further iteration of (7.6) yields (since v0(-) := 0) 

V(x)-vn(x) < an J V(y)Qn(dy\xJnJn-1,...J1) (7.7) 

= a"E^V*(xn) Vn,x, 

where Qn denotes the n-step transition probability of the Markov chain {xn}; see Remark 
3.1. Thus assuming that V(n,x) < oo for each x € X, the inequalities (7.5) - (7.7) 
yield 

*(x,/„(x)) < anElV(xn) < anVn(n,x) -* 0 

by Lemma 6.2 and (6.8). This proves (7.2); that is, the "VI policy" defined by (7.4) is 

pointwise AO. 
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Comments . Asymptotic optimality (AO) has been studied by several authors, but 
typically under conditions such as Co, C\ and C2- For applications of AO to several 
adaptive control policies and approximation procedures - including state or disturbance 
space discretizations, and "rolling horizon" policies - see e.g. [7,11,12,14,15,17, 28]. 
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