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K Y B E R N E T I K A — VOLUME 28 ( 1 9 9 2 ) , N U M B E R 3 . P A G E S 2 3 9 - 2 4 4 

ON EXTENSIONS OF FUZZY TOPOLOGIES 

G. B A L A S U B R A M A N I A N -

In this paper we introduce the concept of extension of fuzzy topologies. If {X,T) is a fuzzy topological 
space having the property 'P' we find conditions under which the extension of T will also have the same 
property 'P'. 

1. I N T R O D U C T I O N 

The concept of fuzzy topological spaces was introduced in [2] and ever since this intro­

duction much research has been done in this area. In this note we introduce the concept 

of extension of fuzzy topological spaces as done for topological spaces in [1,7]. 

Let (X, T) be a fuzzy topological space and T C T*. Then T* will be called a simple 

extension of T iff there exists a 6 $- T such that T* = {A V (n A 6) | A, fi € T}. In tfys 

case we write T* = T(8). In this note we a t tempt to answer the general question: 

If (X, T) has property ' P ' under what conditions will (X, (T(S)) also have property ' P ' , 

where ' P ' is some fuzzy topological property. 

2. PRELIMINARIES 

For the definition of fuzzy topological space we refer to [2]; but we follow the definition 

given by Lowen in [5] for Section 5 only. A fuzzy topological space (X, T) is said to be 

fuzzy connected [3] if it has no proper fuzzy closed set (a fuzzy set A in X is proper if 

A / 0 and A ^ 1). It is said to superconnected [4] if it has no proper fuzzy regular open 

set. (A fuzzy open set A is called a fuzzy regular open set [2] if Int (A) = A.) It is said to 

be fuzzy strongly connected [2] if it has no non-zero fuzzy closed sets A and ft such tha t 

A -f (i < 1, A fuzzy set A is fuzzy compact [5, 6] (countably compact , Lindelof) iff for all 

(countable, all) family f3 C T such that sup^€f3/j, > A and for all e > 0, there exists a 

finite (finite, countable) sub-family ftC/3 such tha t sup fi > X — s. (X, T) is said to be 
»eft> 

weakly fuzzy compact [5, 6] iff for each family /? C T such tha t sup /J, = 1 and for each 
f€0 

e > 0, there exists a finite sub-family /?o C /? such that sup \i > 1 — s. 
f£0o 

Fuzzy separation axioms are defined as follows: 
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T0: For every pair of distinct points x and y in X there exists a fuzzy open set A such 
that \(x) + \(y) (cf. [4]), 

T\\ A = {(x,x) € X x X} is fuzzy closed in (X x X, T x 8) where 8 is the discrete 
fuzzy topology on X, T x 8 is the product fuzzy topology on A x A (cf. [9]), 

T2: A = {(x,x) £ X x X}\s fuzzy closed in X x X (cf. [8]). 

Regularity: Every fuzzy open set A is the union of fuzzy open sets whose closures are 
contained in A (cf. [4]). 

Normality: For every fuzzy closed set A and fuzzy open set p. such that A < \i, there 
exists a set 7 such that A < Int (7) < cl (7) < fi (cf. [4]). 

If A C X, HA stands for membership function associated with A. 

3. BASIC PROPERTIES 

(1) Let (X,T) be an fts and T* = T(8). Let A be any fuzzy subset of X. Define 
TAA={AAA|A€T} = TA- Clearly TA is a fuzzy topology on X. Then 

In t T . (A)= IntT(A)V IntT|!(A A 5). 

P roof . 

In t r . (A) = V { 0 | 0 € T \ e< A} 

= \j{\eV(ne A8)\\e,ne eT, \eV((ieA8)<A} 

= V {A* I A* V ( / A 6) < A} V {/ A 6\ A9 V ( / A 6) < A} 

= v { A e | A " < A , \e 6T}v{ne A8\neA8<AA8, / A 8 e Ts) 

= IntT(A)V IntT ,(AA^). 

(2) (a) T* A 8 = T A 8 (b) 1 - 8 is T* closed. 

(3) c l T . (A)= clT(A)A{(l -8)\J c l T ( A V ( l - « ) ) } . 

Proof . Follows by (1), De Morgan laws and the definition of 

clT(A) = 1 - IntT(l - A ) . 

(4) Let (X,T) be an fts, AcX,T* = T(XA), XA i T. Then 
(i) (A,T/A) = (A,T'/A), 
(ii) (X - A, T/X -A) = (X - A, T*/X - A). 

(5) clT*{AA<$)= c\T(AA8). 
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Proof . 

C 1 T - ( A A < 5 ) = C 1 T ( A A < 5 ) A { ( 1 - < S ) V C1T[(A A <S)V(1-.*)]}= clr(AA<5) 

since 

(1-<5)V C 1 T [ ( A A , 5 ) V ( 1 - < 5 ) ] > clT(AA<5). 

D 

A is T* is closed <£=4> A is T closed. 

4. SEPARATION AXIOMS 

Regarding the fuzzy separation axioms the following results are easy to prove: 

(1) (X, T(S)) is fuzzy To, T,, T2 whenever (X,T) is fuzzy T0, T, T2 respectively. This 
follows from the fact that T C T(S). 

(2) (X, T(S)) is fuzzy regular if (X, T) is fuzzy regular and S is such that S A A ̂  0 for 
all 0 •£ A e T. 

(3) Let (X, T) be fuzzy normal and A C X such that fiA £ T, 1 - ftA € T. Then 
(X, T(HA)) is normal if (X - A, T/X - A) is normal. 

5. COVERING AXIOMS 

Regarding the covering axioms of fuzzy topological spaces [5] we shall establish the 
following: 

Theorem 1. Let (X,T) be fuzzy countably compact (fuzzy compact or fuzzy Lin-
delof) and 6 £ T. Then (X, T(S)) is fuzzy countably compact (fuzzy compact, fuzzy 
Liudelof) iff 1 — S is fuzzy countably compact (fuzzy compact or fuzzy Lindelof) in (X, T). 

Proof . We prove the theorem only for countably compact case. Suppose (X, T(6)) 
is countably compact. Since 1 — S is closed in (X, T(S)), it is countably compact in 
(X, T(S)). Then 1 - S is fuzzy countably compact in (X, T) since T C T(S). Conversely 
suppose sup {[A, V (/.. A S)\} = 1. Then sup {A,-} > 1 - S and since 1 - 6 is fuzzy 

l<V<oo 1<'<°° 
countably compact there exists a natural number N such that sup {A;} > (1 — 8) - e, 

l<i<N 
where e > 0 given arbitrarily. But sup {A, V m) = 1 and thus there exists a natural 

l<t'<oo 
number M such that sup {A; V m) =~1. Then <*> < sup {A; V (/.,- A <5)} and it follows 

l < i < M l < i < M 
that (\ - 8) -e + 8 < sup {A, A (/.; A 6)}. As e is arbitrary the result follows. D 

\<i<M+N 
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6. FUZZY CONNECTIVITY AND SOME APPLICATIONS 

Firstly we observe that whenever A C X is such that fiA 7̂  1 is a T-fuzzy closed set, 

then (X, T(nA)) need not be fuzzy connected. 

E x a m p l e . Let X be any non-empty set. Define T = {8\, S2, 83} where S\ = 1, 82 = 

0, 83 = 1/4. Clearly T is a fuzzy topology on X and (X, T) is fuzzy connected. But if 

we take 8 = 3 /4 , then T(8) = {8\, S2, S3, 8} and (X, T(8)) is clearly fuzzy disconnected. 

However in the following results we give a sufficient condition under which T(8) is fuzzy 

connected. 

T h e o r e m 2 . Let (X,T) be an fts and A C X be such that 

(1) PA i T 

(2) fiA is not T-fuzzy closed 

( 3 ) W A A ^ 0 for all 0 ^ A € T 

(4) (A, T/A) is a fuzzy connected subspace of X. Then (X, T(fiA)) is fuzzy connected. 

T h e o r e m 3 . Let (X, T) be an fts and A C X be such that 

(1) PA i T 

(2) \iA is not T-fuzzy closed 

(3) (A, T/A) and (X — A, T/X — A) are fuzzy connected subspaces. 

Then (X, T(fiA)) is fuzzy connected. 

P r o o f . Suppose A1 V (f.i\ A fiA) and A2 V (yu2 A fiA) are non-zero fuzzy open set of 

T(nA) such tha t 

A, V (n\ A nA) + A2 v (/»2 A HA) = 1, Aa, A2, n\, (i2 € T. 

i .e. M + A t = 1, where M = A, V (/.. A ^ ) : At = A2 V (/j2 A / j 4 ) . 

By Corollary 1, M 9̂  pA, N ± fiA. Therefore 

M A / . „ ^ 0 and At A fiA ^ 0 (1) 

M - / < ^ 0 and J V - / i ^ 0 . g (2) 

Case f/J; Now M/A = M A ; M = \\Vfii/A ^ 0. Similarly At/A = NAfiA = A 2 V/ . 2 /A ^ 

0. And A, V / / j / A + A2 V »u2/A = 1. This contradicts the fact tha t ( A , T/A) is fuzzy 

connected. 

Case. (2): This gives rise to a contradiction to the fact tha t (X — A, T/X — A) is fuzzy 

connected. 

Hence the theorem. • 
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7. APPLICATIONS 

Coro l lary 2. Let (X, T) be an fts and A C X such tha t jiA is not fuzzy closed. If 

A and X — A are fuzzy connected subspaces of (X, T), then (X, T) is fuzzy connected. 

P r o o f . By Theorem 3, (X, T((iA)) is fuzzy connected and since T C T(^A) it follows 

that (X, T) is fuzzy connected. • 

The following results can be proved similarly. 

T h e o r e m 4 . Let (X, T) be an fts and A C X be such that fiA is not fuzzy closed. If 

(A, T/A) and (X — A, T/X — A) are fuzzy superconnected subspaces, then (X, T(\iA)) 

is fuzzy superconnected. 

C o r o l l a r y 3 . Let (X,T) be an fts and A C X be such tha t nA is not fuzzy closed. 

If A and X — A are fuzzy superconnected subspaces of (X, T), then (X, T) is fuzzy 

superconnected. 

T h e o r e m 5. Let (X, T) be an fts and A C X be such that 

( i ) / M g T , 

(ii) (A, T/A) is fuzzy superconnected, 

(iii) fiA /\X^0 for all A £• T. 

Then (X, T(jiA)) is fuzzy superconnected. 

T h e o r e m 6. Let (X,T) be an fts and A C X such tha t 

(l)(iAiT, 

(2) HA is not fuzzy closed. 

If ( A , T/A) and (X-A, T/X-A) are fuzzy strongly connected subspaces, then (X, T(nA)) 

is strongly connected. 

Coro l lary 4. Let (X,T) be an fts and A C X be such that /J,A is not fuzzy closed. 

If A and X — A are fuzzy strongly connected subspaces of (X, T), then (X,T) is fuzzy 

strongly connected. 

R e m a r k s . Let (X, T) be a fuzzy topological space and 5 = {T(S)}S€lX_T be a 

family of simple extensions of T. Then A is the 9-extension of T if A is the smallest 

fuzzy topology on X which contains T(S) for all S £ Ix -T. This is an extension of the 

concept introduced for topological spaces in [1]. From [1] one can infer that some of the 

properties of (X, T) can be carried over to (X, A) under certain conditions whenever A 

is a countably infinite extension of T. 
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