Kybernetika

Harish C. Taneja; R. K. Tuteja

Characterization of a quantitative-qualitative measure of inaccuracy

Kybernetika, Vol. 22 (1986), No. 5, 393--402

Persistent URL: http://dml.cz/dmlcz/124578

Terms of use:

© Institute of Information Theory and Automation AS CR, 1986

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz


http://dml.cz/dmlcz/124578
http://project.dml.cz

KYBERNETIKA — VOLUME 22 (1986), NUMBER 5

CHARACTERIZATION
OF A QUANTITATIVE-QUALITATIVE MEASURE
OF INACCURACY

H. C. TANEJA, R. K. TUTEJA

A quantitative-qualitative measure of inaccuracy is suggested and is characterized under
a sct of assumptions. Some properties of the new measure are also discussed.

1. INTRODUCTION

N
Let P = (p;, P2, py), 0 pi S 1, Y p; =1 be the probability distribution
i=1

associated with a finite system of events E = (E,, E,, ..., Ey) representing the realiza-
tion of some experiment. The different events E; depend upon the experimenter’s
goal or upon some qualitative characteristic of the physical system taken into con-
sideration, that is, they have different weights, or utilities. In order to distinguish
the events E,, E,, ..., Ey with respect to a given qualitative characteristic of the
physical system taken into account, ascribe to each event E; a non-negative number
u; (20) directly proportional to its importance and call u; the utility of the event E,.
Then the weighted entropy [1] of the experiment E is defined as

N
(L.1) I(P;U) = — Y up;logp;.
i=1

Now let us suppose that the experimenter asserts that the probability of the ith
N N

outcome E; is gq;, whereas the true probability is p;, with Z g;: =Y. p; = L. Thus,
we have two utility information schemes: =1 =1

E\E,...Ey N
(12) S=|ppr.-px|; 0=pst, u; 20, Zpi=1,
Uyt ... Uy =1
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of a set of N events after an experiment, and

E\E, ...Ey N
(1.3) S°=|g1q; .- an|; 0221, 4,20, Yg,=1
i=1
Uiy ... Uy

of the same set of N events before the experiment.

In both the schemes (1.2) and (1.3) the utility distribution is the same because
we assume that the utility u; of an outcome E; is independent of its probability
of occurrence p,, or predicted probability q;; u; is only a “utility” or value of the
outcome E; for an observer relative to some specified goal (refer to [5]).

The quantitative-qualitative measure of relative information [8, 9], that the scheme
(1.2) provides about the scheme (1.3), is

(1.4 . 1P| Q;U) = élums log(pilqy) .

The measure (1.4), in some sense, can be taken as a measure of the extent to which
the forecasts g, g5, ..., gy differ from the corresponding realizations p,, p,, ..., Py
in a goal oriented experiment E = (Ey, E,, ..., Ey). When the utilities are ignored,
that is, u, = 1 for each i, the measure (1.4) reduces to the Kullback’s measure
of relative information [4]. Consider

N N
I(P;U) + I(P| Q; U) = —:;1“'1" log p; +I§luim log (pi/q;) =

u,pilogq;;

™=

1

and let it be denoted by I(P; Q; U). Thus
N
(15) I(P; Q;U) = = Y uipilog 4.

When the utilities are ignored, then (1.5) reduces to Kerridge’s inaccuracy [3].
Therefore (1.5) can be viewed as a measure of the inaccuracy associated with the
statement of an experimenter made in context with a goal oriented experiment.
We can consider (1.5) as a quantitative-qualitative measure of inaccuracy associated
with the statement of an experimenter. When p; = q;, for each i, then (1.5) reduces
to (1.1), the weighted entropy [1].

In the next section, we derive afresh the measure (1.5) under a set of intuitively
reasonable assumptions.

.

2. THE QUANTITATIVE-QUALITATIVE MEASURE OF INACCURACY
Let I(p,, P2s o3 Q1> G2 -3 Uy, Ua, ) be the measure of inaccuracy associated
with the goal oriented experiment E = (Ey, E,, ...). In order to characterize the I

function we consider the following
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A;. The function I is continuous with respect to its arguments p;'s, g;’s and u’s.
A,. When N equally likely alternatives, cach having the same utility u, are stated
to be equally likely the inaccuracy is a monotonic increasing function of N.

A,. If a statement is broken down into a number of subsidiary statements, then
inaccuracy of the original statement is the weighted sum of the inaccuracies of the
subsidiary statements.

For example, we must have
Ixypl’ P2, P35 4915 42, 435 Uy, Uy, u3) =
PaU; + p3u3> +
P2+ p3

+(P2+P3)I( P2 P, 4 4 ;uz,u3>-
P2+ Py P2t Ps 42+ 43 42+ 43

=1 (Pl, P2 + P33 91,92 + 435 Uy,

A,. The inaccuracy of a statement is unchanged if two alternatives about which
the same assertion is made are combined.
For example,
I(Pu P2, P35 415 925 925 Uy, U, ”3) =
patiy + pau
=1 (pl,pz + P33 dp 425 tys »r—z—z—rﬁ)v
P2 + p3
As. The inaccuracy of a statement is directly proportional to the utilities of the
outcomes.
For example, for every non-negative 4, we must have
Kpy, P2, P35 415 42, 435 Auy, Ay, dug) =
= U(Pu P2s P35 915 925 435 Uy, Up, “3) .
All these A; to A, are just modifications of Kerridge’s inaccuracy assumptions
and Aj is the monotonicity law expressed by the utilities.
In the following theorem we characterize the measure of inaccuracy associated

with this system. The proof is on the same lines as in the characterization of Ker-
ridge’s inaceuracy [3].

Theorem 1. The only function satisfying the axioms A, to Aj is
(2~1) I(P; 0; U) = -K Zuipi log g;,

where K is an arbitrary positive number and the logarithm base is any number
greater then one.
Proof. It is not difficult to verify that the function (2.1) satisfy axioms Ay to As.
Now we prove that any function satisfying these axioms must be of the form (2.1).
Consider the case when there are s™ alternatives with utilities u,, u,, ..., which are
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asserted to be equally likely, they may or may not be so. Then by axiom A,

Hpy, pay s 87787, s iy, Uy, ) = K15 87 )
where if = Y u;p;.
By axiom As
(2.2) I(1;s™m a) = aI(1; s 1)

Let I{1;s™™; 1) = A’s"). Now A{s™) is independent of p/s, the true prob-
abilities, therefore, A(s™) remains unchanged if we replace the true value of p/’s
by s~ for all i.

By axiom Aj, A(s") = m A(s). Using the continuity axiom A and the monotonic
character of A’s), we get, (refer to [7, p. 82]), A(s) = K log's, where K (>0) is an
arbitrary constant.

Consider the case when all the g,'s are rational. They can be then expressed in the

form q; = n;/N, where n;’s are integers and N = Y n,.
i
By axiom A,

I(Ph D2s«ees nl/N, '121)N5 cees Uy Uy, ) + ZP.’IUQ 1,’”5? “i) =
=I5 1N Y pay) s
or
I(pyy Pas ooy BN, LN, LUy, U, 000) =
=I(1; 1N; Ypuy — Ypdil; Ungzu) =
=Y pu I UN; 1) = Y pau I(1; Ungs 1) =

=K(Ypu;)logN — K Y pu;logn; =

1

—K Y pw;log(n/N) = —K Y pu;logq;.
By the continuity assumption A, this holds for all ¢;, not only for rational values. ]

We shall assume K = 1 and take logarithm to the base ‘2’. We define

v

N
(23) [P;Q;U) = —Yuplogq,, 0<p,q; <1, u; 20,
i=1

N N
.lei = Zlqi =1,

as the quantitative-qualitative measure of inaccuracy associated with the statement
of an experimenter who asserts the probabilities of the various outcomes E,, E,, ...,
..., Ey with utilities u,, u,, ..., uy, as qy, q,, ..., gy Whereas the true probabilities
are Py, Pas .-+ Pn-

The absence of a goal implies the absence of a utility measure, that is, the various
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events are no longer different from a qualitative point of view. The utilities u,, u,, ...
..., uy in (2.3) are equal to each other; in order to completely avoid their influence
we put u, = u, = ... = uy = 1. In this case, {2.3) becomes

N
I(P: Q:U) = = ¥ pilog q; = I(P; Q)

which is exactly Kerridge’s inaccuracy [3].
When in a goal-directed experiment all events have equal utilities u, = u, = ...
. = uy = u. Then (2.3) becomes

N
I(P; Q;U) = —uy pilogg; = ul(P; Q),
i=1

which expresses the increase or decrease of the quantitative-qualitative measure
of inaccuracy according to the common utility ‘u’ of the event.

In particular case when all events have zero utilities with regard to the goal pursued
we get a total quantitative-qualitative measure of inaccuracy I(P; Q; U) = 0, even if
Kerridge’s inaccuracy is not zero.

The quantitative-qualitative measure of inaccuracy is also zero if, p; =¢; =1
for one value and consequently zero for all other i, whatever the utilities u; = 0,
(i=1,2,...,N) may be.

There is an infinite value of I{ P; Q; U) if ¢; = 0, p; % 0, u; % O for any i.

3. PROPERTIES OF THE QUANTITATIVE-QUALITATIVE MEASURE
OF INACCURACY

Following are some of the important properties satisfied by the measure I(P; Q; U):

(1) The measure I(P; Q; U) is non-negative, i.e. I[(P; Q; U} 2 0.

(2) The measure I(P; Q; U) is a symmetric function of its arguments, that is,
I(P; Q; U) remains unchanged if the elements of P, Q and U are arranged in the
same way so that one to one correspondence among them is not changed.

(3) The measure I(P; Q; U) is a continuous function of its arguments.

(4) The measure I(P; @; U) satisfies the generalized weighted additivity; i.c.

I(P«P;Q*Q;UU)=UIP;Q;U) + ULP; Q;U'),

where
P# P = (pipi,---s P1Pys -3 PuDis -+ o> DxDut) »
0% Q = (419" - D1hs -5 NG - INGhr) »
U*U = (uguy, ..., ugtins .o ugul, ., tiytty)
and

N - M
U=Z“il’i’ U’:Z“}P}‘
i=1 i=1
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(5) The measure I(P; Q; U) satisfies the branching property as follows:

I(p1s Pas s PN Q1> G5 o A3 Uy Uay oo uN) =

uyp + u p
= 1(111 F Dareon P A0 ¥ G2y Gy 2, -wuN) +
Pyt
+(py + P2)1<”L‘ - S, N & ;ul,uz>.
Py+p2 P+ p2 4+ 42 4+ g2

(6) The minima of the quantitative—qualitativc measure of inaccuracy I{ P; Q; U)
exists at q; = u; /Zu,p,, the normalized preferences if the events E;
i=1,2,..,N. i=1

The properties (1) to (5) can be verified very easily, however, to prove the property

(6), we give the following theorem:

Theorem 2. For fixed u;, p;, the minima of I(P; Q; U) exists at q; = u;p; /z up;,
the normalized preferences of the events E;’s, i = 1,2, ..., N. =1

Proof. We are to find the extreme points for the function
N
I(P;Q;U) = - Z”;Pilng]i, u; 20, 0<p,q;s1,
for fixed u;, p;, under the condition Z q; = 1.

i=t

Using the method of Lagrange’s multipliers, set

N N
(3.1) F(q1, @20 ans A) = — Zu,p,log 4 + 4 Z -1,

where 4 is an arbitrary constant called the Lagrange’s constant. Now

oF u;p;

(3.2) — = - +4,
aq; qi
fori=1,2,...,N; and
oF X
(3.3) i Z

Equation (3.2) when equated to zero gives
(34) =22 =12 .,N.
Equating 0F[04 = 0, we get

(3) Ya=1.
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N
From (3.4) and (3.5), we get 4 = ) u;p;. Thus extreme value for I(P; Q; U) exists at
i=1

N
(3.6) qi=uwpf Y up;, i=12,..,N.
i=1

Next, we verify whether (3.6) is a point of maxima or minima for I(P; Q; U).
The border matrix for the system under consideration is

0 4 4 ... ay
g 2P0 0
q1
u
(3.7) g, 0 “P o
q3
P
L qn |
It can be very easily verified that the minors of order 3, 4, 5 ... etc. of the determinant
of the matrix (3.7) are negative. Thus minima occurs at the point (3.6). O

The minimum of
N N
I(P; Q;U) =~ ¥ u;p;log (upil 3 uips) =
i=1 i=1
ik ———
= —Yuplogp —ulogu + iilogi,
i=1

where the bar means the mean value with respect to the probability distribution
P = (I’ls D2y o PN)-

Since ulogu is a convex U function, therefore, ulogu = ulogu, and thus,
minimum of ['P; Q; U) £ I(P; U), the weighted entropy of the experiment E =
= (E, Ey, ..., Ey).

4. QUANTITATIVE-QUALITATIVE MEASURE OF INACCURACY
AND CODING THEORY

Consider an information source with output symbols E = (E,, E,, ..., Ey), and
let Q = (qy,9z,---qy) and P = (py, py, ..., py) be respectively the asserted and
the realized probability distributions for the source alphabet. Let here each letter E;
be characterized by an additional parameteru; and thus the cost ¢; of transmitting E;
through the noiseless channel is proportional to the product u;n;, where n; is the
length of the codeword associated with E;. The experimenter constructs code (in fact,
personal probability code) keeping in view to minimize the average transmission
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cost, or equivalently the weighted mean length, (refer to [2]),
N

Z‘Ii“i"i

4.1) Liu;q) = %‘J —
_Zl‘lj“j
=

while the actual weighted mean length is
% N

/ 3 pun

(4.2) Liu; p) = S—o .
_le,-llj
j=

Rewriting (4.1) and (4.2) as
N

(4.3) Liusq) =¥ qin;
i=1

and

SN .

(44) Liu;p) = ¥ pimi
i=1

respectively, where

’ it
(43) - Ly
‘Zquul
j=
and
. , il
(4.6) =2
le’fuj
j=

The distributions (4.5) and (4.6) represent respectively the auxiliary predicted and
actual probability distributions over the source alphabet E = (E,, E,, ..., Ey).

We have the following theorem:

Theorem 3. If the codeword lengths n,, nz, ..., ny satisfy the Kraft’s inequality
N
D™" £ 1, then the weighted mean length is bounded by
i=1
I(P; Q; U) — (ul + i, log 7 .
PR LR S
. it,log D

< I(P; g; U) — (ulogu), + i1, log i, N
i,log D

L,

where i
i N
Llu; p) = 55— HP; Q;U) = ~ Lupilogas,
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and

S N N N
(ulogu), = Y up;logu;, i@, =y up;, f,= 21“#15-
i=1 i i=

i=1

Proof. Equation (4.7) immediately follows from the Kerridge’s inequality [3],
N N N
—Lpiloggi S ¥ pini < — Y pilogqi +1,
=1 i=1 i=1

where {p;}}_; and {g;}7.,, as defined by (4.6) and (4.5) respectively, are the auxiliary
actual and predicted probability distributions over the source alphabet E =
= (Ey, E,, ..., Ey). O

Particular cases:
(1) When P = Q, (4.7) reduces to

' p. e o m 7 ‘p. — uloou i 7
I'P; U) ulogu+ulogu§L{u;p)<M,U) ulogu + iilog T,

ulog D itlog D

N
where [(P; U) = ~ Y u;p;log p; is the weighted entropy [1], and the bar means
i=1
the mean value with respect to the probability distribution P = (py, p,, ..., px)-
These were the bounds obtained by Longo [6].

(2) When the utilities are ignored, that is, u; = 1 for each i, then (4.7) reduces to

N N N
~ Y pilogg; £y piny < — Y pilogg; + 1;
i=1 i=1 i=1

a result obtained by Kerridge [3].
{Received June 4, 1985.)
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