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K Y B E R N E T I K A - V O L U M E 27 ( 1991) , N U M B E R 4 

PARAMETRIZATION OF OBSERVER BASED 
COMPENSATORS IN THE FREQUENCY DOMAIN 

PETER HIPPE 

By constant state feedback the poles of a completely controllable and observable system can 
be placed arbitrarily. Using a full order or a reduced order observer all system states can be 
reconstructed. State feedback and observer constitute the observer based compensator. We 
present here the frequency domain design of such compensators related to arbitrary observer 
orders in total equivalence to the well known time domain results. The design procedure holds 
both for continuous time and for discrete time MIMO systems. 

1. INTRODUCTION 

In previous papers [1], [2] the parametrization of compensators related to full 
order and to minimal order observers has been developed directly in the frequency 
domain. This uses a parametrization of the state feedback with the aid of a poly­
nomial matrix D(s) containing the same number of free real parameters as the state 
feedback matrix K in the time domain. The (reduced) order observer is parametrized 
by a polynomial matrix D(s), which contains the same number of free real parameters 
as exist in the time domain design of such observers. 

The actual choice of D(s) and D(s) can either be accomplished via pole placement 
with remaining degrees of freedom to influence closed loop properties or by solving 
the linear optimal control and the optimal linear estimation schemes directly in the 
frequency domain. Thus both problems can either be solved in the time or in the 
frequency domain and for each time domain result there is an equivalent frequency 
domain representation and vice versa. From the polynomial matrices D(s) and D(s) 
the corresponding compensator matrix fraction description (MFD) can easily be 
computed using standard software. 

Here, arbitrary observers for state reconstruction are considered, thus establishing 
the equivalence of the time and of the frequency domain design of observer based 
compensators in the general case. Of course, the presented results also hold for 
discrete time systems. 
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2. NOMENCLATURE 

MFD 

DCF 

ГJІ'] 
r,[-l 
««/[•] 
«л>] 
И[-] 
SP[-] 
I.s.v.f. 

. . matrix fraction description 

.. doubly coprime factorization 

. . highest column degree coefficient matrix 

. . highest row degree coefficient matrix 

.. jth column degree 

. . jth row degree 

.. polynomial part 

. . strictly proper part 

. . linear state variable feedback 

3. PRELIMINARIES 

We consider linear, time invariant, completely controllable and observable systems 

x = Ax + Bu 

y = Cx =• УÌ 

Уi •ta ( i ) 

with xe R", y e Rm, we Rp, yl e Rm~*, y2 e R*. The control u = -u + r consists 
of the l.s.v.f. u = Kx and of the reference input r e Rp. The l.s.v.f. is parametrized 
by the p x n matrix K which can be chosen to assign stable closed loop poles. The 
(n — ^-dimensional state observer 

ż = Fz + ЊD-fc] + TBu (2) 

yields z = Tx in the steady state if TA — FT = DC holds and F is stable. If the 

state estimate 

x = [řГй-^M (3) 

is substituted in the l.s.v.f. a dynamic compensator of order n — x results. For the 
following it will be of importance that (3) implies 

C2W2=IX, C20 = O; Tf2 = 0 ; T0 = In_x ; V2C2+9T 

An alternative representation of the observer (2) is 

z = T(A - LjCO 0z + \TLy T(A - LxCj) W2] K
1 + TBu 

where the so far undefined matrix Lx must meet TL, = Dj which is true for Lx = ©Dt. 
This, on the other hand, implies 

C2L! = 0 . (6) 

W 

(5) 
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In the sequel the abbreviation E = T(A — L^C^ 0 will be used which follows from 
a comparison of (2) and (5). Using the observer representation (5) the dynamic 
compensator is described by its transfer function behaviour u(s) = —Fc(s)y(s) + 
+ Fr(s) r(s) with 

Fc(s) = K&[sl - F + TBK&Y1 [TL, T(A - LXC, - BK) f 2 ] + [0 KV2] 

(?) 
The system transfer matrix F(s) _ C(sl - A) x B can be represented in a right 
coprime MFD E(s) = N(s) D~1(s) with D(s) column proper or in a left coprime 
MFD F(s) = D-1(s)N(s) with D(s) row proper. Likewise the compensator (7) 
can be described by the left coprime MFD Fc(s) = Dc

y(s)Nc(s) with Dc(s) row 
proper and by the right coprime MFD Fc(s) = Nc(s) Dc

_1(s) with Dc(s) column 
proper. 

The l.s.v.f. can be parametrized in the frequency domain by the p x p polynomial 
matrix 5(s). It is well known that 

D(s) D-I(s) = / + K(sl - A)'1 B (8) 

holds and consequently 

Fc[D{s)] - rc[D(s)] ; and SCJ[D(S)] = SCJ[D(S)] , j = I, 2, . . . , p . (9) 

This implies that D(s) contains the same number of free parameters as the p x n 
feedback matrix K, namely pn [1]. A choice of the pn degrees of freedom in D(s) 
such that det B(s) becomes a stable polynomial corresponds to a pole placing design 
of the state feedback matrix K. An optimal l.s.v.f. results by solving the correspond­
ing polynomial matrix equation for D(s) [7]. It should be noted, however, that the 
optimal solution D(s) has to be aligned to meet the restrictions (9). Equation (8) 
can be used to compute the corresponding D(s) for a given K and vice versa. 

The right doubly coprime fractional representations (DCF) of the plant transfer 
matrix are given by [1], [8] 

D(s)D~1(s) =1 - K(sl - A + BK)'1 B (10) 
and 

N(s) D-r(s) = C(sl - A + BK)'1 B (11) 

The frequency domain parametrization of the reduced order observer of order 
n — x with 0 S K _ WJ c a n bs derived with the aid of a nonminimal observer re­
presentation introduced in [4]. 

It has been shown that the reduced order observer of order n — x with 0 ^ x ^ m 
is parametrized in the frequency domain by the m x m polynomial matrix D(s) 
which meets the following relation [4] 

, D-'(S)6(S) = [^J(^--4r ,[ t1f2] + [o"- 'y (12) 

For x = 0 this coincides with the well known result for full order observers and 
for x = m the minimal order observer results [2] are obtained. 
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Introducing the row proper m x m polynomial matrix . ; < 

^-"{^[j-j-,;]}. (13) 
the relation (12) implies [3] 

rr[D(s)] = r,[D'(s)] ; and SrJ[D(S)] = 5rJ[D"(s)] ; j = 1, 2, ..., m . 
(14) 

As a consequence of this D(s) contains m(n — x) free parameters which also exist 
in the time domain if only y2 is used to reconstruct x via (3). A choice of these free 
parameters such that det D(s) is a stable polynomial corresponds to the pole place­
ment problem. An optimal linear estimator results when solving the corresponding 
polynomial matrix equation for D(s) by spectral factorization. This polynomial 
equation has the same simple structure for any filter order nQ within the limits 
n — m _ n0 ^ n [3], 

Equation (12) can be used to compute D(s) from a given time domain para-
metrization of the filter and vice versa [3]. Thus together with (8) one can establish 
a one to one relationship between the time and the frequency domain design of 
observer based compensators related to arbitrary observer orders. 

The left coprime DCFs of the plant are given by [4] ,. 

D->(s)D(s) = 

_ r / - C 1 0 ( s / - E ) _ 1 TLX Cx[-I-Q(sl-F)-1 T^-L/Cj] ^ 1 
~ [ -C 2 A6>(s / -E ) _ 1 TL 1 C2[sl-A-A0(sl-F)-1 TfA-LjCjj] y j 

(15) 
and 

••^-[cSïćÆ™^™!- , (-) 
Thus both the l.s.v.f. and the observer of order n — x can directly be parametrized 
in the frequency domain without recurrence to time domain parameters. In order 
to give the complete set of relations with the time domain approach, we here repeat 
the connections between the time domain representation of the compensator and 
its DCFs. Hippe [4] derived the following relations 

A-i(s)Nc(s) = K0(sl - EY1 [TLl T(A - LxCt) f 2 ] + [0 K«P2] (1.7) 

A~'(s)Dc(s) = I + K0(sl - E)-"1 TB * (18) 
and 

Nc(s)A-l(s) = K(sl - A + BK)"1 [L ! W2] (19) 

Dc(s)A->(s) = [ g ] (si -A + BK)- [Li .FJ + [ V ? ^J (20) 

and it was shown that these DCFs directly describe the compensator transfer matrix 
(7). The stable p x p polynomial matrix A(s) contains the observer dynamics, i.e. 
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det A(s) = det D^(s), and the m x m polynomial matrix A(s) contains the controlled 
plant dynamics, i.e. detzl(s) = det I)(s). We now establish the solution procedure 
for the DCFs (17) —(20) on the basis of the parametrizing matrices D(s) for the 
l.s.v.f. and of D(s) for the (reduced order) observer in the frequency domain. 

4. COMPUTATION OF THE LEFT COPRIME COMPENSATOR MFD 

Consider any polynomial solutions Y(s) andx(s) of the linear diophantine equation 

Y(s)N(s) + X(s) D(s) = D(s) (21) 

where the p x p polynomial matrix D(s) characterizes the controlled plant dynamics. 
Since D(s) and N(s) are relatively coprime, such polynomial matrices exist [6]. 
With H['] denoting the polynomial part and SP[*] denoting the strictly proper 
part of a rational matrix it is obvious that for a given transfer matrix P(s) we have 
P(s) = H[P(s)] + SP[P(s)]. 

Lemma 1. Consider the plant transfer matrix E(s) = D_1(s) N(s), a solution Y(s) 
of (21) and the m x m polynomial matrix D(s) characterizing the observer dynamics. 
Then the strictly proper part of Y(s) D_1(s) D(s) is given by 

SP[Y(s) D~l(s) D(s)] = K(sl - A)-1^ V2] . (22) 

Proof. Using the basic relation (12) we can write 

Y(s) D-'(s) D(s) = Y(s) C(sl - A)~> [L, r j + Y(s) [^ °J . 

Since Y(s) is a polynomial matrix it remains to be shown that 

SP{Y(s) C(sl - A)"1 \LX W2]} = K(sl - A)"1 [L t W2] 

or equivalently that 

W(s) = [Y(s) C-K](sl-A)-1 [L, VJ 

is a polynomial matrix. Right multiplication of (21) by D~'(s) yields 

Y(s)N(s) D-1(s) + X(s) = D(s) D-'(s) , 

or with the right coprime plant MFD and (8) 

[Y(s) C - K] (si - A)~l B = I - X(s) . (23) 

The right hand side of (23) is a polynomial matrix. As we have assumed a completely 
controllable plant, (si — A)-1 B is a coprime pair and consequently, [Y(s) C — K] 
has the form N(s) (si — A) with N(s) being a polynomial matrix. Therefore 
[Y(s) C — K] (si — A)'1 constitutes a polynomial matrix which completes the 
proof. • 
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With this preliminary result we can formulate the solution procedure for the left 
coprime compensator factorization. 

Theorem 1. With the polynomial matrix 

V(s)=rr[Y(s)D->(s)D(s)] (24) 
the doubly coprime left factorization of the compensator is given by 

N*(s) = A~l(s) Nc(s) = Y(s) - V(s) D~l(s) D(s) (25) 
and 

Dc*(s) = A-'(s) Dc(s) = X(s) + V(s) D-J(s) N(s) . (26) 

The left coprime compensator MFD and the observer matrix A(s) can easily be 
computed from (25) and (26) by prime factorization of [N*(s) D*(s)] -= 
A-(s)[Ne(s)De(s)](<:f.[6]). 

The proof of the Theorem basically goes along the lines in [1] and [2]. For the 
sake of brevity it is omitted here. 

5. COMPUTATION OF THE RIGHT COPRIME COMPENSATOR MFD 

Consider any polynomial solutions Y(s) and X(s) of the linear diophantine equa­
tion 

N(s) Y(s) + D(s) X(s) = D(s) (27) 

where the m x m polynomial matrix D(s) characterizes the observer dynamics. 
Since D(s) and N(s) are relatively coprime such polynomial matrices exist [6]. 

Lemma 2. Consider the plant transfer matrix F(s) = N(s) D_1(s), a solution 
Y(s) of (27) and the p x p polynomial matrix B(s) parametrizing the linear state 
feedback control in the frequency domain. Then the strictly proper part of 5(s) . 
. D-1(s) Y(s) is given by 

SP[D(s) D-^s) Y(s)] = K(s/ - A)"1 [L, f 2 ] . (28) 

The proof of Lemma 2 goes along the lines of the proof of Lemma I and it uses 
the fact that we have assumed complete observability which implies that 
C(s/ — A)-1 is a coprime pair. 

Now we can formulate the solution procedure for the right coprime compensator 
factorization. 

Theorem 2. With the polynomial matrix 

V(s) = n[D(s) D_1(s) Y(s)] (29) 

the doubly coprime right factorization of the compensator is given by 

N*(s) = Nc(s)A-l(s) = Y(s) - D(s) D~x(s) V(s) (30) 
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and 
Dt(s) = Dc(s)A-*(s) = X(s) + N(s)D-i(s) V(s). (31) 

The right coprime compensator MFD and the matrix A(s), containing the con­
trolled plant dynamics, can easily be computed from (30) and (31) by prime factoriza-

tion of 

Lu?(S)J U w J ( ) 

Again the proof is omitted. It basically goes along the lines presented in [1] for 
x = 0 and in [2] for x = m. 

6. THE DISCRETE TIME CASE 

When applying z-transform techniques the input output behaviour of discrete 
time systems is described by transfer matrices F(z) which can also be represented 
in coprime matrix fraction descriptions F(z) = N(z) D~l(z) = D~l(z) N(z). The 
same is true for the compensator. Keeping in mind that the stability region is inside 
the unit circle of the z-plane, all formulas derived above also hold in the discrete 
time case if s is substituted by z. 

There are differences between the continuous and the discrete time solutions when 
applying optimal estimators in conjunction with an updated state estimate. These 
differences are discussed in [5] for the optimal filter and their influence on the 
compensator design as presented above will be investigated in a forthcoming paper. 
For pole placement compensators and when using the one step prediction estimate 
in a stochastic setting, the above compensator design holds both in the s- and in the 
z-domain. 

7. AN EXAMPLE 

As a demonstration example we use a simple second order system with one input 
and two outputs described by its transfer vector 

F(z) = — 
V ' .2 zz - z + 0-25 

so that the entities in the left and right coprime MFDs are given by 

N(z) = 

Ñ(z) = y[ 

; D(z) = z2 - z + 0-25 ; D(z) 
z -z + 0-25 
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We look for a compensator which moves the system poles to the origin of the z-plane 
using a first order state observer (x = l) having an eigenvalue at z = 0-1. Obviously 
the state feedback control is parametrized by D(z) = z 2 + ccz + fi where by choice 
of the pn = 2 degrees of freedom as a = /? = 0 we obtain the desired closed loop 
poles. 

In order to obtain the parametrization of the first order observer the polynomial 
matrix 

' 1 0 
DҶz) = П\D(z) 

0 z" 

must be row proper; which it is. So following (14) the polynomial matrix D(z) para­
metrizing the (reduced order) observer is given by 

Ď(z) = 1 - 1 
z + a ß 

When choosing the m(n — x) = 2 free parameters a and /?, e.g., as a = —0-1. and 
P = 0 the desired observer eigenvalue results. A solution of (21.) is X = 1, Y = 
= [1 —0-25]. Now following Theorem 1. one obtains V(z) = [1 0] and hence 

1. 
N*(z) = [-0-1. 0-75z-0-225] D*(z) = (z+ 0-9) 

z - 01 

Consequently the left coprime compensator MFD is given by 

Ec(z) = (z + 0-9)" l [-0-1 0-75z-0-225] 

and the observer characteristic polynomial by A(z) = z — 0-1. 

z - 0-1 

8. CONCLUSION 

Using a new nonminimal representation of the reduced order observer of order 
n — x with 0 r̂  x ^ m in the time domain the direct parametrization of such 
observers in the frequency domain becomes possible [4]. If the polynomial matrices 
D for the l.s.v.f. and D for the linear state estimator are given, the computation 
of the compensator DCFs and consequently also of the compensator MFDs can 
be carried out using standard software. This is true both for continuous time and 
discrete time systems with one exception, namely when using the updated (discrete) 
state estimate in a stochastic setting [5]. Thus the general equivalence of state space 
and frequency domain approaches to observer based compensator design has been 
established. 

(Received November 12, 1990.) 
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