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K Y B E R N E T I K A — V O L U M E &S ( 1 9 9 3 ) , N U M B E R 2, P A G E S 1 8 0 - 2 0 0 

CONVEX CONES IN FINITE-DIMENSIONAL REAL 
VECTOR SPACES 

MILAN STUDENY 

Various classes of finite-dimensional closed convex cones are studied. Equivalent char­
acterizations of pointed cones, pyramids and rational pyramids are given. Special class 
of regular cones, corresponding to "continuous linear" quasiorderings of integer vectors is 
introduced and equivalently characterized. It comprehends both pointed cones and rational 
pyramids. Two different ways of determining of vector quasiorderings are dealt with: es­
tablishing (i. e. prescribing a set of 'positive' vectors) and inducing through scalar product. 
The existence of the least finite set of normalized integer vectors establishing every finitely 
establishable (or equivalently finitely inducable) ordering of integer vectors is shown. For 
every quasiordering of integer vectors established by a finite exhaustive set there exists the 
least finite set of normalized integer vectors inducing it and elements of this set can be 
distinguished by corresponding 'positive' integer vectors. 

1. INTRODUCTION 

Various classes of closed convex cones in finite-dimensional real vector spaces form 
the topic of this paper. The source of motivation for this study is in apparently 
remote area of mathematics, namely in artificial intelligence. Within the frame­
work of our research project1 we endeavour to develop a convenient mathematical 
theory to describe structures of conditional stochastic independence of finite num­
ber of random variables (this would be of great importance for probabilistic expert 
systems, a growingly-popular area of artificial intelligence). Nevertheless, the sys­
tematic thorough buildup of this theory made in [8] requires some subsidiary results 
concerning the above mentioned cones (more concretely, several results concerning 
"continuous linear" quasiorderings on the set of integer vectors are needed and these 
results stem from other results about convex cones of real vectors). Though these 
properties of geometric nature look natural, precise proofs require adequate space. 
As they are rather specific in the theory on conditional independence structures they 
would complicate the main text. 

On the other hand, we don't know any publication where the theory of finitely-di­
mensional convex cones (especially of rational pyramids) is systematically developed 
up to the degree sufficient for above mentioned purposes (although some particular 
results probably can be scattered in the literature). 

'This research was supported by the internal grant No. 27510 of Czechoslovak Academy of 
Sciences "Explanatory power of probabilistic expert systems: theoretical background." 
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Thus, the paper is intended as an adequate treatise (maybe rather technical) 
on closed convex cones in Rn (= the set of n-tuples of real numbers), i.e. the 
cones corresponding to continous linear quasiorderings of real vectors. We tried to 
base the paper on well-known facts from textbooks of linear algebra, topology and 
linear programming. Provided we knew that some properties were shown there and 
we haven't really short proofs of them, we preferred to refer to the corresponding 
source. Then the property is formulated as Statement in the text. Some evident or 
easy properties often used later are named Facts. 

Every closed cone in E n corresponds naturally to a quasiordering of n-dimensional 
real vectors. Namely, having a closed cone K C E n and real vectors u,v £ E n write 
v <K u iff (u — v) £ K. This defines a reflexive transitive binary relation on E n 

(i.e. quasiordering), which is moreover linear and continous (for details see [6]). 
Two ways of determining of quasiorderings of vectors are studied in this article: 
establishing and inducing. 

The method of establishing consists in prescribing a set of vectors and consider­
ing the 'minimal' quasiordering making these vectors 'positive'. This leads to the 
concept of conic hull recalled in § 3. On the other hand, the method of inducing by 
a given set L C E" consists in declaring vectors having nonnegative scalar products 
with elements of L to be 'positive'. This leads to the concept of dual cone treated 
in § 4. In case that a quasiordering is moreover antisymmetric, it is called ordering. 
The corresponding cones, called pointed, are studied in § 5. The next section (§ 6) 
introduces a wider class of regular cones, which are later shown to correspond to 
quasiorderings of integer vectors. Some facts concerning extreme rays studied in § 7 
are utilized in § 8 to show several results about further special class of closed cones, 
namely pyramids and rational pyramids. Finally, quasiorderings of integer vectors, 
i.e. vectors whose components are integers, are studied in the last section (§ 9). 

More detailed comment of contents starts every section. 

2. BASIC NOTATION 

The set of real, resp. rational, resp. integer, numbers will be denoted by E, resp. Q, 
resp. 7L, the corresponding subsets of nonnegative numbers (including zero) by E + , 
resp. <Q>+, resp. Z+. Similarly, the sets of corresponding n-tuples will be denoted 
by E n , resp. Qn , resp. 7Ln. The set of positive integers or natural numbers (i.e. 
{1,2,...}) will be denoted by N. 

The Euclidean norm of a vector x will be denoted by ||a;||, the scalar product 
of vectors x and y by (x,y), their sum by x + y; the product of a scalar a and a 
vector x will be written as a • x. The symbol Xk —> x means that the sequence {xk} 
converges to the element x. 

Having a set A C E n the symbol A denotes its closure (with respect to the 
Euclidean norm), Lin(A) its linear hull, AL its orthogonal complement, (—A) its 
multiple by (—1), i.e. (—A) = {—a; a 6 A}. Finally, A © B denotes the direct 
product of sets A and B. The other symbols will be introduced in the text. 

Notice: Throughout the paper only real vector spaces E n where n > 1 will be 
dealt with. 
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3. CONIC HULL 

Basic concepts of cone, closed cone, conic hull and closed conic hull are recalled in 
this section. This is supplied by a familiar result that the conic hull of a finite set is 
closed (Proposition 1). 

Definition 1. (cone, closed cone) 
A set K C Kn is a cone iff it satisfies: 

u,veK -=> u + veK (1) 

u e K, a e 1 + =>• a-ue K. (2) 

If K is moreover closed with respect the Euclidean topology (i.e. given by norm) it 
is a closed cone. 

Remark. Some authors [7] use term 'convex cone' for sets satisfying (1), (2), 
while by 'cone' they understand sets satisfying (2). But we are interested in cones 
corresponding to linear quasiorderings on E n (see [6]). 

It is evident that intersection of arbitrary nonempty collection of cones is a cone, 
too. Similarly for closed cones. As the whole space E n is a closed cone, for every 
L e t " the collection of (closed) cones containing L is nonempty. Thus, the following 
definitions are correct. 

Definition 2. (conic hull, closed conic hull) 
Having t C 1 " by con(L) denote the least cone containing L. It will be called the 
conic hull of L. The least closed cone containing L will be denoted by con(L) and 
called the closed conic hull of L. 

It makes no problem to verify: 

Fact 1. con(§) = 0 and having 0 ^ L C E" it holds: 
con(L) = { » € ! " ; o = ^ « „ • « where 0 ^ K C L is finite, au e E + }. 

u£K 
Fact 2. Having L C E n its closed conic hull con(L) coincides with the closure of its 
conic hull i.e. con(L). 

Hint: Verify that the closure of a cone is a cone. 

To prove the mentioned result about conic hull of finite sets the following lemma 
will be used. 

Lemma 1. Let 0 ^ K C E n be a closed cone, » £ l " \ (-K). Then 
cbn({v}) = {a • v ; a e E + } and con(K U {v}) = {u + a • v ; u G K a G E+ }. 

P r o o f . Note that the set A = {a • v ; a G E + } is closed. It suffices to 
make sure that B = {u + a • v ; u G K a G E + } is closed. Clearly A C B. Let 
Xk = Uk + a^-v e B converges to x G E n . Suppose that u^ ^ 0 for all indices (in case 
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Wfc ^ 0 for finite number of indices x G A = A, otherwise consider the corresponding 
subsequence of {xk}). Put ~k = ||wfc|| > 0, 7fc = akp^1 > 0, uk = /3J1 • uk. 
Evidently xk = f3k • (uk + j k • v) and uk G K \\uk\\ = 1. As {u G K\ \\u\\ = 1} 
is a compact set there exists a convergent subsequence of uk. Thus, without loss of 
generality, suppose uk —* u G K, \\u\\ = 1. In case limsupfc^oo f3k = oo (consider 
directly (3k -> oo) it holds ||wfc+7Vt;|| —• 0 and hence 7fc -v -+ —u, i.e. ( -u) £ A = A. 
This contradicts the assumption v g (-K). Thus {/3k} is a bounded sequence and 
has a convergent subsequence; consider it instead of {(3k}. In case f3k —> 0 it holds 
0k • uk —> 0 and x £ A = A In case f3k -* [3 > 0 get {,* + 7fc • v —» /3 _ 1 • x. Hence 
7fc • u —* /?_1 -x — u gives /?_ 1 -x — u £ A = A i.e. x = /? • (u + 7 • v) for some 7 > 0. 

D 

Note that the assumption v g (-K) in the preceding lemma is essential. It is 
illustrated by the following example. 

Example. Consider n = 3 and put 
A'i = { (x,, x2, x 3 ) ; X! > 0, x2 > 0, x3 > 0, xx • x3 > x\ } 
A'2 = {(0 ,0 ,x 3 ) ; x 3 < 0 } 
(the set A'i is the closed conic hull of the branch x\ • x3 = 1, x i , x 3 > 0 of the 
hyperbola lying in the plane x2 = 1). Both these sets are closed cones, but their 
sum 
Ki+K2 = { (x i , x 2 , x 3 ) ; X] > 0, x2 > 0, x 3 £ 1 } \ { (0 ,x 2 ,x 3 ) ; x2 > 0 x3 G 1 } 
is not 'closed'. 

Propos i t ion 1. Let L C l n finite. Then con(L) = con(L). 

P r o o f . I. The statement holds under the additional assumption that L is linearly 
independent. 
Indeed: In case L = 0 it is evident. Proceed by induction according to card L; if 
t i I choose v £ L, put K = con(L \ {v}) = con(L \ {v}) (use the induction 
assumption). As L is linearly independent using Lemma 1 get, con(L) = con(L). 

II. con(L) = (j{con(T); TcL T is linearly independent } in case L \ {0} # 0. 
Indeed: Clearly 0 G con({y}) for any y ~ L\ {0}; having 0 / x G con(L) use 
Fact 1 and consider a specification x = J2 au • u (K C L) with minimal number 

udK 

of strictly positive au. As T = {u G K, au > 0} ^ 0 it suffices to show that T is 
linearly independent. By contradiction, in opposite case write 0 = ]TJ Au • u where 

ueT 
maxAu > 0. Putting (3 = maxAua~1 get x = ^ a a • 11 - /?_ 1 • (]T) Au • w) = 
u6T ueT u 6 T u g T 

23 ( a« — ^uP^1) • u- As au — Xu(3~l > 0 for all u ~\T and at least one of these 
ueT 
numbers is zero, this contradicts the assumption that cardT is the minimal number 
of strictly positive coefficients in specifications of x. 

III. The statement is trivial in cases L = 0 or L = {0}; in case L \ {0} == 0 it 
follows from I and II as the union of finite number of closed sets is closed. • 

Remark. The reader probably recognized that the operation of closed conic 
hull realizes the idea of establishing mentioned in the Introduction: the situation 
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K = con(E) means that the set E establishes the closed cone K and therefore the 
corresponding quasiordering. The previous assertion says that in case of finite es­
tablishing set conic hull gives the same result, i.e. every 'positive' vector can be 
directly 'combined' from elements of the establishing set. 

4. DUAL CONE 

Every subset of M.n can induce a nonempty closed cone through scalar product as 
mentioned in the Introduction. The ascribed cone is called dual. The section is 
devoted to simple properties of this basic procedure of forming cones. 

Definition 3. (dual cone) 
Let L C W1. Introduce its dual cone L* as follows: 
L* = { i C l " ; V u G L (x,u)>0}. 

Fact 3. Whenever L e t " then L* is a nonempty closed cone. 

Hint: In case L ^ 0 write L* = f]uSL{x € IK"; (x,«) > 0} and each of. these sets is a 
closed cone containing 0. 

Statement 1. Let L be a nonempty closed cone, a G M.n \ L. Then there exists p € L* 
such that (p, a) < 0. 

Comment: This is a familiar consequence of the Hahn-Banach theorem (see [6] § 14) known 
as a conic version of well-known separation hyperplane theorem. The reader can find it in 
this form in [7] as Consequence 11.7.1 or use Theorem 4.5 in [2] resp. Theorem 2.3 in [l]. 

Some useful facts concerning dual cones follow. 

Fact 4- Whenever L\ C Li C Kn, then L\ D L\ and hence L\* C L*,*. 

Fact 5. Having L C l n it holds L C L**. 

Consequence 1. Having K C 1R" the following three conditions are equivalent: 
(i) K is a nonempty closed cone 
(ii) K = K** 
(iii) K = L* for some L C l " . 

P r o o f . ( i )=>( i i ) By Fact 5 K C K**. Conversely, having a G l n \ K by 
Statement 1 find p G K* with (a,p) = (p,a) < 0 i.e. a $. K**. Together K = K**. 
(ii) ==> (iii) is evident, (iii) =>• (i) follows from Fact 3. • 

Fact 6. Whenever 0 ^ L C l n it holds L** = con(L). 

Hint: con(L) C L** using Fact 5 and Fact 3. Conversely, having a closed cone A' containing 
L, Fact 4 and Consequence 1 give V* C K. 

Fact 7. Whenever L C l " then L* = L***. 

Hint: Fact 3 and Consequence 1. 
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Fact 8. Whenever L C W1 then L* = con(L)* = con(L)*. 

Hint: Write L C con(L) C con(L) , apply Fact 4; in case L 5- 0 Facts 7,6 give L* = L*** = 

con(L)*. 

5. P O I N T E D C O N E 

The antisymmetry condition means that the only simultaneously 'positive' and 'neg­
ative' vector is zero vector. The corresponding cones, called pointed cones, are 
studied in this section. Firstly, the corresponding version of separation hyperplane 
theorem (Consequence 2) is derived. Then it is used to derive equivalent charac­
terizations of pointed cones (Proposition 2) saying that pointed cones are 'strictly 
contained' in a halfspace. 

Definition 4. (pointed cone) 
A nonempty closed cone K C Kn is called pointed iff K C\ (-K) = {0}, i.e. 
[u e K and —u e K] implies u = 0. 

Note that each nonempty closed cone can be viewed as a direct product of a 
pointed cone and a linear subspace: 

Fact 9. Given a nonempty closed cone K the set L = Kf\(—K) is a linear subspace,, 
K n LL is a pointed cone and K = (K n Lx) © L. 

Hint: LL is a nonempty closed cone and ffi" = Lx ® L (jee [4] § 66). 

To derive an important equivalent definition of pointed cone Statement 1 needs 
be strengthened as follows: 

Lemma 2. Let K be a nonempty closed cone and a G IRn \ K. Then there exists 
q e K* such that (</, a) < 0, (q, u) > 0 whenever u e K \ (-K), (q, v) = 0 whenever 
ue Kr\ (-K). 

P r o o f . Denote L = K n (~K). 
I. V u> £-L. n L 1 \ {0} 3 peK* (p,w)>0. 

Indeed: As (~w) £ K use Statement 1 to find p e K* with (p, -w) < 0. 
U.BxeK* yweKHL^WQ} (x,w)>0. 

Indeed: Put L0 = LL, U0 = A' n L0. In case U0 = {0} put x = 0. In the opposite 
case start the following procedure (for i — 1,2.. . ): supposing f/j_i ^ {0} choose 
Wi e Ui-i \ {0} C K n LL \ {0}, by I find Pi e K* with (pi,w-) > 0 and put 
Li — {v £ Li-i; (pi, v) = 0} Ui — K n L*. As L,- is a proper subspace of L,_i, the 
dimension of L,- strictly decreases with i (see [4] § 8) and the procedure will stop with 
{0} — UkCLk for some k > 1. Consider minimal such k and put x — p\ + .. - + Pk-
By Fact 3 K* is a cone, hence x G K*. It makes no problem to verify the required 
property. 

III. 3 a; e K* Vu£K\ (-K) (x, u) > 0. 
Indeed: Take x £ K* from II. Having u e K \ (-K) by Fact 9 write u = w + v 
where w G K n L x , v G L. As w ^ 0 (x, w) > 0, as x G K* (x, v) = 0. 
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IV. 3 q £ K* (q, a) < 0, (q, u) > 0 for u £ K \ (~K), (q, v) = 0 for v £ K n (-K). 
Indeed: Use III to find the corresponding x £ K* and Statement 1 to find p G K* 
with (p, a) < 0. As K* is a cone (Fact 3) qc = p + £ • £ G K* for every e > 0. Hence 
(qe,v) = 0 whenever v £ KC\(—K) and (qe, u) > e(x, u) > 0 whenever u £ K\(—K). 
As lim£_o(f/fr, a) = (p, a.) < 0 there exists e > 0 with (?s,a) < 0 . , • 

Consequence 2. Having a pointed cone K C BLn for every o £ l " \ I ( there exists 
q £ K* such that 
a) (q,a)<0, 
b) (g, u) > 0 whenever t i £ f ( \ {0} . 

Propos i t ion 2. Having a nonempty closed cone A' the following three conditions 
are equivalent: 
(i) K is pointed 
(ii)3q£K* V u G / ( \ { 0 } (q,u) > 0 
(iii) Vw G K \ {0} 3p G if* (p,«) > 0. 

P r o o f , (i) => (ii) follows from Consequence 2 (the cone K = E n is not pointed 
for n > 1), ( i i)=>(ii i) is trivial, for ( i i i )=^( i ) consider u £ K C\ (-K), supposing 
u ^ 0 find the corresponding p G /£"*. But — u £ K implies (p, — u) > 0 and it 
contradicts (p, u) > 0. • 

6. REGULAR CONES 

In this section certain class of closed cones involving pointed cones is introduced. 
It will be shown later (Proposition 6, § 9) to correspond uniquely to (linear) qua-
siorderings of integer vectors. Firstly, several technicalities concerning topological 
properties of dual cones, extreme points and density of Q n in linear subspaces are 
gathered. Then regular cones are defined as cones having Qn dense in its boundary 
subspace. Two equivalent characterization are shown (Proposition 3), the first one 
says that regular cones are cones having Qn dense in their dual cone, the second 
one characterizes them by certain separation hyperplane theorem. An example of a 
nonregular cone concludes the section. 

Lemma 3. Let K be a nonempty closed cone, denote L = Kf)(—K). Given q £ K* 
satisfying [(q, u) > 0 for u £ K \ (-K)} and a £ W \ K with (q, a) < 0, there exists 
e > 0 such that Vp G LL with ||p - g|| < e it holds [p G K* and (p, a) < 0]. 

P r o o f . From Fact 9 easily derive K \ (-K) = K D Lx \ {0} ® L. Put 
S = {y G/>;| |2/ | | = 1}. Evidently VyG tfnLx\{0} 3 a > 0 w£l<DS y = a-w. 
Similarly, using l n = LL@L find /? > 0, s £ S, v £ L with a = 0-s + v. As Kf\S 
is compact 7 = min{(g,w); u £ K f\ S} > 0. Put e = min{7, \(q,s)\} > 0. Thus, 
supposing p £LL \\p- q\\ < z it holds |(p,s) - (q,s)\ < e < \(q,s)\, i.e. (p,s) < 0 
and hence (p,a) < 0. Analogously (p,y) > 0 for all y £ K C\ LL \ {0} and hence 
\p,u) >0 for all u € K\(~K). -
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C o n s e q u e n c e 3 . Let K is a nonempty closed cone and L -= K C\ (-K). 

Then K* C L1- and A'* has nonempty interior in LL. 

P r o o f . K* C L1- is evident. Supposing K\(—K) ^ 0 (otherwise K* = LL) 

take y £ A' \ (—A'), put a = — j / , by Lemma 2 find q £ K* with [( ' / ,«) > 0 for 

u 6 A \ (—A)] and with (q, a) < 0 and apply Lemma 3. • 

D e f i n i t i o n 5 . (extreme point) 

A set C C i " is convex iff [ \/x,y £ C V a £ (0,1) cv • x- + (1 - « ) • y £ C ]. 
Given a convex set C C IR" say t h a t e £ C is an extreme point of C iff 

Vx , y £ C [3 a £ (0 ,1) e = cv • x- -f (1 — a) • y] implies x = y 

( i .e . e is an inner point of none segment in C or equivalently C \ {e} is convex). 
T h e set of ex t reme points of C will be denoted by ex(C). 

Statement 2. Let C C IRn be a nonempty compact ( i .e . closed and bounded) convex 

set. T h e n ex-(C) ^ 0 and C is the convex hull of ex(C), i .e . 

C = {v £ M n ; v = 52 cvu • u where 0 / A' C e x ( C ) i s finiteau £ 1 + 52 au = 1}. 
ueif U6K 

Comment: This result is well-known as the Minkowski theorem or finite-dimensional version 

of the Krein-Milman theorem. The reader can it find almost everywhere: in [l] as Theorem 

2.13, in [2] as Theorem 5.10, in [7] us Theorem 18.5 or in [6] Theorem 15.1. 

Statement 3. Given an m x n m a t r i x A = (ciij) and m-dirnensional column vector 
n 

6 = (6j-) denote P = {y £ Mn ; 52 aij ' Uj < &i f ° r all i = 1 , . . . , m } (polyhedron given 
3=1 

by /I and 6, clearly it is a closed convex set) . Let x £ P. T h e n x is an ex t reme point 

of P iff there exists / C { 1 , . . . , m } card I = n such t h a t the "excised" n x n m a t r i x 

A[ = (aij)3i£i''"'n is nonsingular and x- is the (unique) solut ion of the corresponding 

linear equa t ion sys tem Ajx = bj, i .e . V." £ / 52 flu ' ^ j = ^ ' 
i = i 

Especially: Supposing t h a t all e lements of A and b are ra t ional numbers every ex­

t reme po in t of P belongs to Q n . 

Comment: This characterization of extreme points (vertices) of a polyhedron is basic of 
the familiar linear-programming method for finding all vertices of a polyhedron. We can 
mention two textbooks where this can be found: in [3] Theorem 18.1 in combination with 
problem 18.3, in [1] § 4 of the first chapter especially Theorem 2.18. To make sure of 
the second part of the statement realize that the inverse of a matrix composed of rational 
numbers is also composed of them. You can either consider the matrix over the field of 
rational numbers or apply the well-known direct formula for inverse using determinants. 

L e m m a 4 . Let L be a subspace of E n . T h e n Q " is dense in L (i. e. Q " fl L = L) 

iff Q " is dense in LL ( i .e . Qn D LL = L1). 

P r o o f . J. Q " is dense in L ==> L has a basis m a d e up from elements of Q n . 

Indeed: Take an o r thonormal basis w\,..., Wj. of L (for detai ls [4] § 65); choose 

e > 0 such t h a t every k x k m a t r i x B = (bij) is nonsingular whenever 
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GC(^»j "~^»J ) 2 ) 5 *• e (̂ *i m e a n s Kronecker's delta; to find it realize that considering 
ij 

the matrix norm ||C|| = (]P c}j)^ the determinant is a continous matrix function and 
ij 

use the corresponding nonsingularity characterization - [4] §53). Find vt G Qn n L 
i * 

with \\vi — W{\\ < ek~2 and express each v, = ^3 au ' wi- By orthonormality of 
j'=l 

{WJ} get 
fc fc 

||«. - w»||2 = || £ ( « « - fy) • t^| |2 = 5 3 ( a y - % ) 2 for i = 1 , . . . , n 
j = i j = i 

and hence derive that A = (a,-j) is nonsingular and v\,... ,Vk form a basis. 
II. Q n is dense in LL => Qn is dense in L. 

Indeed: According to I choose a basis p 1 , . . . ,pk G Qn of LL. It makes no problem 
to see L = {v eRn;Wi = l,...,k (p',v) = 0}. Having w G L and e > 0 find for 
each j = 1 , . . . , n numbers aj, bj G Q such that aj < Wj < bj and bj — aj < en~i. 
Consider the polyhedron P = {«G E n ; V j = \,...,n Vj <bj, —Vj < —aj and 
V i = 1 , . . . , k (pl, v) < 0 (—p', v) < 0}. As P is bounded and nonempty (w G P) by 
Statement 2 ex(P) ± 0. By Statement 3 ex(P) C Q n . Thus, take some u G ex(P). 
Clearly u £ L and ||w — w\\ < e. 

I I I . Qn is dense in L ==> Q n is dense in LL. 
Indeed: As L = L-1--1 ([4] § 62) Qn is dense in (LL)L and use II. D 

Now, the main definition of this section follows. 

Definition 6. (regular cone) 
A closed cone K C Mn is called regular iff Qn is dense in K C\ (-K), i.e. 
Qn n K n (-K) = K n (-K). 

Evidently, it holds: 

Fact 10. Every pointed cone is regular, empty cone is regular. 

Fact 11. Having P e l " such that 
a.) u,v e P =^u+jv£ P b ) u G P a G Q + => a • u £ P 
it holds con(P) = P. 

Proposi t ion 3. Let K be a closed cone. Then the following three conditions are 
equivalent: 
(i) K is regular 
(ii) Va G Mn \ K 3p G Q n n K* with (p, a) < 0 
(hi) Qn is dense in K* (i.e. Qn n K* = K*). 

P r o o f . ( i )=>( i i ) 
By Lemma 2 find q G K* with (q,a) < 0 and [(g,u) > 0 for u G K \ (-K)]. Use 
Lemma 3 to find the corresponding e > 0 and by (i) and Lemma 4 find p G Qn n L 1 

with ||p - g|| < e. 
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(ii)-=>(iu) 
The condition (ii) says (Qn n A'*)* C A. By Fact 4 A* c (Qn n K*)** i.e. by Fact 
6 and Fact 11 A* C con(Qn n A'*) = Q" n A*, i.e. (iii) was shown. 
(u i )=>( i ) 
By Consequence 3 consider 0 ^ V C A* open set in Lx. By (iii) choose v G Q" n V 
and find e > 0 such that T = {w £ Lx; \\v - w\\ < e} C V. Thus, supposing u £ Lx 

with ||u|| < e we have v — u £T and by (iii) find Wk 6 Q " f l A'* with wjt —* v — u, 
i.e. v — wu £ Qn n L x converges to u. Any u G Z/"1 can be multiplied by some cv > 0 
to achieve ||« • u\\ < e. Together, Qn is dense in Lx and by Lemma 4 get (i) . • 

Thus, the separation hyperplane theorem for pointed cones can be strengthened 
as follows. 

Consequence 4. Having a pointed cone A C Wl, for every o £ E n \ K there 
exists r £ Z" such that [ V« G K (r,u) > 0 ] and (r, a) < 0. 

P r o o f . Use Fact 10 and Proposition 3, take p £ Qn n A'* from (ii) and consider 
r = k -p where k G N ensures r g Z " . • 

Nevertheless, to illustrate the previous result an example of a nonregular closed 
cone A' such that Qn is dense in A' is given. 

Example. Consider n = 3 and put A' = {(xi,x2,x:i); x\ < TXX2} , where 7r is an 
irrational number. Evidently A is a nonempty closed cone and Qn is dense in A' 
but A n (-A') = {(xi,x2,x3); xx = irx2} meets Qn in {(xux2,x3); xt = x2 = 0}. 

7. EXTREME RAYS 

The concepts of ray and extreme ray are recalled in this section. It is shown that 
(only) pointed cones have extreme rays and can be determined by means of the set 
of extreme rays (Proposition 4). 

Definition 7. (ray, extreme ray) 
Let x € M" \ {0}. The set R = {« • x; a> 0} is called the ray generated by x. Note 
that every ray is generated by each its nonzero element. 
Supposing A is a nonempty closed cone we say that a ray R C A' is an extreme ray 
of Km 

Vu,v£K -(u + v) G R=> u,v G R. (3) 

Fact 12. Having a nonempty closed cone A a ray R C A is an extreme ray of A' iff 

V t i , » £ / ( \/a,p>Q a-u + ft -v £ R = > u,v £ R (A) 

Hint for necessity: Consider fi = 2a • u, v = 20 - v, as «, v £ K apply (3). 

To derive the above mentioned result the following lemma is needed. 
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Lemma 5. Let K C I " be a pointed cone; suppose that q £ K* satisfies 
[ (q, u) > 0 whenever u € K \ {0}] (see Proposition 2). Put T = {y e K; (q, y) = 1}. 
Then T is a compact convex set. Moreover, given e e T the following two conditions 
are equivalent: 
(i) e is an extreme point of T 
(ii) e generates an extreme ray of K. 

P r o o f . I. T is compact and convex 
Indeed: Denote S = {y e » n ; \\y\\ = 1}, S' = {y e S; (q,y) > 0}, Q = {y e W1; 
(l,y) = 1} a n d consider the mapping t : S' —• Q defined by y >->•* (q,y)~l • y. 
To verify its continuity realize that y t—> (q,y)~l is a continuous function. Clearly, 
T = t(S' n K). But 5 ' n / ( = S n A' is compact (a closed subset of the compact set 
S) and hence T is compact (for details [5], Chap. 5 Thms. 7,8). 
Moreover, T = Q C\ K implies that T is convex. 

II. ( i )=>(i i ) 
Indeed: Suppose R = {a • e; a > 0} u, v £ K \(u + v) = a • e a > 0. In case a = 0 
get u, —u e K and as K is pointed u = 0 and hence u, v e R. Similarly in case 
a > 0 and [u = 0 or w = 0]. Having u,v e K \ {0} and a > 0 put ft = (q,u), x = 
/ ? - 1 • u, 7 = (q, v), y = f~l • v. Clearly x,y £ T e = (^a - 1 /?) • a; + (^a _ 1 7) • v and 
1 = (q,e) = \a-^(q,x) + \a~1p(q,y) = \a-1p+\a~1j. By (i) x = y = e, i.e. 
u,v eR. 

III. (u) =->(.) 
Indeed: Suppose e = j-x + (l—j)-y x,y G T 7 6 ( 0 , l ) . A s x , y G A' using Fact 12 
and (ii) get x, y £ {a • e, a > 0}. Using x,y,e G T derive x = y = e. • 

Proposi t ion 4. Let {0} 7; X is a nonempty closed cone. Then K is pointed iff K 
has extreme rays. Moreover, supposing that {0} ^ K is a nonempty pointed closed 
cone and L C K is (any) set generating all its extreme rays it holds K = con(L). 

P r o o f . I. K is not pointed = > K has no extreme rays. 
Indeed: Take u e K D (-K) \ {0}, consider a ray R generated by x ^ 0 and write 
x = \(x — u) + \(x + u). Supposing that R is extreme get x + u = /? • x for /? > 0. 
But /? = 1 implies « = 0 and /? 7= 1 gives x G Lin({u}) i.e. R is generated by « or 
(—u). But u = ^(3u) + \(—u) implies that R is not extreme. 

II. {0} 7: K is pointed, L C K generates extreme rays => L ^ 0 and K = con(L). 
Indeed: Apply Lemma 5. K 9= {0} implies T ^ 0 and by Statement 2 get ex(T) ^ 0. 
Clearly V e £ e:c(T) 3 ue G L /?e > 0 e = /?e • ue by our assumption about L hence 
L 5c 0. By Statement 2 V y G T 3 M C ex(T) finite j / = ~2 ae • e where 

e£M 
a e > 0 ~2 ae = 1 i.e. T C con(L). Hence A'\{0} C con(L) and finally A' = con(L). 

• 

We conclude this section by an easy lemma which can be useful when searching 
extreme rays. 

Lemma 6. Suppose that z : M.n —• Mn is a one-to-one linear mapping. A set 
K C I " is a pointed cone iff z(K) is a pointed cone. Having a fixed pointed cone 
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K C ffi" a set R is an extreme ray of K iff z(R) is an extreme ray of z(K). 

P r o o f . As z is continous and z(K) D z(—K) = ^(A' D (-K)) the first part is 
easy. Evidently R is the ray generated by an element i £ l " \ {0} iff z(R) is the ray 
generated by z(x). Finally, it makes no problem to 'shift' the validity of (3) from R 
to z(R). • 

8. PYRAMIDS 

Special types of cones, namely pyramids and rational pyramids are studied in this 
section. Firstly, both concepts are introduced and pointed pyramids are character­
ized as pointed cones with finite number of extreme rays (Consequence 5). Then 
pyramids are equivalently characterized as dual cones of finite sets, resp. rational 
pyramids as dual cones of finite sets of rational vectors (Proposition 5). Hence easily 
follows that a closed cone is a (rational) pyramid iff its dual cone is a (rational) pyra­
mid and every rational pyramid is a regular cone (Consequence 6,7). Afterwards, 
a special separation hyperplane theorem for pointed rational pyramids enabling us 
to distinguish extreme rays is derived (Consequence 8). The section is concluded by 
the concept of exhaustive set which is used to characterize sets whose dual cones are 
pointed rational pyramids (Lemma 8). 

Definition 8. (pyramid, rational pyramid) 
A set K C ffi" is called a pyramid iff K = con(L) where L C Mn is finite. If there 
exists L c Q " finite such that K = con(L), then K is called a rational pyramid. 

Note that owing to: 

Fact 13. V ? G Q n 30 ^ /? g Q+ 3 z € 1n q = /? • z 

It is easy to see: 

Fact 14. K C R" is a rational pyramid iff K = con(E) for finite E C Z". 

The further fact follows from Proposition 1: 

Fact 15. Every pyramid is a closed cone. 

Proposition 4 implies an easy criterion to recognize whether a pointed cone is a 
pyramid: 

Consequence 5. Let K be a pointed cone. Then 
a) K is a pyramid iff K has finitely many extreme rays, 
b) K is a rational pyramid iff K has finitely many extreme rays and all of them are 

generated by elements of Q". 

P r o o f . Suppose K ^ {0} (otherwise trivial). The sufficiency follows from 
Proposition 4. For the necessity suppose K = con(L) where L is finite. To show 
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that every extreme ray R (generated by x ^ 0) has nonempty intersection with 
L \ {0} write x = ( £ au • u) + av • v where au > 0, v G L \ {0}, a„ > 0 

ueiAW 
and by Fact 12 get v £ R. As L\ {0} has finitely many nonempty subsets and the 
mapping R-+ RC\ L\ {0} is one-to-one, K has finitely many extreme rays. • 

The aim of this section is to prove an important equivalent definition of pyramid 
for the case that cones are given as dual cones. To show it the following fact will be 
used. 

Fact 16. Supposing K is a pyramid (resp. a rational pyramid) it holds A'* = L* 
where I c l " (resp. L C Q") is finite. 

Hint: In case K s- con(L) use Fact 8 to get K* = con(L)* = L*. 

Propos i t ion 5. Suppose A' C Mn. Then 
a) A is a nonempty pyramid iff K = L* where L C 1R" is finite, 
b) K is a nonempty rational pyramid iff A = L* where L C Qn is finite. 

P r o o f . I. A = L* where L e t " (resp. L C Qn) is finite = > A is a pyramid 
(resp. rational one). 
Indeed: Put Q = {x e l n ; V j = 1 , . . . , n - 1 < x, < 1}, P = A n Q. P can be 
written as {v £ Mn; V r g [ (-r,w) < 0 Vj = l , . . . , n ^ < 1 - VJ < 1}, i.e. 
P is a nonempty bounded polyhedron. By Statement 3 the set of extreme points 
ex(P) is finite (resp. ex(P) C Qn is finite). Put T = con(ex(P)). Evidently T C A. 
Conversely, having u 6 A find a > 0 and v C P with u = a • v. By Statement 2 
v = £ /?w • w where /?„, > 0 £ /?«, = 1 and hence « £ T . Thus, A = T 

w(kex{P) wtex(P) 
i.e. A' is a pyramid (resp. rational one). 

II. K ^ 0 is a pyramid (resp. rational one ) = > A' = L* where L c K" (resp. 
L C Qn) is finite. 
Indeed: A is a pyramid (resp. rational one ) implies by Fact 16 that K* = M* where 
M C IRn (resp. M C Q") is finite. Using part I get that A* is a pyramid (resp. 
rational one). Use Fact 16 once more for A* to derive A'** = L* where L C M.n 

(resp. L C Qn) is finite. But Fact 15 and Consequence 1 imply K = A**. • 

Note that the result saying that every pyramid is a dual cone of a finite set proved 
in Proposition 5a is very old (it is an easy consequence of the main theorem from 

Consequence 6. Suppose that A C M" is a closed cone. Then it holds: 
a) A is a pyramid iff A* is a pyramid, 
b) A is a rational pyramid iff A* is a rational pyramid. 

P r o o f . The necessity follows from Fact 16 and Proposition 5. In case A ^ 0 
the necessity also yields the sufficiency by means of Consequence 1 (A = A*). D 
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Consequence 7. Every rational pyramid is a regular cone. 

P r o o f . Consider a rational pyramid K, by Consequence 6 K* = con(L) where 
L C Qn is finite. Put V = { £ A • • I A G Q + }, evidently F = A'* i. e. Qn is dense 

t£L 
in K* and by Proposition 3 K is regular. • 

Lemma 7. Let A' C K" be a pointed pyramid and R its extreme ray. Then there 
exists t 6 IRn such that [(t,x) = 0 for every x £ R] and [(t,s) > 0 for all s 
generating the other extreme rays ]. 

P r o o f . By Proposition 2 find ? G l " with [(q,u) > 0 for u £ K \ {0} ] and put 
T = {y £ K; (q,y) = 1}. Take the uniquely determined r £ Rf\ T (see Lemma 5) 
and put K = con(E \ {r}) where E denotes the set of extreme points of T. In case 
E \ {r} ^ 0 by Statement 1 find p £ K* with (p, r) < 0. It makes no problem to see 
that t = p-(p, r)-q satisfies both (t, r) = 0 and (t, e) > -(p, r) > 0 for all e £ E\{r} . 
The rest follows from Lemma 5. • 

Consequence 8. Let K C ffin be a pointed rational pyramid and R its extreme 
ray. Then there exists q £ Qn such that [(q,r) = 0 for all r £ R] and [(q,x) > 0 
for all x generating the other rays of K]. 

P r o o f . Let r0 generates R, by Consequence 5b Qn is dense in L = {a-r0 ; « £ l } 
and by Lemma 4 Qn is dense in LL. By Lemma 7 there exists t £ L1 such that 
(t,s) > 0 for all s £ S where S denotes the set of points s generating the remaining 
extreme rays and specified by the requirement ||s|| = 1. Find q £ Qn n Lx with 
||g — i|| < min{(s,i); s £ S} (S is finite!) and the inequality \(s,t) — (s,q)\ < 
INI • lk —til < (s>0 implies (s,q) > 0 for each s £ S. Whenever x generates another 
ray of K write x = £2 a, • s + « r • r where «,- £ K+, necessarily cvs > 0 for some 

S £ S 

s 6 5 and hence (q, x) > as • (q, s) > 0. • 

Note that the preceding result does not hold for general pointed cones: 

Example. Consider n = 3 and put A' = con(L) where 
L= {(xux2,x3) ; Xl

2 + X22< 1 x3 = l } U { ( - 1 , - 1 , 1 ) , ( -1 ,1 ,1 )} 
(the base of this cone is a circle with an attached oblong). Consider the ray generated 
by r = (0, 1, 1). The only q £ K* with (q,r) = 0 satisfies (q,x) = 0 for x = (—1, 1, 1) 
generating another extreme ray of A'. 

Definition 9. (exhaustive set) 
A set E C IRn is called exhaustive iff E* n ( - £ " ) f~\Zn = {0}, i.e. 
V z G Z " [VeG E (z,e) = Q] = > z = 0. 

Lemma 8. a) Whenever E C Zn is finite exhaustive it holds E1* n (—E*) = {0}. 
b) Supposing that A C Mn is a closed cone the following conditions are equivalent: 

(i) A = con(E) where E C Z n is a finite exhaustive set 
(ii) K* is a pointed rational pyramid. 
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Proof , a) Put K = con(E); it is a rational pyramid. By Fact 8 A'* = E*. 
Using Consequences 6b and 7 derive that A'* is a regular cone. The exhaustivity 
assumption says A* n (-A*) n 7Ln = {0},hence by Fact 13 {0} = A**n( -A*)nQ" 
and {0} = A* n (-K*) n Q" = A* n ( -A*) = E* n (-E*). 
b) The implication (i) = > (ii) has been already proved above; supposing (ii) by 
Consequence 6b K is a rational pyramid, hence by Fact 14 K = con(E) for some 
finite E C 7Ln; Fact 8 says A* = E* and hence E*n(-E*)nZn C A * n ( - A * ) = {0} 
gives the exhaustivity. • 

9. QUASIORDER1NGS OF INTEGER VECTORS 

The focus of study of this section are restrictions of closed cones (and hence the 
corresponding quasiorderings) to 7Ln - the class of integer vectors. Firstly, intersec­
tions of 2 " with (general) closed cones are characterized (Lemma 9). Further result 
(Proposition 6) identifies them with regular cones and shows that the correspondence 
is antitonne. 

The method of establishing of quasiorderings (see the Introduction) for integer 
vectors leads to the concept of cover (Definition 10, in fact the set of conical com­
binations with rational coefficients). The cover is shown to be equal to intersection 
of Z" with conic hull (Lemma 10). On the other hand, the method of inducing of 
quasiorderings for integer vectors suggests to intersect 7Ln with a dual cone. Propo­
sition 7 says that quasiordering on 7Ln is finitely inducable iff it coincides with the 
cover of a finite set or iff it is given by a rational pyramid. In the second part of 
this proposition the existence of the least set of normalized integer vectors inducing 
such quasiorderings is proved in certain special case, namely that the quasiordering 
is established by an exhaustive set. Moreover, elements of this least inducing set 
can be distinguished by integer vectors which are positive with respect to the qua­
siordering. Certain method to achieve elements of this least inducing set is indicated 
by Lemma 12. 

Finally, Proposition 8 characterizes similarly orderings given by rational pyra­
mids. The existence of the least set of normalized integer vectors establishing such 
orderings is proved there too. 

Lemma 9. Supposing L c P the following two conditions are equivalent: 
(i) L = A' n 7Ln for some nonempty closed cone A' 
(ii) L satisfies the following three conditions: 

u,v£L = > u + veL (fi.\) 
uk£L u£7Ln /J*, /? € N 07/1 -uk-*[3-1 -u = > u £ L (0.2) 
0 e L (0.3) 

P r o o f . The implication (i) = > (ii) is easy to see. To show (ii) = > (i) put P = 
{a • v; v £ L a £ Q+}. Using (0.1.) and Fact 11 get ~P = can(P). It remains to 
see L = P n 7Ln. Clearly, t c P ("1 7Ln. Conversely, take u £ P f l Z " and consider 
U* £ L, ak £ Q + with ak • U* —*• u. In case u = 0 use (0.3). Supposing u ^ 0 find 
a nonzero component Uj ^ 0 of u (j £ { 1 , . . . , n}). For large indices k the numbers 



Convex Cones in Finite-Dimensional Real Vector Spaces 195 

(uk)j have the same sign as Uj. In case Uj > 0 put fik = (uk)j (3 = Uj (otherwise 
f3k = — (uk)j, (3 = —Uj) and as ctkf$k —* (3 > 0 use (/?.2) to derive u £ L. • 

Intersections of Z n with closed cones can be understood as quasiorderings on Tn. 
The following result identifies them with regular cones. Note that by Consequence 
1 K is a nonempty closed cone iff it has the form B* for some B C W1. 

Proposition 6. a) Whenever L = Zn n B* where B e l " then A' = (Zn n B*)* 
is a regular cone satisfying L = 7Ln n A'*. 
b) Whenever A'i, A2 are regular cones, then Zn n A* c P f l A* is equivalent with 

A2 C K\. Especially, the regular cone mentioned in a) is uniquely determined. 

P roo f , a) Clearly by Fact 5 7LnnB* C (7Ln n B*)** = A*. Conversely, by Fact 
4 and Fact 7 Z n n A * C A* = (7Ln n B*)** C B*** = B*. Thus ZnnB* = 7LnnK*. 
Hence, by Fact 4, Fact 6 and Fact 11 
A* = (Zn n B*)** C (Qn n A*)** = con(Qn n A*) = Qn n A*, i.e. A is a regular 
cone by Fact 3 and Proposition 3(iii). 

b) By Fact 4 A'2 C K\ implies 7Ln n A* C 7Ln n K*. Conversely, supposing 
7Ln n AJ1 C F f l K\ consider x £ A2 \ K\. By Proposition 3(ii) find p £ Q" n A'* 
with (p, x) < 0. Using Fact 13 find z £ 7Ln n K* with (z, x) < 0 and this contradicts 
the assumption. • 

To characterize rational pyramids in Zn the following concept of cover will be 
used. 

Definition 10. (cover) 
Let L C Z n . Introduce its cover denoted by cov(L) as follows: 
cov(L) = {u£Zn;u= £ j3v • v where 0 ^ K C L is finite /?„ £ Q+ }. 

Fac< /7. Having L c 7Ln it holds 
cou(L) = {u £ Zn ; fc • u = ^ A„ • v where 0 ^ A C L is finite fe £ N Â  £ Z+ }. 

Lemma 10. Suppose that L C Z n . 
a) Then cot;(L) = con(L) n Z n . 
b) If moreover 0 == L is finite, then cov(L) = Zn n L**. 

P r o o f . Clearly cov(L) C con(L)n7Ln. Conversely, having u £ con(L)nTLn write 

" = E A ' "' where i i ' e i ft£l+.i=l,..., fc. Fix the vector (0\,..., (3k) and 
! = 1 

find (Ti,-..,7fc), (h,-..,h) £ Q* such that 0 < j t < /?,• < 5j for i = 1 , . . . , * and 
put: 
P={(.ci . . . . , JB f c)-€R-; V i r - l , . . . , * Xi'<«j - a r , < - 7 , -

k k 

Vj = l , . . . ,n X) a:.-(»,)i < u; E *t(-«')i S -«i>-
As (/?i, . . . , /9jj) £ P it is a nonempty bounded polyhedron. By Statement 2 P has an 
extreme point ( a i , . . . , a i ) a n ( j by Statement 3 ( a i , . . . , a j t ) £ Q*. But (ai . . . , a t ) £ 
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k 

P means u = J2 ai • vi i-e- u 6 cov(L). 

b) By Proposition 1 and Fact 6 con(L) = coh~(L) = L**. • 

To ensure the uniqueness of the least set of establishing (resp. inducing) integer 
vectors the following concept is needed. 

Definition 11. (normalized integer vector) 
Denote by 7Ln

orm the class of all vectors u G 7Ln such that the collection of its 
components ux,..., u„ has no common prime divisor (especially 0 $ Zn

orm). 

We mention several facts about Zn
orm: 

Fact 18. Vz € Z n \ {0} 3 m G N z £ Z n
o r m z = m • z. 

Fact 19. Vzi,z2£Zn
orm [k • zx = / • z2 for k,l € N] ==> 2. = z2-

Tad 20. Every ray contains at most one element of Z n
o r m . 

Lemma 11. Suppose that E C Zn is finite and exhaustive with E* •£ {0}. 
a) The following two conditions are equivalent for K C W1: 

(i) con(K) = E* 
(ii) cov(E) = Z n n A'*. 

b) Define A as the set of all elements a G Zn f\ E* \ {0} satisfying 

[k-a = z-l+z2 k£N zl,z2eZnr\E*] ==> [3leZ+ z^=l-a] (5) 

Then the set A is finite and it is the least subset of Z" o r m such that con(A) = E*. 

Proof , a) I. In case K — 0 (i) is untrue by Consequence 1 and (ii) by Fact 8 
contradicts the assumption E* ^ {0}. Thus suppose K ^ 0 in the sequel. 

II. (i)==>(ii) _ m _ 
By Fact 8, (i), Fact 6 and Proposition 1 write A'* = con(K)* = E** = con(E) = 
con(E). Then use Lemma 10a. 

HI.(u)==>(i) 
Certainly E C cov(E) c K* implies by Fact 4 K** C E*. Thus by Fact 6 the first 
inclusion cbn(K) C E* is shown. By Lemma8a{0} C A'**n(-A**) C E*n(-E*) = 
{0} derive that A'** is pointed and therefore by Fact 10 regular. By Proposition 3(iii) 
and Fact 7 get A'* = Qn n A'*. Nevertheless (ii) says Zn C\ K* C cov(E) C con(E) 
hence (Fact 13) Qn n A'* C con(E) and further K* = Q n n A* C cdn(E). Hence by 
Fact 8, Fact 4 and Fact 6 E* = cbn(E)* C A'** = con(A). 

b) IV. AC Korm-
Whenever a £ A then by Fact 18 a = m • a for m G N, ft G Z n

o r m . Put k = 1, zx = 
a, z2 = (m - 1) • a in (5) and derive a — Z\ = I • a = Im • a for / G Z + . Necessarily 
/ G N and hence / = m = 1 says a = a. 

V. There exists finite K C Zn
orTO with con(A') = E*. 

By Proposition 5 and Fact 14 E* = con(T) for finite T C l>n. Using Fact 18 for each 
z G T\{0} find j ) , £ N and z G Z n

o r m with x = 0, -z; then put K = {z; z G T\{0} }. 
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VI. Whenever K C 7Ln
orm with con(K) = E* then AC K. 

By Lemma 10 Zn n A* = Z n fl con(K) = cov(K), hence by Fact 17 every a £ A can 
be decomposed: k • a = £^ 7« • V for 0 ^ A'' C A' 7„ G Z+ fc G N. As a ^ 0 there 

veK' 
exists v G A' with 7„ G N ; put Z\ = v z2 = k • a - v, evidently z. G Zn n A* and 
by (5) ZJ = / • a for some / G Z+. Clearly / G N (0 £ Z n

o r m ) and hence by Fact 19 
and IV z\ = a. 

VII. If [ A c Korm i s n n i t e with A* = con(A') z G A \ A } then A* = 
con(K \ {z}). 
Clearly z G A* n Zn \ {0}. As z g /I find fc G N z, G P f l E * such that [fc • z = 
zi + z2 & V/ G 7L+ zx ^ / • z]. By Lemma 10 7Ln n A* = Z n n con(A) = cov(A) 
and therefore by Fact 17 write A-' • z. = £ 7 j , • v for fe« G N, j'v G Z+ (j = 1,2) 

vdK 
Hence easily get kk1 k2 • z = £ (k[

 7
2 + £2 7;}) • v. In case M1*;2 < k1^ + fc2

7j 
» £ K 

simply get Vz> G A \ {z} 71 • v G A* n (-A*) n 7Ln and therefore (the exhaustivity) 
7* = 0. Thus fc1 • zi = 7I • z and by Fact 19 it contradicts [V/ G Z n z, ^ / • zj . 
Therefore kklk2 > k'j2 + k2jl

z and z G con(A \ {z}). Hence A' C con(A \ {z}) says 
A* = con(7\:) C con(A \ {z}) C con(A). 
VIII. By V find A C Z n

o r m finite with con(A') = E*. By VII remove all elements 
of K \ A saving con(A) = A*. Owing to VI exactly A remains. Thus A is finite and 
satisfies con(A) = A*. The rest follows from VI. D 

Propos i t ion 7. 
a) Let L c7Ln. Then the following three conditions are equivalent : 

(i) L = 7Ln n K where 0 ^ K C W1 is a rational pyramid 
(ii) L = cov(E) for finite 0 ^ A C Z" 
(iii) L = 7Ln n M* for M C Z n finite. 

b) Supposing that A C 7Ln is finite and exhaustive there exists the least finite 
A C Korm s u c n that cov(E) =Znf\A*. Moreover, it holds 

Mac A 3 « e Z " ( a , w ) = 0 & [ V s G A \ { a } ( s ,w)>0 ] (6) 

P roo f , a) (i) <=> (ii) easily follows from Lemma 10a and Fact 14, (i) <=> (iii) is 
an easy consequence of Proposition 5b and Fact 13. 

b) The statement is easy in case E* = {0}: by Lemma. 10b cov(E) = 7LnV\ A** = 
Z n , it suffices to take ,4 = 0. Thus, suppose A* ^ {0} and by Lemma l ib take 
the least set A C ^norm w i* n cmi(A) = A*. By Proposition 1 and Lemma 11a get 
cov(E) = 1n n A*. Whenever M C Z n

o r m is finite with cov(A) = 7Ln n M* by the 
same argument get con(M) = con(M) = E* and hence A C M by Lemma 1 lb. 
Further, by Proposition 5b A* is a rational pyramid and by Lemma 8 a pointed 
cone. Therefore by Consequence 5b every of finite number of its extreme rays is 
generated by an element of Qn and thus by Facts 13,18,20 by the unique element 
of Zn

orm; denote this finite subset of Z" o r m by B. Proposition 4 says A* = con(B) 
and by Lemma l ib A C B. Having a £ A C B apply Consequence 8 to find q G Qn 

with (q, a) = 0 and [Va € A \ {a} (q,a) > 0], then use Fact 13. D 

Having a concrete finite exhaustive A C 7Ln you can sometimes face the problem 
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to find the least finite A C Z£ o r m with con(E) = ZnnA* (see Proposition 7b). The 
characterization of A from Lemma l ib (namely the condition (5)) is too clumsy for 
this purpose. Below a more convenient equivalent definition is given. 

Definition 12. (portrait) 
Having finite exhaustive E C Zn with E* ~£ {0} for each s 6 E* introduce its 
portrait Es (in E) as follows: Es = {u £ E ; (s, u) > 0}. 

Lemma 12. Suppose that £ C Z" is finite and exhaustive with E* ^ {0}. An 
element a £ Z n

o r m n E* satisfies the condition (5) from Lemma l ib iff its portrait 
in E is minimal within 7l^lorm n E* i.e. it holds: 

V s G Z ^ o r m n E * EsCEa = > Es = Ea (7) 

Proof. I. V r , s e Z n n E * Es C Er <=> [3Jfc 6 1 Jfe • r - s £ E*\. 
The sufficiency is trivial, for necessity find (for each u £ E) ku £ N with ku • (r, u) > 
(s,u) and put k = max{kv;u G E}. 

II. a 6 A =*• \is£ln
ormnE* Es CEa => s = a] ==> (7). 

By I find I-gff with k • a — s £ E* and put z\ = s 22 = k • a — s; as a £ A by (5) 
s = z\ = I • a for / G Z + , necessarily / G N and by Fact 19 s = a. 

III. Vs £ Zn
orm n E* 3a e A EacEs. 

By Lemma l i b E* = con(A), i.e. Zn n E* = cov(A) by Lemma 10a, decompose s 
as suggested in Fact 17, choose a £ A with nonzero coefficient and apply I. 

IV. a £ Zn
orm n E* satisfies (7) => a£ A. 

Using III find b £ A with Eb C Ea. Owing to (7) Eb = £"a and by II (take b instead 
of a) get a = 6, i. e. a € A • 

The corresponding version of Proposition 7 for pointed rational pyramids follows. 

Proposi t ion 8. Let L C Z " . 
a) Then the following four conditions are equivalent : 

(i) L = K n7Ln where K ^ 0 is a pointed rational pyramid 
(ii) L = cov(A) for finite 0 7= A C 1n such that [3g £ I " (q, u) > 0 for 

« € ^ \ { 0 } ] 
(iii) L n (-L) = {0} and L = cov(A) for finite 0 -= A C Z" 
(iv) L = f n M ' where M C Zn is finite and exhaustive. 

b) Whenever any of preceding conditions is satisfied there exists the least subset 
E C %norm satisfying L = cov(E) (naturally finite by (iii)). 

P r o o f , a) (i) = > (ii) 
By Fact 14 and Fact 1 K = con(A) with finite 0 == A C Zn. As K is pointed by 
Proposition 2 there exists q £ E n such that [(<?, u) > 0 whenever u £ K\ {0}]. Then 
use Lemma 10a. 
(ii) = > (iii) is evident as (q, u) > 0 whenever w G ccw(A) \ {0}. 
(iii) =>( iv ) use Proposition 7a and M* n (-M*) n Z " C l f l (-L). 
(iv) = ^ (i) By Lemma 8b M* is a pointed rational pyramid. 
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b) By Consequence 5b every of finite number of ext reme rays of K intersects <Qn 

and therefore by Facts 13,18 also TL1
r\orm, by Pact 20 this element is unique. Define 

E as the set of these elements, by Proposi t ion 4 K = con(E) and using L e m m a 10a 

L = cov(E). Moreover, having E C Z " o r m with L = cov(E) consider x £ E and 

write 

x= Y, PV • v + A, • u where F C E is finite, uE E\{0}, 0V £ Q + , 0 < /?,, £ Q. 

Consider the ray R generated by x, using Fact 12 u £ /?,, by Fact 20 2; = u, i .e . 

x £ E. Therefore ECE. • 

10. C O N C L U S I O N 

Let us give a short s u m m a r y of the ma in results of the paper . 

Proposi t ion 2 gives an equivalent definition of pointed cones, similarly Proposi t ion 
3 gives equivalent definitions of regular cones and Proposi t ion 5 equivalent definitions 
of pyramids and ra t ional pyramids . Note t h a t every ra t ional pyramid is a regular 
cone according to Consequence 7. 

Regular cones are shown in Proposi t ion 6 to correspond to quasiorderings of inte­
ger vectors. T w o equivalent definitions of such orderings corresponding to ra t iona l 
pyramids are derived in Proposi t ion 7. Moreover, the existence of a uniquely deter­
mined finite set inducing this ordering is proved and "separat ion proper ty" of this 
set shown. Especially these results are utilized in [8]. 

Proposi t ion 8 gives equivalent definitions of orderings of integer vectors corre­
sponding to rat ional pyramids and shows t h a t they can be established by means of 
a uniquely de termined finite set of normal ized integer vectors. 
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