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FREE END-POINT LINEAR-QUADRATIC CONTROL 
SUBJECT TO IMPLICIT CONTINUOUS-TIME SYSTEMS: 
NECESSARY AND SUFFICIENT CONDITIONS 
FOR SOLVABILITY 

TON GEERTS 1 

For an implicit continuous-time system with arbitrary constant coefficients we derive 
necessary and sufficient conditions for solvability of the associated free end-point linear-
quadratic optimal control problem. In particular, this problem turns out to be solvable 
if and only if the underlying system is output stabilizable, as is the case for a standard 
system. 

1. INTRODUCTION AND PRELIMINARIES 

Given the implicit continuous-time system S: 

Ex(t) = Ax(t) + Bu(t), (1.1a) 

y(t) = Cx(t) + Du(t), (1.1b) 

with u(l) e JRm,x(t) € lR",y(0 € IRr for all t G IR+ := [0,oo). Let k denote 
the number of equations in (1.1a) and let e = raak(E). All matrices involved are 
real-valued and constant. We may, and hence will, assume that [EAB] is of full row 
rank. If E is invertible, then the solutions of (1.1a) are 

-r(<) = exp(jET1.4.>o+ / exp(E-1A(t-T))E-1Bu(r)dT (1.2) 
jo 

(x'o € IR" arbitrary) and hence every xo is consistent, i.e., for every XQ, (1.1a) has 
a solution x with x(0+) = x0. If E is not invertible, however, this need not be the 
case and inconsistent initial conditions may give rise to impulsive solutions of (1.1a), 
see e.g. [12], [2]. The most natural way to deal with such phenomena is the use of 
distributions [11], as was clone earlier in e.g. [2], Instead of (1.1), we will consider 
its distributional interpretation: 

1 Supported by the Dutch organization for scientific research (N.W.O.). 
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E6& *x = Ax + Bu + Ex06, (1.3a) 

y = Cx + Du, (1.3b) 

where 6, 6^ denote the Dirac distribution and its distributional derivative, re­
spectively, * stands for convolution of distributions, x0 G fft", arbitrary. More­
over, u G Cj^p, the m-vector version of C\mp, the commutative algebra (over fft) 
of impulsive-smooth distributions [10, Def. 3.1], [9]. A distribution is impulsive-
smooth if it can be decomposed (uniquely) in an impulse (any linear combination of 
6 and its derivatives 6('\i > 1) and a smooth distribution. A distribution is called 
smooth if it corresponds to a function that is smooth on fft+ and zero elsewhere. Let 
Csm denote the subalgebra of smooth distributions. The distributional derivative of 
u G Csm,u^ = 6^ * u, equals it + u(Q+)6, where ii G Csm denotes the ordinary 
derivative of u on fft+. Example: Let u G Csm correspond to 2exp(<) on fft+. Then 
u( l) = u + 26. For more details on Cimp, see [9] — [10], also [6]-[8]; because of its nice 
properties we can keep our treatment fully algebraic. It can be readily shown that, 
for every real-valued square matrix H, (16^ —H6) is invertible (w. r. t. convolution); 
its inverse corresponds to exp(Ht) on fft+. Hence the solutions of (1.3a) reduce to 
the ordinary ones ((1.2)) if E is invertible and u G C"^; for every pair (xQ, u), (1.3a) 
has exactly one solution. Also, note that (1.3a) reduces to (1.1a) if u and x are 
smooth. In general, however, the solution set 

S(xQ,u) = {x€C?mp\[E6W-A6]*x = Bu + ExQ6}, (1.4) 

may be empty or contain infinitely many elements, see [']. We are ready for the 
definition of the free end-point linear-quadratic control problem subject to (1.3). 

(LQCP) - : For all xQ, determine 

J-(xQ) := inf { j T t/y di|« ~ CZ,~€ S(x0,«)nCn
m} , (1.5) 

and if, for every xo, J~(~o) < oo, then compute (if possible) optimal controls u G C ^ 
and associated optimal state trajectories x G S(x0,u). The problem (LQCP) - is 
solvable if both requirements are met. 

In the sequel we will need several subspaces of interest. Let 

5(E) := jaro G fftn|3w G C™m3 ~ 6 S(x0,u)nCs"m : Urn [ " j j j 1 = o | , ' 

VC(E) := {xQ ' fftn|3u G Cs
n

n3x G S(x0,u)r\Cn
&m : y = 0,.r(0+) = x-0} , 

0(E) := \x0 - fft"|3M G Cs
n
n3x G s(x0,«)nCn

m : tim y(t) = o} (1.6) 

and let 5B (E) , CB (E) denote those subspaces of 5(E) and o(E), for which u and 
x in the respective definitions are of the Bohl type (a Bohl function is any linear 
combination of functions tk exp(Xt), k > 0). For VC(S) we have the following result. 
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Proposi t ion 1.1. [7, Prop. 3.5, Theorem 3.6]. Vc(S) is the largest subspace 
C C 1R" for which there exists a matrix F G lRm x n such that (A + BF)C C 
EC, (C + DF)C = 0. 

If, moreover, 

V(S) := {x0 G Mn\3u € C.3.C G S(x0,u)nC?m : y = 0}, (1.7) 

then [7, Prop. 3.4] tells us that 

V(S) = V c(S) + ker(£). (1.8) 

In [10], [7] a point x0 G V(S) is called weakly unobservahle; we establish that all 
points in Vc(S) are also consistent. Let, for any subspace T and n any complex row 
vector of compatible size, nT stand for {nt\t G T}. The next result is stated in [3]. 

Proposi t ion 1.2. Let E be invertible. Then 5(E) + V(S) = O(S) = {x0 G 
ntn|J-(xt>) < oo}, os(E) = o(S),5B(S) = 5(E) and o(E) = 1R" if and only if, 
for all A G C with Re(X) > 0, 

tj[XE - A, -B] = 0 and nEV(£) = 0 only if n = 0. (1.9) 

If in Proposition 1.2, C = I and D = 0, then V(E) = 0 and we reobtain the well-
known statement that 5(E) = 1R" if and only if E is (state) stabilizable. We will 
say that E is output stabilizable if o(E) = lRn. 

Now, we consider S with arbitrary E. From [6, Theorem 4.5] we borrow 

Proposi t ion 1.3. 

Vxo G Mn3 u G CZ 3 x G S(x0, u) l~l Cn
m *=> 

im(E) + im(B) + A(kei(E)) = 1R*. 
(1-10) 

2. MAIN RESULTS 

Without loss of generality, we may rewrite E in the form 

[;2H'[sHt;t][sH§WoS] [':;]<• 
y = [CxC2)\

X
x
1]+Du 
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Assume that (1.10) is satisfied, i.e., that [A22 B2] is of full row rank. Let T = 

f T2 1 e IR ("+m-e)x(n+m-* ), of full column rank, be such that [i422 B2]T = 0. Set 

N := A22A'22 + B2B'2>0, L := T'T > 0. Then 

Q : = [ £ ? - ^ ] i s i n v e r t i b l e , g - 1
= [ f 1 J ] Q'. (2.2) 

If £ denotes the standard system 

6^*z = Az+Bv + z06, (2.3a) 

w = Cz + Dv, (2.3b) 

with 

Ä := Лц - [Л12 Bi] [ ў* ] N-lAn,B:= [Л12 BX]T, 

C:=Ci- [C2 D] [ ў* ] N~lA21, Ď := [C2 D]T, 

(2.3c) 

then it turns out that all solutions for (1.3) can be expressed in solutions for (2.3) 
and vice versa. 

Theorem 2.1. Let [ J £ ] G R",„ G C;
m

p and [ *J ] € 5 ( [ £ ] , « ) . Then 

xi=z(x0 1 l U) , [ *2 ] = [ ^2] JV-1(-^2 1)(z(x0 1 , t ; )) + Ti;witht; = L-1[T!ix2 + 

- > ] G C+
P

ra"*- Moreover, y = w(x01,v). Conversely, let z0 G lRe, v G C£+m*"*, 

and z = z(z0, v). Then w = -B'2N~1A2iz + T2v G Cjmp and, for all x02,
 X l G 

S ( J*. I >u) with Xi = z and x2 = —A'22N~lA2\z + T\v. In addition, y = 

Proof. First half. If in (2.3a) with z0 = x01 we insert v as prescribed, then 

6^Uz = Az + [A12B1]Q [ j r - 1
 L_? ] JQ' [ J ] + [ ^ ] } + * 0 i * = i z + 

[An S t] *2 I + (Au - A)xx + x01<5 = Az + (#-> * xx - i n n - x0i6) + (An -

A)x1+x0i6 = 6(1Ux1 + A(z-xl), by (2.1)-(2.2). Hence [Ie6^-A6]*(z-x1) = 0 

and z - Xi = 0. Since [ *2 1 = QQ-1 [ . *2 ] = [ ^'?2 ] JVTl(-i3ia!l.) + Tt>, the 

rest is clear. The second half is now trivial. 
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Observe that if in (2.1), e = k (i.e., E is of full row rank), then T is invertible 

and A — An, C — C\ in (2.3). Here is our first main result. 

Theo rem 2.2. If the system (1.3) satisfies (1.10), then 5(E) + V(E) = 0(~) = 

{x0 G lRn |J-(a;o) < oo},5B(E) = 5(E) and 0B(~) = 0(~). Moreover, (1.3) is 

output stabilizable if and only if (1.9)-(1.10) are satisfied. 

P r o o f . Consider (2.1)- (2.3). Then [m m] \ X* ~ A" ~A™ ~n* 1 - -
I — ^21 —-̂ 22 —1>2 J 

if and only if »;i[A/e - A, —B] = 0 and r/2 equals -T)i[Ai2 Bx] Jf2 N~\ for 

every A G C. Since ker(E') is contained in all subspaces involved, both claims follows 

immediately from Propositions 1.2, 1.3 and Theorem 2.L D 

Now, let us consider (LQCP) - . By Theorem 2.2, it is obvious that output stabi-

lizability is necessary for solvability. Output stabilizability turns out to be sufficient 

for solvability as well. 

T h e o r e m 2.3. For every a;0 G JR,",J~(x0) < oo if and only if the system (1.3) 

is output stabilizable. Assume this to be the case. Then there exists a unique real 

symmetric matrix P~ > 0, with ker(JE') C ker(P~), such that, for all a;o, J -(a:o) = 

a;'0P
_a;o. If 

- « ( [ c D])~[AB]-Hm(E) = 0, (2.4) 

then for every a;o there exists a unique optimal control u and a unique optimal state 

trajectory a: G S(x0, u), both of the Bohl type. If (2.4) is not satisfied, then for every 

x0 there exist u G C~\p and x G S(x0, u) such that y G CJm and J_(a;o) = /0°° y'ydt. 

P r o o f . Assume that E is output stabilizable. Consider the subsystem E (2.3), 

and let J~(z0) := inf{/0°° w'wdt\v G C^+m~k}. It follows from Theorem 2.1 that, 

for every z0 G Jt\e,J~(zo) < oo if and only if, for every a;0 G IR", J_(a;o) < oo. 

Hence, by Theorem 2.2, E is output stabilizable. Then there exists a unique P~ > 0 

such that, for all z0 G Me,J~(z0) = z'0P~z0 [3]-[4]. Hence there exists a unique 

P~ > 0, with ker(£) C ker(P") , such that, for every a;0 G U",J~(x0) = x'0P~x0. 

Next, for every z0 there exist a unique input v and (thus) a unique resulting state 

trajectory z, both of the Bohl type, such that z'0P~z0 = /0°° w'wdt, if ker(jj) = 0, 

i.e., if the LQCP without stability subject to E is regular [4]. If ker(jj) ^ 0, i.e., 

if this LQCP is singular, then for every z0 there exist v G C"^* 
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such that z'0P~z0 = /0°° w'wdt [13], [5]; however, in general these optimal controls 

and optimal state trajectories have nonzero impulsive components. Observe that, 

in terms of (2.1) - (2.3), ker(o) = 0 if and only if ker ( M , 2 2 ^ 2 J = 0, and it is 

clear that the latter condition is equivalent to (2.4). The proof is now completed by 

application of Theorem 2.1. 

The condition (2.4) can be interpreted as a system property for £ . In [8, Theorem 

3.2] it is proven that (2.4) holds if and only if 

yzcr
am<=>u~cz,~- s(x0, u) n cm. (2.5) 

In other words, (2.4) stands for the property that outputs for £ are functions only 

if the output generating controls and state trajectories are functions as well. There­

fore (LQCP) - is called regular in [8] if (2.5) is satisfied; note that (2.4) reduces 

to ker(D) = 0 if E is invertible. The linear-quadratic control problems consid­

ered in [1] - [2] are regular in the sense of (2.4), since it is assumed there that 

ker I „ n ] = 0. An example of a regular linear-quadratic problem for which 

ker( c £ ) -£ 0 is given in [8]. 

Observe that Theorem 2.3 states the existence of the matrix P~; an explicit charac­

terization of P~, generalizing results in [4]-[5], will be given elsewhere. To the best 

of our knowledge, Theorem 2.3 contains the first general statements on (possibly) 

singular linear-quadratic control subject to implicit systems. Also, unlike in [1] — [2], 

we allow the state trajectories to diverge. 

We will conclude this short paper with a by-result on uniqueness of optimal 

controls and optimal state trajectories for (LQCP) - . 

If £ is output stabilizable and (2.4) is not satisfied, then we may still assume 

to be of full column rank. Let this be the case. Now the distributional 

optimal controls and state trajectories for (LQCP) - (see Theorem 2.3) are in general 

not unique. This follows from Theorem 2.1, since it is proven in [5] that optimal 

controls and state trajectories for (LQCP) - subject to a standard system £ are 

unique if and only if £ is left invertible [10, Theorem 3.26], i.e., if in (1.3) with E 

invertible, y = 0 and x0 = 0 imply that u = 0 (and hence also x = 0). Moreover, 

the smooth parts of these unique optimal controls and state trajectories are of the 

Bohl type. 

' E 0 
Å B 
C D 
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T w o different concepts for left-invertibili ty for implicit sys tems are given in [7]. 

There , a sy s t em (1.3) is defined left invert ible in t he strong sense if XQ = 0 and 

y = 0 imply t h a t u = 0 and Ex = 0 (and left invert ible in the weak sense if merely 

u = 0) , see [7, Defs. 4 .1 , 4.10]. Under t he above-ment ioned rank condi t ion, it is 

proven in [7, Corollary 4.15] t h a t E is left invert ible in the s t rong sense if and only 

if xo = 0 , j / = 0 imply t h a t u = Q,x = 0. Hence, again by T h e o r e m 2 . 1 , E is left 

invertible in the s t rong sense if and only if (2.3) is left invert ible in t he sense of [10] 

and thus 

[E 0 "1 
A B 
C D 

C o r o l l a r y 2 . 4 . Let E be o u t p u t s tabi l izable and ker I A B 1 = 0 . T h e n 

\ L c D\J 
for every XQ there exists exact ly one (possibly d is t r ibut ional ) u and exactly one 

(possibly d i s t r ibu t iona l ) x such t h a t y £ Clm and §™~ y'ydt = J~(xo) if and only if 

E is left invert ible in the s t rong sense. Moreover, if «2 ,*2 denote the s m o o t h p a r t s 

of u and x, t hen '2 and x-i are of t he Bohl type . 

A C K N O W L E D G E M E N T 

I am indebted to CYGNE, Eindhoven, for constant encouragement and immaterial support. 

(Received January 27, 1993.) 
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