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KYBERENTIKA- VOLUME 27 (1991), NUMBER 2 

EFFICIENT ESTIMATION UNDER CONSTRAINTS* 

CHRISTIAN HIPP 

It is well known that in full families of probability measures, the empirical distribution is an 
efficient estimator for the unknown distribution. When the family is restricted by some finite 
dimensional linear constraint, then the minimum Pearson distance (MPD) estimator is efficient 
(Hipp (1988)). Here, for the case of a finite dimensional nonlinear constraint, four methods are 
given for the construction of efficient estimators. One of these is the MPD method. The simplest 
method is an approximation of the MPD estimator. 

1. INTRODUCTION AND SUMMARY 

Let 0 be a family of probability measures on d-dimensional Euclidean space 
Ud, H: 0 -* U. a functional, and Xx, X2, ... a sequence of iid random variables with 
unknown distribution P e 0. We are interested in the construction of estimators 
Hn(Xx, ...,X„) for H(P) which are efficient in the sense of Hajek and Inagaki's 
convolution theorem. The family 0 will be nonparametric and be given by some 
finite dimensional constraint. 

1.1 Example. 0 is the set of all P on the real line with finite variance <72(P) and with 
fixed known mean /J.(P) = JX0, and H(P) = o"2(P)- Here, 

Hn(Xu ...,Xn)=- j]X2(l - (Xt -X)(X- ^0)/S
2) - ^ 

n i = i 

with 

* 2 =- t(Xi-X)2 and Z- .1 £xt n i=i n i = i 

is efficient, its asymptotic variance equals 

PA ~ °4 ~ Pile'2 

* Presented at the "Kolloquium iiber Mathematische Statistik im Rahmen der Wissenschaft-
lichen Kolloquien der Universitat Hamburg und der Karls-Universitat Prag", Hamburg, June 
1989. 
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with pk = J ( x — n(P))k P(dx). Notice that this asymptotic variance is smaller than 
the asymptotic variance of s2 whenever /i3 =(= 0. 

1.2 Example. & is the set of all P with fixed known variance er2(P) = a\, and 
H(P) = n(P). In this case, 

Hn(Xu ..., Xn) = X - - t (*i ~ X)3 (*2 - 4)lN 
n i=\ 

with 

N = - f (Xt - J ) 4 - s4 

n i = i 

is efficient with asymptotic variance 

ol ~ filiP* ~ at) 
which is smaller than the asymptotic variance of X whenever /i3 4= 0. 

In Example 1.1 we have a linear constraint, in Example 1.2 the constraint is 
nonlinear. For the case of a linear constraint, the following method yields efficient 
estimators (see [2]). Let / = Ud -> W, ae W, and & the family of probability-
measures with J | /(x) |2 P(dx) < oo, \f(x)f(xf P(dx) nonsingular, and \f(x) P(dx) = 
= a. Let Pn be the discrete probability measure with point probabilities 

pn(x) = i(x)(l - (f(x) -jyM-\J- a)) 

with/ = n~l ^f(Xi),i(x) = # { ; = n:Xj = x}/n,and 

M = n-li(f(Xi)-f)(f(Xl)-fY. 
i=l 

If M is singular or if in this definition pn(x) < 0 for some x e Ud, then let Pn be some 
fixed known element of W. Then for any smooth functional H: 3P -> U, H(Pn) is an 
efficient estimator for H(P). Efficiency is meant in the sense Hajek and Inagaki's 
convolution theorem (see [3], p. 158, Theorem 9.3.1). Smoothness of H is compact 
or Hadamard differentiability with respect to a weak topology. For heavy tailed 
functional H such as the mean or the variance, it is conveniet to use a weak metric 
which implies convergence of some moments. One possible choice would be the 
Mallows metric of some fixed order k ^ 1: 

d(P,Q) = inf(E[X - Y|fe)1/fc 

where the infimum is taken over all pairs of random variables (X, Y) with marginal 
distributions P and Q, and P, Q are in the set 2, of all probability measures with 
finite mean of order k. We prefer to work with a different metric. Let F be non-
negative and continuous on Ud and °L be the set of all probability measures P satisfying 
j E(x) P(dx) < GO. Let #" be the set of all functions lc(x), lc(x) E(x), C a set of 
the form {x ^ a] e e Ud, and for P, Qe £ write 

d(P, Q) = sup \$fd(P- Q)\ 
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where the supremum is taken over all / e J5". We have d(Pn, P) -> 0 iff P„ -> P in 
the Kolmogorov metric and 

JE(x)Pn(dx)->>fE(x)P(dx). 

Write B for the linear space generated by J , endowed with the topology induced 
by J*", i.e. for v,/j,e B 

d(ii,v) = sup | J /d ( / i - v)| . 

Fix P 0 e .2. A functional H: J2 -> R is compact difFerentiable at P 0 if there exists 
g: Ud -> IR with § g(x) P0(dx) = 0 with the following property: For any family 
Pt, t e (0, 1], in 1 for which t~1(Pt — P0) converges in B, we have 

H(Pt) = H(P0) + J g(x) (Pt - P0) (dx) + 0(0 . 

This implies in particular that J" \g(x)\ Pt(dx) < oo for t sufficiently small. The 
function g is called the derivative of H at P 0 and is denoted by H'(P0). 

1.3 Example. For E(x) = x2 the functional H(P) = <r(P) is difFerentiable at any P 
with a(P) > 0, and 

v(p)=«x - my - °2(p))i(2*(p)). 
1.4 Example. For we R the functional H(P) = P*2(—oo, vv] is difFerentiable at 

any P with 

H'(P)(x) = 2(P(-oo, vv - x] - P* 2 ( -oo, w]) . 

In the following we fix F and consider a subfamily £P of .2 which is defined by some 
smooth constraint S = (S1, ..., Sr): Q -> IRr: 

^ = {Pe J :S (P) = a } , a e i ' . 

The components of S are assumed to be compact difFerentiable at any P e Si, with 
derivatives S[(P) satisfying 

j S ; . ( P ) ( x ) 2 P ( d x ) < a ) . 

We consider smooth functional H: 1 -> R which are compact difFerentiable at any 
P e ^ , with derivative H'(P) satisfying 

j" H'(P) (x)2 P(dx) < 00 . 

We first compute the lower bounds for the asymptotic variance of regular estimators. 

1.5 Proposition. Fix P 0 e 2P and assume that the covariance matrix 

1 = \S'(P0)(x)S'(P0)(xY P0(dx) 

of S'(P0) is regular. Let 

ut = J H'(P0) (x) S;(P0) (x) P0(dx) , i = 1, ..., r 

a n d (T2 = J H'(P0) (x)2 P0(dx) - urZ~ lu . 

Let H„ be a sequence of estimators with the following property: There exists a prob-
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ability measure K such that for P„ -> P 0 in modified Hellinger distance, Pn e £?, 
the distribution of 

J(n)(H„-H(Pn)) 

under Pn converges weakly to K. Then there exists a probability measure R such that 

K = JV(0, a2
0)*R. 

(The modified Hellinger distance is 

4(Pn, Po) = 1 F(x) (hl'2(x) - h^2(x))2 n(dx) 

where h„ and h are /^-densities of P 0 , respectively.) 

If K = ^T(0, a2), then necessarily cr̂  ^ a\. 

The proposition is a consequence of a variant of the convolution theorem in 
Pfanzagl and Wefelmeyer [3], p. 158, Theorem 9.3.1. The details are given in Section 2. 

We shall present four methods for the construction of efficient estimators H„, i.e. 
for estimators for which the distribution of ^J(n) (H„ — H(P0)) under P0 converge 
weakly to JV(0, cr0). The first method is based on the well known improvement 
procedure for inefficient estimators (see [3], p. 200). Let Q„ be the empirical distribu­
tion of Xu ...,Xn and consider estimators of the following kind: 

Gn(Xx, ...,Xn) = H(Qn) + cT(S(Qn) - a) 

where c e W is a free vector parameter. This parameter is chosen such that the 
asymptotic variance of G„ under P 0 is as small as possible. The optimal c = c(P0) 
depends on the unknown distribution P 0 . If the map P -+c(P) is smooth, then we 
obtain an efficient estimator by studentization: 

Hn(Xu ...,Xn) = H(Qn) + c(Qn)
T(S(Qn) - a) . 

1.6 Proposition. Assume that for P e .2 the covariance matrix 

r(p) = Js'(p)(x)s'(p)(x)Tp(dx) 
of S'(P) exists, and let 

ut(P) = J H'(P) (x) S\(P) (x) P(dx) , i=l,...,r 
and 

c(p) = i : ( p ) - 1 « ( p ) . 

If P -+ c(P) is continuous in the metric d at P 0 , and if J F(x)2 P0(dx) < oo, then 

Hn(X„ ...,Xn) = H(Q„) + c(Q„)T(S(Q„) - a) 

is efficient at P 0 . 

Proof. Since y/(n) (Q„ — P0) is tight in the metric d (see Lemma 2.2), compact 
differentiability of H and S imply that H„ has the stochastic expansion 

V t o (H» ~ H(po)) = »~1 /2 t H'(P0)(Xt) + c(Q„yn-V2 £ S'(P0)(X{) + Rn 
i = i »= i 
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with R„ -> 0 in probability. Continuity of c implies c(Qn) -> c(P0) in probability and 
hence Hn has asymptotic variance 

Var(H '(P0)-C(P0)TS'(P0)) = ^ . n 

The second method is based on the bootstrap. Here, computation of derivatives 
H'(P) or S'(P) is not necessary: The vector c(P0) is approximated by a bootstrap 
estimator c*. This estimator is a function of bootstrapped covariances. For the 
convergence of these bootstrapped covariances we need uniform integrability of 
second moments for statistics 

VW(H(e»)-H(p)) 
which is uniform for P in a neighborhood of P0 in 2,. Here, H: <H ->R is some smooth 
functional, and Qn is the empirical distribution of n iid observations with distribution 
P. We impose the slightly stronger condition 

supEp|V(n)(íí(e„)-H(P))r < 00 
CIV \ / \ \ --""/ \ / / 1 

p 
for some <5 > 0, where the supremum is taken over the neighborhood. This last 
condition is implied by the following condition in which P0 e @> is fixed. 

Condition A. (i) H is compact differentiable at any P e &\ (ii) There exists S > 0 

saidg: LRd -> U such that 

(a) sup [f g(x)2+d P(dx): d(P0, P) < 5} < oo ; 

(b) Pi, P2 e X d(Pu P2) < 6 implies 

|H ' (P0 (x) - H'(P2) (x)| < g(x) d2(P,, P2), xeUd; 
and 

(c) sup {j |H'(P) (x)\2+d P(dx): d(P0, P) < 3} < oo . 

Here, d2 is the Cramer-v. Mises distance 

d2
2(Pu P2) = J (P t(x, oo) - P2(x, so))2 dx . 

Actually, any metric d satisfying 

sup Ep(7(n) d2(Q„, P))s < oo , s > 0 
P,n 

will serve as well. 

1.7 Proposition. Assume that the conditions of the last proposition are satisfied, and 
assume in addition thatl(P0) is nonsingular and that H,SU ..., Sr satisfy Condition 
A. Let Q* be the empirical distribution of Yti ..., Yn which are iid with distribution 
Qn, and write E*, for the expectation with respect to Ylt ..., Yn, given Xu ...,Xn. 
Write 

u , = n E*(H(Q*n) - H(Q„))(S(Q*n) - S(Qn)) 
and 

Z> = n E*(S(Q*n) - S(Qn))(S(Q*n) - S(Qn)y 
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and 
C .̂ - = Z% Uif . 

For singular z^define c* as zero. Then 

Hn(Xx, ...,Xn) = H(Qn) + cl(S(Qn) - a) 

is efficient at P 0 . 

The proof of this proposition will be given in Section 2. • 

There are also representations of efficient estimators of the form H((5„), where 
Qn is some projection of Qn onto 0>. One of these projections is the minimum dis­
criminant information adjusted distribution which is the distribution in HP minimizing 
the Kullback-Leibler distance to Qn. For linear constraints, the corresponding 
estimators have been considered by Habermann [1] and Sheehy [5]. 

Here we shall deal with the Pearson distance which is defined as 

22(P,Q) = J ( l - d Q / d P ) 2 d P 

if Q is absolutely continuous w.r.t. P, and infinity elsewhere. If the constraint is 
linear, then the distribution P„ can be considered as the one in & that minimizes 
the Pearson distance to Qn. A similar statement is true also under nonlinear con­
straints. 

Let Pn be a distribution in & that minimizes the distance Q(Q„, P) among all P e 0>. 
We shall assume that P„ can be chosen such that (Xu ...,Xn) -> P„ is measurable. 
For finite subsets A of Rd write 

S(A) = {Pe&:P(A) = 1} . 

A reasonable minimum will be obtained only if <$({XU ...,Xn}) 4= 0. We have to 
assume that this happens with high probability when n is large. Our condition will 
be even more restrictive. 

1.8 Proposition. Fix P 0 e & with J E(x)2 P0(dx) < oo, and let H: £ -> R be com­
pact differentiable at P0 . Assume that the components St of S = (Su ..., Sr) satisfy 
the following 

Condition B. (i) 5 ; is compact differentiable at any P e 21', 
(ii) The exists 5 > 0 and g: Ud -» U such that 
(a) §g(x) P0(dx) < oo and 

(b) P1? P 2 e 1, d(Pu P2) < 3 implies 

\S't(Px) (x) - 5;(P2) (x)\ <; g(x) d2(P1; P2) , x e Ud. 

Assume, finally, that ^J(n) (P„ - P0) is tight and that 

lim Pn
0{Pn{Xi} > 0 , i = 1, ...,n} = 1 . 

n 

Then H(P„) is efficient at P 0 . 

The proof for this proposition will be given in Section 2. • 
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1.9 Remark. If S is linear, i.e. S(P) = j / (x) P(dx) with / : Rd -> MT, and if 
J | / | |2 dPo < oo, then all assumptions of Proposition 1.8 concerning S are satisfied, 
and 

limP0{P„ = P„} = l . (1.10) 
n 

Proof. Condition B is obviously satisfied with g = 0. We first show that ^f(n) . 
. (P„ — P0) is tight. Notice first that the processes 

CovPo (hjy I' V W ( / - a ) , he 3? 

converge weakly to the process 

CovPo («,/)* r-*Y 

where Y is r-variate normal with zero mean and covariance matrix I. It is sufficient 
to show that 

sup Jn"1 £ h(Xt) (f(Xt) - jy M- 1 - CovPo (n,/)T JT ' ] 
he& i = l 

converges to zero in probability. We know that 

sup ] i> (X , ) ( / ( * . W ) 1 
hsSf i = 1 

is bounded in probability (bip). Hence M"1 -> I~x a.e. implies 

sup ln-*ih(Xt)(f(Xt) -fy(M~l - S~')l - 0 
he& i = 1 

in probability. We have to show that 
sup J n " 1 1 h(Xt)(f(Xt) -J) - CovPo(E,/)|| -> 0 
he& i = 1 

in probability. Using that 

s u p l n ^ S X W l 
he& i = 1 

is bip we can replace/by n := jf(x) P0(dx). Finally 

sup J n " 1 1 h(Xt) (f(Xt) -fi)- CovPo (E,/)|| - 0 
heSf i = 1 

follows from the Glivenko-Cantelli theorem for the empirical process indexed by 
the functions hf:he^ (see Sheehy and Wellner [6], Th. 1.1). We shall now prove 
(1.10). To simplify notations we assume Xlt ...,Xn are distinct. Then the probability 
measure Pn can be identified with the n-vector (plt ..., p„) satisfying pt = 0, YjPi = 1> 
Yj?if{xi) = a which minimizes 

i = i 
Z ( i - mf 
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We shall forget for the moment the condition pt = 0, i = 1,..., n, and find the solu­
tion with the method of Lagrange multipliers. We obtain that there exists aeR, 
fieW such that 

-2(1 - nPi) + oc + /5T/(Z(.) = 0 , i m 1,.... n 

or, with other a and /? 

pi = PTf(Xi) + cc, i=l,...,n. 

The constraints J^Pi = 1 a nd S P . / ( X 0
 = a yield the unique solution 

J»*-«-*«{-f J . i ' = l , ...,n 

whenever M is regular. Hence Pn = P„ on the set 

An = {M regular, (f(Xt) - / ) T M~\f - a) < 1, i = 1,..., n}. 

We finally show lim P0(A„) = 0. Since M -> I a.e. and I is regular, it suffices to 
prove that " 

lim P"0{ sup (f(Xt) - jy M~\f - a) < 1} - 0 . 
n i^n 

Notice that/T M~1(f — a) -> 0 a.e., so it suffices to prove that 

sup | | /(X0|| | /- « | | - O 
i£n 

in probability. Since y/(n) \\f — a | is bip, it is sufficient to show that 

n-1/2sup\\f(Xt)\\^0 
i^n 

in probability. This, however, follows from Ej>|[J(^ri)|2 < co. 

P0{ sup \\f(Xt)\\ =zjn}<s-2 EpJI/^OH2 lcfl/cxoB*«V»> "> ° • ° 

Finally, there is a simple approximation Pn of the minimum Pearson distance 
estimator which is efficient. It has point probabilities 

Pn{x} = i(x)(l - S'(Qtt)(x)TM-i(S(Qn) - a)). 

Notice that Pn is no longer an element of & in general. 

1.10 Proposition. Assume that S is compact differentiable at any Qe 21 and that 
the components S;(P) satisfy the following condition: 

There exist S > 0 and g = 0 with j" g2(x) P0(dx) < oo such that for all P e .2 
with d(P, P0) < S and x e Ud 

|s;(P) (x) - s;(P0) (x)| < g(x) d(P, P0) . 

Then P„ is efficient at P0. 
Proof. Let H be a smooth functional. We have to show that B(P„) is efficient for 

H(P) at P0. Tightness of y/(n)(Pn - P0) implies that y/(n)(H(Pn) - H(P0)) and 

V(«)JH'(P0)W(P„-P0)(dx) 
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are asymptotically equivalent (in the sense that the difference converges to zero 
in probability). The last expression equals 

J(n)$H'(P0)(x)Qn(dx)-

- n - 1 1 H'(P0) (Xt) S'(Qn) (XtY V(n) (S(Qn) - a) . 
1 = 1 

It suffices to show that this is asymptotically equivalent to 

V(n) (H(Q„) - H(P0)) - V(n) c(P0) (S(Q„) - a) 

(see the proof of Proposition 1.6). This follows from 

limP0{cj(gn,P0)>«5} = 0 
n 

and 

\\n-1tH'(P0)(Xl)(S'(Qn)(Xi) - S'(P0)(Xi)\\ & 
i = l 

rn-1fi\H'(Po)(Xi)\9(Xi)d(Qn,P0) 
i = l 

which converges to zero in probability. • 

2. LEMMAS AND PROOFS 

In this section we fix E and write 2, for the set of all probability measures with 
\ F(x) P(dx) finite. Let d be the metric induced by 3F and dt the Kolmogorov metric: 

dx(P, Q) = sup |P(— GO, x) — Q(— oo, x)\ , where the sup is over all x e Ud. 

2.1 Lemma. We have d(Pn, P) -* 0 iff d^P,,, P) -> 0 and 

JE (x)P„(dx)->JE (x)P(dx) . 

Proof. => is obvious. 
<=: By assumption, E(x) is uniformly integrable. Hence for arbitrary E > 0 we can 
find M > 0 such that for all n 

\F(x)l{F{x)>M}(x)Pn(dx) < £ . 
Then 

d(Pn, P) ^ sup | j c min (E(x), M) (Pn - P) (dx)| + s . 
c 

The first term on the right hand side converges to zero since E is continuous. • 

2.2 Lemma. Let P satisfy J F(x)2 P(dx) < oo, write B for the linear space generated 
by 2,, equipped with the topology induced by # \ Let Xlf X2,... be iid with distribu­
tion P, and Qn be the empirical distribution of Xt, ...,X„. Then yJ(n)(Qn — P) 
is tight in B. 

Proof. Follows from Pollard's CLT for the empirical process (cf. [4]). • 
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Proof of 1.5. One can easily rewrite the convolution theorem in [3], p. 158, 
for the modified Hellinger distance d0. Clearly H is differentiable at P 0 with respect 
to d0. Let T(0>, P0) be the tangent space of & at P0 , i.e. the set of all g with 
J g(x) P0(dx) = 0, J F(x) \g(x)\ P0(dx) < oo, and for some family Pt, t e (0, 1], in & 
we have 

J E ( x ) ( / ^ 2 - l - ^ ) 2 d P 0 = o(t2), t-*0. 

Here/ , is a P0-density of Pt. 
With £ = {g: J g(x) P0(dx) = 0, JE(x) \g(x)\ P0(dx) < oo} we claim that 

T(0>, P0) a {g s &: J f(x) S'(P0) W P0(dx) = 0} . (2.3) 

If (2.3) holds, then a lower bound <r0 for the asymptotic variance of regular estimators 
can be computed as the squared length of the projection of H'(P0) onto the set 
on the r.h.s. of (2.3). This projection equals 

H'(P0) - Cov (H'(P0), S'(P0)y I " 1 S'(P0) 

which has squared length VarPo (H'(P0)) — uTI~1u . 
To prove (2.3) we first note that T(2P, P0) is d0-closed. Hence it suffices to show 

that T(0>, P0) contains all bounded g with compact support satisfying J g(x) P0(dx) = 
= J g(x) S'(P0) (x) P0(dx) = 0. Choose a bounded function h with compact support 
satisfying J h(x) P0(dx) = 0 and 

J/i(x)S'(Po)(x)Po(dx) + 0 . 

For s, t e( — s, s) let Ps t be the probability measure with P0-density x —> 1 + t g(x) + 
+ s h(x). We can always choose s small enough such that all Ps t are nonnegative. 
The map 

/ ( * , t) = S(Ps>t) - a 

is differentiable with S(0, 0) = 0 and 

(dlds)f(s, t)\s=t = 0 = J h(x) S'(P0) (x) P0(dx) + 0 . 

By the implicit function theorem, for t e( — s', s'), 0 < s' < s suitably chosen, there 
exists s(t) e (— e, s) for which 

f(s(t), t) = 0 

and s(t) -*• 0, t -> 0. We obtain 

0 = f(s(t), t) = s(t) J h(x) S'(P0) (x) P0(dx) + o(t + s(t)) 

which implies s(t) = o(t). Let P, = Pt>s(t)- Then Pt has P0-density 

ft(x) = 1 + t g(x) + s(t) h(x) 

and hence 
J E ( x ) ( / ^ ( x ) - l - | t ^ ( x ) ) 2 P 0 ( d x ) = 

= J E(x) (1 + i t g(x) + i s(t) h(x) - 1 - i t g(x))2 P0(dx) + o(t2) = o(t2). 

This concludes the proof of 1.5. • 
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Proof of 1.7. 
We shall deal with the numerator only. The denominator can be dealt with similarly. 

From Sheehy and Wellner [6] we obtain that 

Z*:= n(S(Q*n) - S(Qn))(S(Q*n) - S(Qn)f 

converges a.e. to YYT where Y is JV(0, Z(P0)). TO prove that E^Z* converges to 
I'(P0) weakly it suffices to show that for all e > 0 

lim sup PofE^Z*! 1{|Z„|>M} > e} = 0 . 
M n 

To simplify notation we assume that S is univariate, i.e. r = 1. Let 3 > 0 be the 
quantity in Condition A. Since for fixed n 

limPo{E#|Z*|l{IZB|>M}>e} = 0 
Af 

and 
limP0{4Q„,P0)><5} = 0 

n 

it is sufficient to show that 

sup {EP|V(n) (S(Q„) - S(P)) |2 +^: d(P, P0) < 3, n e N} < oo . 

There exists Pt on the line connecting Qn and P such that 

V(») (s(e„) - s(p)) = v(») j s'(Pl) (X) (e„ - p) (dx). 
If we had P instead of P l5 our assertion would follow from (c) in Condition A. 
So we are left with the problem to give a bound for 

E„ JU(n) \S'(Pi) (x) - S'(P) (x)|)2"'2 (& + P) (dx)|. 

We first consider integration with respect to P. From our Condition A, (b), we obtain 
the upper bound (notice that d2(Pu P) S d2(Qn, P)) 

jg(x)2+s'2 P(dx) EP[V(«) d2(Qn, P)]2+s/2 =:I. 

We know that for all s > 0 

sup Epy(n) d2(Qn, P)]s < oo (2.4) 
p 

which, together with Condition A, (a), implies local boundedness of 7. 
We now consider integration with respect to Qn. With 

p = (2 + 3)1(2 + <5/2) 

and q = l/(p — 1) we obtain by Holder's inequality 

EP J g(x)2+s'2 d(Qn,P) Q„(dx) < (EP[n-> £ g(xl)]
2+s)^ (EP[d(Qn, ?)]*)«« 

I 

which is locally bounded because of (2.4), the inequality 

Un-1ig(Xi)f
+s = C2+5 J g(x)2+s P(dx) 

i 

and because of (a) in Condition A. • 
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Proof of 1.8 
Let P„ be the 

J S'(P0) (x) P(dx) = 0, i.e. with 
Let P„ be the minimum Pearson distance estimator for P0 under the constraint 

M = l(S'(P0)(Xi) - Woj)(S'(P0)(Xt) - S'(P0)f 

and 

and 

Woì^n^ZSÏPoì&д 

p(x) = i(x)(l - (S'(P0)(x) - S'(P0))YM-i S'(P0)) 

we obtain on [M regular, p(x) _ 0 for all x e Ud] the identity 

pn{x] = p(x), x e Ud. 

We shall now derive a similar representation for Pn. To simplify the notation we 
shall only treat the case of distinct Xt, ...,Xn. Let 

i>-{(Pi , . . . ' . j0e l l " : jPi t _0 l 5 > , - i } 
and 

G: D - W: p _ (pu ..., pn) -> S(P(p)) 

where P(p) is the probability measure giving mass pt to Xt, i = 1,..., n. The com­
putation of Pn is equivalent to the solution to the following problem: Find pe D 
with G(p) = a such that 

I 

is minimized. The map G is differentiable with partial derivatives 

(dGjdpt) (p) = S'(P(p)) (Xt) , i = l,...,n. 

By assumption, there exists a sequence of sets An with lim Po(A«) = 0 such that 
outside An we have the minimum attained in the interior of D, i.e. the solution P 
satisfies pt > 0, i = 1, ...,n. Hence the method of Lagrange multipliers works. 
To simplify the notation we denote 

t(x) = S'(P„)(x) 

i =n~1Zt(Xi) 
n 

K =n-^S'(P0)(Xi)(t(Xi)-iy. 

There exist a e U, $ e Rr such that 

- (1 - n Pn{Xi}) + a + pT t(Xt) = 0, i = 1,..., n . 

We shall show that for any measurable solution P„ of this equation we have 

V(n)(H(P„)-H(P„))-0 
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in probability. Then efficiency of H(P„) follows along the lines given in Remark 1.9. 
The constraint £/>• = 1 yields 

pi = n-1(l-(ST(t(Xt)-t)), i=l,...,n. 

Let R„ = J S'(Po) P„(dx). Then 

R„ = S'(P0) - K(3 . 

Using Condition B we obtain K -> I in probability, and since I is regular, K will be 
regular, too, for large n with high probability. Let us assume that K is regular in the 
following. Then 

-ß = K-\Rn-S'(P0)), 

and so 

pt = n-1 (1 - (t(Xt) - lyK-^SjPo) - R„)) , i = 1, ..., n . 

Tightness of VW (Pn — P0) and differentiability of S imply that VW R„ -* 0 in 
probability: 

0 = S(P„) - S(P0) = J S'(Po) (x) (Pn - P0) (dx) + o(n~^). 

Write an = bn if an — bn ~> 0 in probability. We have 

VW (H(P„) - H(P„)) = VW i H'(P0) (x) (P„ - Pn) (dx) = 

= VW E Я ' (Р 0 )(x t ) {(t(xt) - t)K-ҷs'(P0) - R„) -

(S'(Po)(Xt) - S'(P0))M-1 S'(P0)} := /- . 

Since | n _ 1 J H'(P0) (X.) (S'(P0) (X,) - S^Po^M"1! is bip, we obtain 
i = l 

Il^n-^tH'(P0)(Xt) 

{(t(Xt) -t)K-i- (S'(P0)(Xt) - SXPo^M"1} {S'(P0) - R„} 

:I2. 
Since 

n-1'2 S H'(P0) (*,) (,(X,) - r) {S-(J».) - K„} 
i = l 

is bip and K — M -> 0, we obtain 

/^n-^fHXPo)^.) 
{(*(*,) - t) - (S'(P0)(Xt) - S'(P0))} M-ҶS'(P0) - R„) 

= :U. 

112 



Finally, V/(«)*("1(S'(P,) - R„)isbipand 

|» - ' t H'(P0) (Xt) {(<(*,) - S'(P0) (X,)}\ £ 
i = l 

"_ iiiBw(^)iK^)^n ,Po) 
i = l 

where we used Condition B, ii (b) appropriately. Therefore 

h = 0 . 

This proves Proposition 1.8. • 
(Received December 12, 1989.) 
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