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K Y B E R N E T I K A - VOLUME 27 (1991), N U M B E R 2 

ON STATIONARITY OF A MULTIPLE DOUBLY 
STOCHASTIC MODEL* 

JIŘÍ ANDĚL 

A multiple linear process with random coefficients is investigated in the paper. Conditions 
for existence of such process are derived and its covariance function as well as the matrix of 
spectral densities are calculated. The results are applied to multiple AR(1) process with random 
coefficients, where the matrices of coefficients can be described by a stationary process. In this 
case conditions for existence and stationarity of the AR(1) process are given. 

1. INTRODUCTION 

Let et be a white noise such that Ee, = 0, Est = a2 and Esss. = 0 for s + t. The 
classical autoregressive process Xt is defined by the relation 

xt = YPkXt-k + Et, (i . i) 
k = l 

where /? = {fiu ..., /?„)' are the autoregressive parameters. If 

zn - ^z"'1 - ... -fl.-1-O for \z\ = l, (1.2) 

then there exists a unique process Xt satisfying 
oo oo 

Xt = X Cfee,_fc, £ c2
k < oo (1.3) 

k=0 k=0 

such that (1.1) holds. This process is called autoregressive and it is stationary. It 

is known that (1.2) is a necessary and sufficient condition under which there exists 

a process (1.3) such that (1.1) holds. 

A process Xt can be defined by a more general relation 

Xt = үbk(t)Xt-k + et 

* Presented at the "Kolloquium über Mathematische Statistik im Rahmen der Wissenschaft­
lichen Kolloquien der Universität Hamburg und der Karls-Universität Prag", Hamburg, June 
1989. 
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w h e r e ; • • ' • ! 

b(t)=[bl(t),...,bn(t)]' 

are random vectors such that 

Eb(t) = p, varb(t) = A . 

The case when b(t) are independent is considerably simpler. Andel [1] derived 
a condition under which Xt is stationary. Nicholls and Quinn [5] proposed a method 
for estimating parameters and in [6] generalized Andel's result to multiple auto-
regressive models. They summarized their work in [7], Andel [2] analyzed a model 
with nonvanishing mean. 

If b(t) are not independent, the conditions for stationarity are rather complicated. 
Koubkova [4] investigated an AR(l) process with a random coefficient bt(t) such 
that /31(t) is a MA(l) process. She proved tha tx f is stationary only if some complicat­
ed relations among the moments are satisfied. Tjostheim [9] derived some conditions 
under which an AR(l) process with random and dependent coefficients is strictly 
stationary. His conditions do not guarantee the existence of any moments of Xt. 
Pourahmadi [8] presents conditions for stationarity and derives explicit results 
for the following cases: (i) log b\(t) is a stationary Gaussian process; (ii)log b\(t) is 
an AR (l) process; (iii) log b\(t) is a MA(q) process. 

In our paper we generalize some of Pourahmadi's results to the multiple AR(l) 
process. 

2. MULTIPLE LINEAR PROCESS WITH RANDOM COEFFICIENTS 

Let e„ be a jp-dimensional white noise with Ee„ = 0, var sn = V. Let B„ be a sequence 
of p x p random matrices, the elements of which have finite second moments. 
Assume that {B„} and {e„} are independent. Define 

oo 

X,= £ B„£,_„, (2.1) 
n = — oo 

if the series converges in the quadratic mean. The process {Xj can be considered 
as a generalization of the linear process. Denote 

W = EBB 

and 

/o 
Bn = [. 

W»i 
where bin are row random vectors. 

Lemma 2.1. The series (2.1) converges in the quadratic mean if and only if 
TrV £ W„ < oo . (2.2) 

/ » = — oo 
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Proof. For a fixed t and a given N _? 0 define 
N 

SN = E B ; f i t - j • 
/ -o 

For m = 1 we have 
N + m iV + m 

E ^ + m - S i v y ( S A . + m - S i V ) - = £ £ Tr Efi,_fc£;_,.B;.Bfc = 
J = N+ 1 fc = iV+l 

N+m N+m 

= £ TrVWk = TrV £ Wk 
fc = N + l fc = i V + l 

Thus SJV is a Cauchy sequence in the quadratic mean if and only if 

T r V £ W - < o o . 
n = 0 

The convergence of 
- i 

SN = __ B y £ f -y 
j = - i V 

can be treated analogously. • 

Lemma 2.2. Let the condition (2.2) be fulfilled. Then Xt is a stationary process 
with vanishing mean. Let y\f be the (i,j)th element of the covariance function 

7(S) = E X , + J X ; . 

Then 
yg>='TrV £ Eft}A»+-. 

fc= — 00 

Proof. The relation EXt = 0 follows from (2.1) and from Lemma 2.1. Further 
we have 

oo oo 

EXt + sXi = E __ Z B A + ̂ -A-fcBfc = 

j= — oo fc = — oo 

oo oo oo 

= E J_ £ By+sSr_X-fcB; = E £ Bfc+SVB^. 
J— — O 0 f c = — 00 fc = — 00 

The (i",j')th element of the last expression is 

E f -WW*;,* = Tr V f Eb'Jikbi>k+s. 
fc= —00 fc= — 00 

It can be checked also directly that (2.2) implies yffi < oo for all i. From here it 
follows that y$ exist and are finite. D 

Lemma 2.3. Let the condition (2.2) be fulfilled and let 

I W\<<». ij = l,...,p. (2.3) 

116 



Then there exists the matrix f (X) = (fuv(X)) of spectral densities of the process Xt and 

fuv(X) = (2n)-lTrVE( | b'v>n e ^ ) ( £ b^e" 1 "* ) . 
i— — oo n = — oo 

Proof. It is known (see Brillinger [3], Theorem 2.5.1) that a stationary process 
Xt satisfying (2.3) possesses the matrix of spectral densities f(X) given by the formula 

oo 

f(X)=(2n)-i £ /«>e- i s*. 
s= — 00 

Inserting for / s ) we get after some computations the assertion of Lemma 2.3. • 

For applications it is necessary to generalize the model (2.1) in such a way that 
the matrices Bn are allowed to depend also on t. 

Theorem 2.4. Let B„ f be p x p random matrices, the elements of which have 
finite second moments. Let {B„ J and [st] be independent. Define 

00 

* , = I B-,A-B , (2.4) 
n = — oo 

Wn,. = EB„ .B„ f , B„ f = . 

where b">( are row random vectors. Then the series (2.4) converges in the quadratic 
mean if and only if 

oo 

T r V £ W n > f < a > . (2.5) 
n = — oo 

If (2.5) holds, then EX. = 0 and the element y\f of the matrix 

v(s) — FY Y' 

is given by 

y\f = Tr V £ EbJXi;.. (2.6) 
n = — oo 

Proof. The first assertion follows from Lemma 2.1. Formula (2.6) can be proved 
in the same way as Lemma 2.2. Of course, y\f as well as y(s) generally may depend 
on t. • 

Notice, however, that the assumptions of Lemma 2.4 do not guarantee the stationa­
r y of the process Xt. It is clear that Xt given by (2.4) is stationary if and only if (2.5) 
holds for all t and y\f in formula (2.6) does not depend on t. This must be verified 
in special models separately. 
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3. MULTIPLE AR(l) PROCESS WITH RANDOM COEFFICIENTS 

Consider a random process Xt generated by 

Xt = AtXt_l+st, (3.1) 

where At are p x p random matrices and st is a p-dimensional white noise. Formula 
(3.1) can be rewritten into the form 

Xt = £ *..A-n (3-2) 
n = 0 

where 

B0;f = / , B M = n A f . ; for n f c l . 
i = 0 

The sequence At is called strictly stationary, if for every integer N _% 1 and for 
arbitrary integers tlt .... tN the joint distribution of (Atl+h, .. .AtN+h) does not depend 
on h. 

Theorem 3.1. The relation (3.1) has a solution of the type (3.2) if and only if 

TrV£E(nVi)'(nVy)<«> 
n=0 i = 0 j = 0 

for all integers t. 
Proof. Theorem 3.1 follows from Theorem 2.4. fj 

Theorem 3.2. If At is strictly stationary, then (3.1) has a stationary solution of the 
type (3.2) if and only if 

00 

Tr V £ EA[A'2 ... A'„An ... A2A, < oo . (3.4) 
n = l 

Proof. We have from (3.3) that 
00 

TrVZ^'t_n+lA't_n+2 ... A'tAt... At_n+2At_n+1 < oo (3.5) 
n = l 

must hold for all integers t. Since At is strictly stationary, the left-hand side of (3.5) 
does not change when we subtract t — n from each index. The proof, that (2.6) does 
not depend on t, is similar. Q 

Generally, it is extremely difficult to verify if the condition (3.4) is fulfilled. Only 
some special cases allow to write explicit solution. 

Theorem 3.3. Let |Aj be a norm of a matrix A satisfying \AB\\ ^ [AJ . | |B| . If 
I A,|| ^ d < 1 for all t, then (3.3) and (3.4) hold. 

Proof is clear. • 

(Received December 8, 1989.) 
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