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KYBERNETIKA — VOLUME 27 (199T), NUMBER 2

LIKELIHOOD RATIO RANK TESTS
FOR THE TWO-SAMPLE PROBLEM
WITH RANDOMLY CENSORED DATA*

KONRAD BEHNEN, GEORG NEUHAUS

In the two sample problem with random censorship likelihood ratio rank tests are constructed
for testing randomness versus cones of alternatives which are generated by a finite number of
suitable score functions. These nonlinear rank tests improve the range of power sensitivity
of the corresponding linear rank tests. The applicability of the asymptotics is demonstrated by
Monte Carlo simulation.

1. INTRODUCTION

The aim of the present paper is to construct a class of likelihood ratio rank tests
for the two sample problem of testing randomness versus general stochastically
larger alternatives under the assumption of random censorship. The new tests are
designed to have larger ranges of sensitivity than the usual linear rank tests. In order
to achieve this goal we replace the single direction of asymptotic alternatives corres-
ponding to the optimal score function of alinear rank test by a cone which is genera-
ted by a finite number of suitable score functions. The actual choice of the proposed
cone is based on the consideration of so-called generalized shift alternatives, where the
amount of shift may depend on the value of the observation. This seems to be more
realistic than the classical shift model, which assumes that the two treatments differ
by constant shift only. In contrast, the family of generalized shift alternatives may
be identified with the nonparametric alternative that the distribution of the first
sample is stochastically larger than the distribution of the second sample.

The sample sizes will be m (first sample) and n (second sample), and N = m + n
is the pooled sample size. Let (X, 4,), ..., (X, 4) and (Xt 15 dpio)s s (X, dy)
be the observable random variables (rv’s) of the respective first and second sample,

* Presented at the ‘‘Kolloquium iiber Mathematische Statistik im Rahmen der Wissenschaft-
lichen Kolloquien der Universitit Hamburg und der Karls-Universitdt Prag’, Hamburg, June
1989.
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i.e., the value of X; is the ith observation, where 4; = 1 indicates an uncensored
observation and 4; = 0 means that the value of X; results from censoring.

In order to specify the general model we use the unobservable random variables
X1 ..., Xy for the potential measurements and the unobservable random variables
X, ..., X,y for the potential censoring points, i.e. the observable pairs (X, 4;)
are defined as (fori = 1, ..., N)

X;=min (X, X,;), 4;,=1X;; <X,), ' (1.1)
where 1(Xy; < X,,) is the indicator function of the event {X; < X,,}.

We assume the first sample X4, ..., X;,, of potential measurements to be i.i.d.
with continuous df F,, the second sample X;,,,, ..., X ;5 Of potential measurements
to be i.i.d. with continuous df F,, and the censoring rv’s X,, ..., X, to be i.i.d.
with continuous df G (equal censoring). Additionally we assume the censoring rv’s
(X214, ..., X,y) and the measurement rv’s (X, ..., X;y) to be stochastically in-
dependent (random censoring).

Our aim will be the construction of tests with suitable power properties for testing
the null hypothesis of randomness

HoFy=F, : (1.2)
versus the nonparametric alternative , ’

. #¢F <F,, F,+F, (1.3)
that the underlying distribution F, of the first sample X4, ..., leAis stochastically
larger than the underlying distribution F, of the second sample X, 415 ..., X1n-

In fact, only the ranks Ry, ..., Ry of the pooled sample X, ..., Xy and the censor-
ing indicators 4, ..., 4y will be used in the definition of the proposed tests.

In order to achieve our goal we use asymptotic theory (N — co) for suitable
cones in #;:

For any total sample size N = 2 we assume sample sizes m = my and n = ny
such that m — o0 and n — o0 as N — 0. For given dimension r € N and any column
vector 3 € R, we define asymptotic generalized shift alternatives at F according to

Z(X,)) ~ F(x — cy97 D(x)), (1.4)
A <Klﬂ I/m as 1<is<m, , , ' (1.5)
N N)l-1n as m+1<i<N, '

where F is a given df with absolutely continuous density f and finite positive Fisher-
information.

0<I(f) = I(f/f)ZdF< 0, : (1 6)
and where D = (Dl, ..., D,)" is a given vector of bounded generaltzed shlftfuncttons
D, R— (o, o) with bounded and continuous derivative d,, ¢ = 1, ...,

Defining
Ty(x):= x — 37 D(x), xeR, (1.7)
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we notice that the assumptions on D and d = (Dj, ..., D))T imply the function T,:
R — R to be bijective, strictly increasing, and continuously differentiable with
. derivative T, = 1 — t37d, if the factor t e R fulfils the condition

1] [97d]., <1 (1.8)
with ||+||,, being the supnorm. Thus, if N is sufficiently large (or if |9] is sufficiently

small), formula (1.4) defines a proper distribution with df Fo T, . and continuous
density f,,., according to

fo=(F-T) (1 - 187d). (L9)
Obviously the assumption 3 = 0 (componentwise) implies

Fy(x):= F(x — cy19" D(x)) < F(x — cyn9T D(x)) =: F5(x) VxeR,
i.e. the distribution of the first sample is stochastically larger than the distribution
of the second sample. Conversely, if F; < F, holds true then there exists some
function D: R — [0, o0) with the property Fi(x) = F,(x — D(x)) Vx. Therefore
arbitrary stochastic larger alternatives may be described by generalized shift functions.

Thus, testing the null hypothesis & = 0 versus the alternative hypothesis $ = 0,
3 # 0 under the model (1.4) (with fixed F and fixed vector D = (D, ..., D,)T of
generalized shift functions) can be viewed as a sub-problem of the general problem
of testing 4, versus J,. Obviously 3 = 0 specifies a cone in the general model
H o U Hy which corresponds to (F, D).

In the next section we prove the local asymptotic normality of the corresponding
sequence of statistical experiments and derive asymptotic likelihood ratio tests for -
testing 3 = 0 versus 3 > 0, 9 + 0.

The final version of the proposed asymptotic likelihood ratio test will be based
on an r-vector Sy = (Syy, ..., S,y)" of linear rank statistics S,y of the form (for
e=1,..r)

N .
Sov = 2 enildibiwk, + (1 = 47) b)) » | (1.10)
i=1
where b}, ..., biyy and b3, ..., biRy are two sets of scores and where R, ..., Ry
are the ranks of the observable sample X4, ..., Xy.

The resulting (conditional) rank test will be distribution free under the general
null hypothesis of randomness #,, i.e. the (conditional) null distribution will be
the same for any F, = F, and any censoring df G.

2. LOCAL ASYMPTOTIC NORMALITY AND THE ASYMPTOTIC
LIKELTHOOD RATIO TEST

In addition to (1.4) and (1.6) we assume that the censoring df G has a Lebesgue (1)
density g and, naturally,

F{x:G(x)< 1} >0. o (2.1)
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If v denotes the counting measure on the set {O, 1} and if = A x v denotes the
product measure of 1and von R x {0, 1} it’s easily proved that f(z; cy;) according to

J(e50) = (1 = GENA) + (1= ) (L = F o T(x) g3,

z=(x,6)eR x {0, 1}, (2.2)

is a p-density of the distribution of the observable 1v Z; = (X, 4,), cf. (1.7) to (1.9).

Under the assumptions (1.6) and (2.1) Fisher’s information J(f, g, $7D) of f(+; t)
at t = 0 is finite and positive, if ($7D)? > 0 holds true:

. 2
J:= J(f, g, 97D) = E,=o<§1‘%’ﬁ/ )
t=0,

_ K—f% 97D — w)z (1 - G)dF +f¥_%(mm2 4G (0, ).

Since f2($"D)?/(1 — F) > 0 [F], formula (2.1) implies J > 0. The first of the two
integrals clearly is finite because of (1.6). The finiteness of the last integral follows
from the boundedness of 97D and f2/(1 — F), the latter followmg from f(x)

—{2 f'diand ;
£2x) = (J2r diy? = ( j ’ (§) dF) < 1) (1 = F(5) 03

X

by the Cauchy-Schwarz inequality.
Under the above assumptions the densities (1.9) are 2-differentiable at ¢ = 0,

more exactly,

tg(ftl/z'—f”z)—’f”2<—"§l9TD—9Td)=1h as t—0 (24

in quadratic mean with respect to the Lebesgue measure A on R.
Proof of (2.4). If 37d = 0 we are in the classical shift situation for which (2.4)

is well-known, see e.g. [2] p. 211/212.
Now assume 97d # 0. Since the derivatives d, are bounded we may assume that

the condition (1.8) is fulfilled. Then the function T, defined in (1.7) is bijective,
strictly increasing, and continuously differentiable on R. The same holds true for
the inverse function 7,”'. Therefore we have the following inequality for s # O,

Is] [87d]., < 1, cf. [2] p. 212,

JGor=rm)es 110 o]

LT[ (e T)(=9"D) (1 — 187d) + (f- T.) (=97d))*
"Ef [ (fe T) (1 = 18%d) d;“]dt

s ’ T -1 2
! (L>(.9TDOT,_I)+—3~d—TiTE——_—1) fdl]dt,
NIRY; 1—19%d. T,

N
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since (T, ") = 1/(1 — 1t97d o T, ). According to the Lebesgue convergence theorem,
under the above assumptions on f and D, the integral in square brackets is continuous
in ¢ in a neighbourhood of ¢t = 0. Consequently, the lim sup,_,, of the L.H.S. doesn’t
exceed [h?dA. Since the convergence in (2.4) holds true A — a.s., Vitali’s theorem
implies the convergence (2.4) in quadratic mean. ' [}

Without any further assumption on G the quadratic mean convergence (2.4)
implies
g(fl/z('; t) — fY3(+;0)) > hy in Ly(A xv) as t—0 (2.5)
t
with '
| g(x) \"?
h(x, 8) = 5(1 — G(¥))"2 h(x) + (1 — o) <—“«) 7(6) 97 D(x) ,

1 — F(x)
which is equivalent to ~

2,50 = P 5 0) = b (8) in L) as 10

for 6 = 0 and § = 1. For 6 = 1 the assertion immediately follows from (2.4). For
J§ = 0 the pointwise convergence is clear, and Vitali’s theorem is applicable, since

we have
1/2
o T,(x))

for some suitable 7, between 0 and ¢, and since the R.H.S. is bounded by g'/*(x) .
|97D|,, I'3(f), of. inequality (2.3).

Recently [3] has derived (2.5) in a more general (not necessarily translation)
setting.

In the sequel let Py, denote the joint distribution of the observable rv’s (X4, 4,), ...
..., (X, 4y) under the (local asymptotic) model (1.4), i.e. for any N = 2 and any
i=1,...,Nthedfof X ;is F o T, and the df of X,; is G.

Let H denote the df of X; under the null hypothesis Py, i.¢.,

H=1-(1-F)(1-0G),
and define the random vector Ty = (Tyy, ..., T,y)" by (foro = 1,...,7)

Toy = 3 ex(dBOH(X) + (1 — 4) BO(H(X) 26)

i=

- 1N

(F2(x, 05 1) — £%(x, 0; 0)) = g"/%(x) (9" D(x)) (1 ]jF

with
f (2.7)

f - -
bé”:(I—FoH ) (D, H™Y),

where H™! is the left-continuous inverse of H.



Using the regression functions p;: (0’ 1)
pi(u) = Pyo{d, =1 ]H(X1) =u}, ‘ _
pa(u) = 1 = py(u), 0<u <1, - (28
we define an inner product -, - > on the space L3 = L,(0, 1) x Ly(0, 1) by (for all
(ay, az), (by, by) € L3)
ay, ay), (by, b2)Do = f(l) a;byp, dA + Ié ab,p, di,
= [(a; - H)(by - H)(1 — G)dF + [(a,c H)(b, - H)(1 — F)dG. (2.9)
Finally, we assume that the r x r-matrix

I = ({60, B2, (6, BV Vg1, (2.10)

corresponding to the functions (2.7) exists and is non-singular. (Especially the
proportional hazard assumption (3.3) will imply the existence of I'.)

Under the above assumptions and notations the q.m.-differentiability (2 5) and
[8] (Theorem 79.2 and Lemma 80.11) yield the following LAN-result.

— [0, 1] according to

Theorem 2.1. Assume my/N — n€(0, 1) as N — co. Then, for any given 9 e R’,
we have the limiting law

ZL(Ty | Pys) »% (9, T) (2.11)
and the approximation

dpP

— = exp (97Ty — § 9TT9 + OPyo(1)). : (2.12)

dPNO . .

Notice, because of (2.7) we have
Ey-o(d6O(HX) + (1 = 4) O(H(X))
= [0 H)(1 = G)dF + [(b = H) (1 ~ F)dG
= [ fgD,dA — [ fgD,d2 = 0.

Remark 2.2. For any ¢ =1, ..., r let b{}), ..., B\y and b3y, ..., b}y be two sets
of scores such that the corresponding jump-functions

: N 1 '
bR (u) =i=2b§,’,3,1( ~ §u<]—l\}>, O<u<l, (2.13)

converge to by in L,(0, 1), j = 1,2. Then the assertions of Theorem 2.1 remain

true if Ty is replaced by the statistic Sy defined in formula (1.10), cf. [5] Theorem 3.3.

: |

Now we use Theorem 2.1 in order to construct an asymptotic likelihood ratio
test for testing {Pyo} versus {Pys: 9 = 0,9 =+ 0}:

According to (2.12) and the remark the likelihood ratio dPy,/d Py, is approximated

by exp (97Sy — £8'I'9). Therefore, the asymptotic likelihood ratio test is based
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on the likelihood ratio statistic LR(I', Sy) of the limiting model, i.e.
LR(I, x) = sup (29"x — 9T'9), xeR". (214)
820

It’s well-known how to evaluate the supremum LR(TI, x), cf. [4], [6], [7]: T =
= (Yp0)p.0=1,....r i positive definite then (Vx € R")

LR(T'x) = max {xXIy o))t %1 (Tyxs)) P 5, 20, 0 £ J < R}, (219)

where R = {1, ..., 1}, x; = (x; i€ J), and I';,, is the [J| x [J| — matrix (Voo )oroer*
If the dimension r is small the evaluation of (2.15) is quite easy. In Section 3 we
choose r = 3.

Another representation of LR(T, x) is given by

LR(T', x) = (max (0, sup {§"x: §7I'3 = 1}))*. (2.16)

Making use of the compactness of {3: "I'% = 1} we can prove that the function
LR(I, x) is continuous in (I', x) on the set

{(r,x)e R"™" x R": I positive definite} .

Using the continuity of LR(T, x) in x the limiting law (2.11) and Remark 2.2
imply the convergence in distribution of LR(I', Sy) under {Py,}. In the presence
of censoring these asymptotic results are of limited value, since Sy and LR(T,*)
are constructed on the basis of fixed df’s F and G. In practice, however, the actual
df’s F* and G¥*, say, are unknown. Therefore, even under the null hypothesis corre-
sponding to F* and G*, the limiting distribution of LR(I', Sy) will depend on F*
and G*. Moreover, this dependence is too complicated as to estimate the unknown
quantities of the limiting distribution by the data. Only in the case F = F*, G = G*
the limiting distribution will be quite simple, namely a mixture of y2-distributions.
cf. [4],[6], [7]-

We escape these difficulties by the conditioning device of [5]. The crucial fact
is that for arbitrary continuous df’s F* and arbitrary continuous censoring df’s G*
the rank vector R = (R, ..., Ry) and the vector 40 = 4 = (4®, ..., A™) of
censoring rv’s corresponding to the ordered observations (X, ...,X™) of
(X1, ..., Xy) are independent under the null hypothesis #,. In this situation the
distribution of R is the uniform distribution %y on the set of all permutations of
(1,...,N), shortly: R ~ %,. Likewise, the vector of antiranks

D =(Dy,...,Dy) definedby Rp =i VI<is<N

has the uniform distribution %, under #,.
Thus, rewriting the definition (1.10) of Sy = (Syy,...,S,y)T according to
Sy(D, 4¢)), where

N ' ‘ »
Sy = Sen(D, 400) = ¥ eyp (APBSY + (1 — A0V BF), (2.17)
i=1
leads to the idea of conditioning the test statistic Sy(D, 4¢’) on the observed value
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5€{0,1}" of A0, The corresponding test function may be written in the form
i >
ox(d: 3) = { Lt LR(T 5,(d9) 2 en(s.9),

otherwise ,
where d = (dy, ..., dy) is any permutation of (1,...,N) and where cy(«, §) is the
upper (1 — a)-quantile of the distribution of LR(I, Sy(D, 8)) under D ~ %y and
fixed J € {0, 1}". Then, under the null hypothesis point correspondingto Fy = F, =
= F* and censoring df G* we have

EF*,G*(pN(D’ A( )) é o .

(2.18)

In the next theorem we prove the convergence
en(, 45°) = (e, F*, G*)  in probability (2.19)

under F, = F, = F*, G*, where c(o, F*, G*) is the upper (1 — «)-quantile of the
unconditional limiting distribution of LR(I', Sy) under F; = F, = F*, G*. This
implies the asymptotic equivalence of the test sequences {@y} and {yy} where ¢y =
= 1(LR(T, Sy) 2 c(, F*, G*)). Under F, = F, = F*, G* the random vector Sy con-
verges in distribution to some normally distributed random vector S with mean zero
and covariance matrix

I = (b, bg), (b5, b2 )>s — (b5 b,7), (1, D) L(BEY, b)),

(L D)>4)gio=1r (2:20)
where {(+, *), (*, *)D« is defined in the same way as {(-, *), (+, *)), but with F, G,
and H= 1 — (1 — F)(1 — G) replaced by F*, G*, and H*, cf. formula (2.9). This
result is an immediate consequence of [5] Theorem 3.3.
If I' and I'* are non-singular the df of LR(I', S) (20) is continuous on the interval
(0, o0), since (2.15) implies

P{LR(I',S)=c} £ Y P{Si(Iyxs) 'Sy =¢c} =0 Ve>0.
g+J<R

Moreover, the df of LR(F, S) is strictly increasing:
Forany0 < a < b we get

P{LR(I', S)e(a, b)} = P{Se(LR)™" (I, (a, b))} >0,

since (LR)™* (I, (a, b)) is nonvoid and open, and since S has a nondegenerate normal
distribution.

Theorem 2.3. Let (2, o, P) be the basic probability space on which the rv’s X,
X, X; = min (X, X5;), i 2 1, are defined such that all X; are independent, and
X,.; ~ F* X,; ~ G*Vi with arbitrary continuous df’s F¥, G*.

Forg =1,...,rand N = 1let b}y and b(3) be score functions (2.13) which con-
verge in L,(0, 1) to b\ and b*), respectively. Let Fy(3, +) be the df of LR(I", Sy(D, 3))
under D ~ %y and fixed § € {0, 1}", and let F, be the df of LR(T, S).

Assume I' and I'* to be non-singular.
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Then
Ayi= sup |Fy(4y, 1) — Fo(t)] > in probability, (2.21)

—~wo<t<w
and also the convergence (2.19) holds true.

Proof. The proof closely follows the pattern of the proof of [5] Theorem 5.2.
For any 6 = (8,,...,0y)€{0,1}" and ¢ = 1, ..., r define

. i i '
ﬂ:N(z,6>=afng)(N+1)+(1-—a..>b;%¢(N—+1) . e

N
and B5(8) = 1N'Y. Bi(i, 8). Putting Biy(i) = Biy(i, 4Y)) and By = Bin(4y’) we
i=1

get in the same way as in Theorem 5.1 of [5] the convergence

12 N .
— 2. (Ban(i) = Bow) (B3w(i) — Baw) = <67, b)), (b1, b2)>s (2.23)
N i=1
in probability, ¢, ¢ = 1, ..., r. Likewise,
% IT?;(J/?:N i) — Bjy| = 0 in probability . (2.24)

In order to prove (2.21) take an arbitrary subsequence N; of N = {1, 2, ...}. Then,
according to (2.23) and (2.24), there exists a further subsequence N, = {ry, r,, ...}
of Ny with r; < r, < ... and a set M e & with P(M) = 0 such that the condition
(N) of [2] p. 195 holds true for

/lﬁ*, i, Aw)), 1<igr,v21, Vi,...,ieR,
Z er ery v = = = 1
Q=1

as long as w ¢ M. According to the Cramér-Wold device and to Problem 8 in [2]
p. 195 we get S, (D, 4)) 2 S as v — oo, if w ¢ M. Using the continuity of LR(I, *)
the continuity of F, on (0, ), and P{S € &{x: LR(I', x) = 0}} = 0 we get 4, (w) — 0
as v — oo Yo ¢ M. Since N, < N is arbitrary and since convergence in probability
is a metric convergence, the proof of (2.21) is concluded. Since convergence in
distribution implies the convergence of all quantiles, if the limiting distribution
function is strictly increasing, the above assumptions imply e, (¢, 4(w)) -

— Fg'(1 — «) as v > oo Vo ¢ M. This proves the assertion (2.19). O

Now let’s consider the conditional distribution of Sy (given the 4§’ — vector)
under the null hypothesis F; = F, = F* and G*. In the first step we evaluate the
covariance matrix I'y(6) of ZLp. g[Sy |4y = 6]:

From (2.17) and (2.22) we get '

N
SQN = Z cNi)B:N(Ri: A}V)) s 0= 15 ces P a (225)
i=1
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Therefore Theorem I1.3.1.d of [2] implies (for all § = (5,, ..., 8y) € {0, 1}¥)

Fld) = = 3 (5 0) = B (B.0) ~ ). (229

Thus I'y(4§’) does not depend on (F*, G¥), and from (2.23) we have
ry(4y) - r* in (F*, G*)-probability . (2.27)
Therefore the proof of Theorem 2.3 implies the following theorem:

Theorem 2.4. Given the assumptions and notations of Theorem 2.3 let F;;(&, ‘)
be the distribution function of the conditional distribution of LR(I'y(45’), Sx) given
4§’ = 6 under the hypothesis F* and G* and let Fg(I'*, +) be the distribution of
LR(I'*, X), where X ~ A7(0, I'*).

Then the convergences ;

sup |Fy(4\, 1) — Fo(I'*,1)| -0,

—w<t<ow (228)
sup |F3(Ty(4%), 1) — F5(I'*,1)] - 0.

—o<t<ow

hold true in (F*, G*)-probability.

As a consequence we may use Fg(I'y(8), ) as an approximation of the conditional
distribution of LR(I'y(4Y), Sy) given 4§’ = & under the null hypothesis. The
distribution Fg(I'y(8), ) is a mixture of y*-distributions, cf. [4], [6]. [7]. If the
dimension r is smaller than 4 there is a simple explicit representation, cf. Section
3.2 of [1].

3. THREE REPRESENTATIVE SCORE FUNCTIONS AND
THE CORRESPONDING LIKELIHOOD RATIO TEST

In the present section we discuss a sensible choice of the score functions (bS", b{»),
o=1,..,r see (27), ¢ =1,...,r, see (2.7), by choosing suitable generalized
shift functions D,, ¢ = 1, ..., r, as well as a suitable df F and a suitable censoring
df G. ’

From the variety of all possible generalized shifts we choose three special types
according to the following considerations:

If F is the distribution of the standard treatment and if the new treatment mainly
shows a positive reaction for values of x where F(x) is small, then we call this a lower
shift situation. If the new treatment mainly shows a positive reaction for values of x
where F(x) is near %, then we call this a central shift situation. Similarly, upper
shift situations are defined.

Assumpting F(0) = 1 we formalize these notions by the following selections
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of the shift functions D,:

D =1-F (lower shift) , ‘ ‘
D, = 4F(1 — F) (central shift), , ‘ (3.1)
Dy=F (upper shift) . k

In the sequel let b, = (b{", b{?), ¢ = 1,2, 3, be defined by formula (2.7) with D,
according to formula (3.1).

3
Notice, the cone V= { Y 9,5,: 8 = 0} spanned by by, b,, b;, contains the con-
e=1 \ ot

stant-shift optimal score function

o= ) ),

cf formula(3.13)of [5]. = : :

Because of simplicity and since the corresponding cone V contains suitable ap-
proximations of the optimal score functions for other df’s F (e.g. the normal df or the
Cauchy df) we restrict the discussion to the case of the logistic df F, i.e. we propose
the asymptotic likelihood ratio test for the cone V which corresponds to the lo-
gistic df F(x) = exp (x)/(1 + exp (x)), xe R.

In the first step let us consider the functions (2.7) with H™! substituted by F~!,
i.e. forg = 1, 2, 3 we define

by, = (—f]; OF-l) (D, F™Y) = (d, - FY),

bzg:z( f oF—1>(DQoF_1).

1-F
By elementary evaluation we get the representations (for 0 < u < 1)
bua(u) = (1 — ) (3u — 1), | |
biy(u) = 8u(l — u)(2u — 1), - G (3.2.a)
bis(u) = u(Bu — 2) = —byy(1 — u),

and
byy(u) = u(l — u), ‘ »
by, (u) = 4u*(1 — u), ; ‘ | ‘ (3.2.b)
bys(u) = u” . '

Finally, for the definition of our three representative score functions b, = (b{", b)),
¢ = 1,2,3, we need a censoring df G. In order to have some additional flexibility
we use the

proportional hazard assumption:

(1 —G)=( - F)* forsome }t>0.‘ . S (33)
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This assumption is equivalent to the assumption that the rv’s (Xj, ....
4y) are independent under F; = F, =

(Al"'

Xy) and
F and G. Obviously assumption (3.3)

andH~1—(1—F)(l—G)lmply(for0<u<1)

Fy(u):=FoH '(u)=1-(1—uf,
= (bV, b?), @ = 1, 2, 3, according to (2.7) are evaluated as
B® = by, F,.

and the b
bV =b,oF,,

Choosing approximate scores

B, = b0 (), i
N T AN + 1

with p = 1/(1 + 4),
(3.4)
1,..,N,

j=1,2, Q=]9253s

we get Sy = (Sin» San» S3y)" with (Vo = 1,2, 3)

N
_ IRe l
Sov = o (4 (55

The corresponding 3 x 3-matrix I'

-(3.5)

1) + (1 —-A(“)b§>(375?1)).

= (¢b;, b;>6) =:(y;;) has the following explicit -

evaluation:
4 1
) = S+ 4+ 342
384 352 128 16
722(4) = + - + -
7+; T 6+ 542 444 344
8 4
A%A) 5+; T4+ 342
(3.6)
) = — 24 “4 o, 4
12 6+ A 5+)L 44+ 344
’ 4 6 2
A )L _ + _
15(%) 544 442 344
yaall) = 56 40 8
23 6+l 542 442 342

The determinant of I' = I'(4) is strictly positive for all A > 0 which can be seen
by drawing the graph of the function A — det I'(1). An exact proof seems to be very
tedious.

Under the assumption (3.3) the regression function py, see (2.8), equals the constant
p.ie, p; = p=1/(1 + A). Since

is a consistent estimator of p, we replace the parameter p in the definition (3.4)
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of the score functions by 4y. Similarly we replace 1 = (1 — p)/p in (3.6) by iy =
= (1 = 4,)/2y.

Now we prove that the assertions of Theorem 2.3 and Theorem 2.4 remain true,
if we substitute the original score functions (3.4) by the score functions b1e
and b,, - Fz,.

According to the proofs of Theorem 2.3 and Theorem 2.4 it’s sufﬁ01ent to prove
(2.23) and (2.24) for the modified quantities B}y(i, 45’ (w)), and to use the joint
continuity of the function of (I', x) — LR(T, x).

According to the special form of the b7’ in (3.4) we get (2.23) if we can prove

i kp i kAN @ .
Z <( N+ 1) - (1 - N+ 1) )AN — 0 in probab. (3.7)

forallk > 0,and p= [(1 — G)dH, > 0.

Since |(1 — u)**" — (1 — u)*?| < k|(1 — )’ In(1 — u)| |p’ — p| with pe(p'p)
and 0 < u < 1, the L.H.S. in (3.7) is of the order 05(|4y — p| 4y) = 0p(1), hence
(3.7) is proved.

Finally (2.24) holds true since all the b%"s in (3.4) are bounded.

Remark 3.3. In case of right censoring more often a scale model with positive
observations is used instead of the translation model of Section 1, i.e. it’s assumed
that X;; 2 0,j = 1,2, i = 1,..., N with F(0) = G(0) = 0 and that X ; has the df
F(x exp(——c,\,,é}T D(x))). In thlS case F, < F, is equivalent to 8"D = 0. But, by
switching over to the transformed rv’s log X;; the model becomes a translation
model of the form of Section 1 with F(x) replaced by F(e*) and D(x) replaced by
D(e*). Since the hypothesis of randomness and the stochastically larger alternative
remain invariant under the log-transformation, we may use the above test also for
the scale model with positive observations.

4. APPLICATION AND MONTE CARLO SIMULATION

In this section we discuss the applicability of the proposed likelihood ratio rank
test. Especially we discuss the approximation of the conditional distribution of
LR(I'y(4%), Sy) given 4§ =6 under the null hypothesis by Fg(I'y(6), *), cf.
Theorem 2.4.

The practical application of the approxnnate likelihood ratio rank test (LRRT)
is rather simple:

We use the statistic LR(I'y(4%’), Sy), where Sy = (Siy» Sax> S3x)T and I'y(8) are
defined in (3.5) and (2.26), respectively, on the basis of the score functions by, o Fg,
and by,o Fz,, 0 = 1,2,3, cf. formulae (3.2) to (3.4). The numerical evaluation
of the statistic is quite simple, cf. (2.15), since R = {1, 2, 3}.

Additionally, if I' is any positive definite 3 x 3-matrix then we have, cf. Section
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3.2 of [1], \ o )
1= P 0) = ZwP(g > 15 Vi>0, | | B«

with R I _
w, = (arccos (sz) + arccos (Q’f3) + arccos (gfs))/ (4“) ’

w, = (arccos (012) + arccos (013) + arccos (st))/ (4“) ’ .(4'2)
wy =4+ —wy,

where (0;;); ;=1,2,3 is the correlation matrix corresponding to I and where (03;);,j=1.2.3
is the correlation matrix corresponding to I'™1.

Therefore, if we observe t, = LR(I'y(4), Sy), it’s easy to evaluate the approximate
conditional p-value 1 — Fg(I'y(4%), to) of the likelihood ratio rank statistic from
(4.1) and (4.2).

We checked this approximation by Monte Carlo simulation in the following way:

Under the null hypothesis F; = F, = F and the proportional hazard assumption
1 — G = (1 — F)\'~P? for the censoring df G the distribution of the random vector
(Ryy oy Ry, 457, ..., AY) does not depend on F. With F = F, according to the
uniform distribution on (0, 1) and 3000 Monte Carlo repetitions we have listed the
percentages of the events that the above approximate conditional p-value of the LRRT
is smaller than 0-01, 0-05, 0-10, respectively. This has been done for p = 0-:2to p = 09
and some (ny, n,) between (10, 10) and (50, 50). Notice, the value of p is not known
in the LRRT-procedure but estimated by Ay. (Under the proportional hazard
assumption 1 — p is the probability of censoring under the null hypothesis, i.e.
b= Po{A1 = 1})

Additionally we have checked the approximation under the null hypothesis
F, = F, = F, with (non-proportional hazard) censoring df G according to
[A] G(x) = x 1{0 < x £ 0:25) + (025)1(025 < x £ 1)

+ (x = 075)1(1 < x < 175) + (175 < x),
[B] G(x) = (x — 025) 1(0-25 < x < 0-75) + (0-5) 1(0-75 < x £ 1) (4.3)
+(x—05 1l <x <15+ (15 < x),
[C] G(x)=(2x - 1105 <x<1)+ 11 <x).
The three LRRT-columns of Table 1 show that the approximation works well
with some conservative tendency. Only for small sample sizes and very small p
(80% censoring) the aproximation seems to be too conservative.

For comparison we show the corresponding simulation for the linear rank statistic
Sin + Ssy with S;y and S,y as defined in (3.5) but with p substituted by Ay. Here
the conditional null distribution is approximated by a 47(0, 63)-distribution, where
&% is the conditional variance of Sy + Sy given 4y, cf. formulae (2.25) and (2.26).

This statistic can be viewed as the correct adaptation of the usual Wilcoxon
statistic to random censoring (Cens. Wilcoxon), cf. [5].
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Table 1. Monte Carlo simulation under the null hypothesis F; = F, = F with proportional
hazard assumption 1 — G = (1 — F)1 ~P)/P for different values of p, and also under different
types of non-proportional hazard assumptions. The Monte Carlo sample size is 3000.

LRRT Cens. Wilcoxon Wilcoxon
(ny, ny) Cens Df
1% 5% 10% 1% 5% 10% 1% 5% 10%
(10, 10) p =09 0-5 4-8 9-9 0-8 51 103 1-0 52 108
p =08 0-5 4-6 99 0-7 51  10-3 1-1 56 104
p = 07 05 47 101 0-7 5.1 105 11 54 112
p =06 05 48 109 06 55 105 1-1 59 112
p =05 06 47 9-8 07 53 105 0-9 56 110
p =04 07 44 9-9 0-7 49 103 0-8 56 110
p =02 01 3-8 9-7 03 49 110 08 52 117
G = [A] 03 46 108 -0 51 105 08 49 107
G = [B] 0-8 44 9-7 10 48 9-4 06 47 101
G = [C] 0-7 55 107 12 55 10-8 1-3 62 119
(10, 30) p =09 08 49 105 09 51 100 08 48 102
p =048 0-8 49 101 08 47 104 1-0 49 100
p =07 0-8 47 9-9 08 47 101 0-9 51 102
p =06 06 46 9:6 08 49 103 1-1 54 104
p =05 07 50 101 0-8 54 108 1-5 54 102
p = 04 0-6 42 100 08 53 112 1-4 53 10-3
p =02 02 26 7-7 02 42 9:8 1-2 54 10-5
G = [A] 0-6 4-2 92 0-6 50 101 1-2 45 95
G = [B] 0-5 42 91 07 41 9-5 0-8 46 89
G = [C] 0-8 52 106 0-8 51 11-1 0-8 4-6 100
(30, 10) p =09 1-3 5-0 9-8 1-0 55 101 1-1 52 106
p =08 1-1 51 104 1-1 55 107 09 52 105
p =07 1-2 51  10-1 1-0 56 102 1-0 56 10-3
p =046 1-2 54 106 11 58 11-0 09 51 103
p =05 1-2 56 10-8 12 56 10-8 1-1 4-9 9-6
p =04 1-3 59 10-5 1-2 58 10-5 1-0 50 9-8
p =02 1-4 64 110 1-5 58 10-3 0-8 51 9-8
G = [A] 09 49 101 0-9 50 107 1-1 4-5 85
G = [B] -0 49 105 0-9 49 103 08 48 9-7
G = [C] 1-3 56 99 1-3 52 109 1-2 56 10-1
(30, 30) p =09 1-0 49 108 1-3 53 107 1-3 58 110
p =08 1-0 4.8 106 13 53 103 1-0 57 106
p =07 0-8 51 105 1-1 53 111 1-1 54 104
p =06 1-1 51 110 1-2 56 10-8 1-0 53 109
p =05 09 49 107 1-1 54 11-1 1-0 50 10-6
p =04 08 48 108 0-7 54 113 1-0 50 100
p =02 0-8 53  10-3 09 51 110 1-2 54 108
G = [A] 07 46 100 0-8 49 9-7 08 47 105
G = [B] 07 49 102 0-8 48 101 07 47 99
G = [C] 0-9 4-8 9-6 1:0 49 9-8 0-9 4-5 9-4
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Table 1. (Continuation)

LRRT Cens. Wilcoxon Wilcoxon
(ny, n;)  Cens Df
19, 5% 10% 1% 5% 10% 1% 5% 10%
(30, 50) p =09 07 4-8 10-4 1-0 52 106 0-8 4-8 10-0
p =038 0-7 4-8 10-1 0-8 51 10-4 0-5 4-7 9-7
p = 07 1-0 5-1 10-3 0-8 52 102 0-6 42 99
p = 06 0-9 52 100 0-8 50 101 05 4-6 9-7
p =05 07 52 100 07 45 9-8 04 44 9-8
p = 04 05 49 95 06 45 9-8 05 43 06
p =02 07 4-0 9-6 09 4.6 10-1 07 4.0 9-6
G = [A] 11 4-9 10-3 1-1 54 102 1-1 52 100
G . . 10-3 09 49 104 08 51 104
G 10-8 0-8 54 10-2 08 51 10:6
(50, 30) p = 11-2 0-7 53 10-6 0-8 4-8 10-2
D 11-0 0-7 52 102 0-6 4.9 99
p 10-8 07 50 105 08 47 98
D 10-3 08 51 102 08 46 100
p 10-3 1-2 55 10-0 0-8 4-8 9-8
D 9-9 1-0 5-4 106 1-3 5-0 97
)4 11-6 11 56 105 10 47 9-7
G 10-2 10 51 104 09 50 10-5
G 9-8 1-0 49 97 1-1 4-8 9:6
G 9-3 0-8 4-5 9-1 0-9 4-6 9-5
(50,50) p 103 07 44 93 06 42 92
D 9-7 07 4-7 9-5 0-8 4-5 9-5
4 93 08 46 9:9 07 44 97
p 9-0 0-8 5-0 9-3 0-8 4-6 9-6
p 10-8 09 53 10-1 0-8 51 95
p 9-7 0-8 4-8 9-8 0-9 4-8 10-1
p 9-7 1-2 4-6 9-5 0-6 4-8 10-3
G 99 05 44 100 07 43 96
G 10-4 1-1 53 10-1 1-3 51 10-1
G 10-6 1-2 57 10-1 1-1 54 100

Finally we report the simulation results for the usual Wilcoxon test based on the
ranks Ry, ..., Ry of X, ..., Xy only. Here we used the well-known (unconditional)

normal approximation (Wilcoxon).

In Table 2 and Table 3 we report the results of Monte Carlo power simulations
of the three approximate tests of Table 1. The results are given in the percent scale.
In Table 2 we considered generalized shift alternatives of the form

L(X,;) ~ F(x — cyis D(x))

with logistic df F and D,, ¢ = 1, 2, 3, according to (3.1) [ D, = 1] under the propor-
tional hazard assumption 1 — G = (1 ~ F)*~»/?_ Additionally we considered the
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Table 3. Monte Carlo power simulation (in percent scale) at the approximate 1%, 5%, and
10%; levels under the different types of non-proportional hazard assumptions (4.3) and Z(Xy; )=
= LU + 500.,,U%1 — U)*), L(U) is the uniform distribution on (0, 1). The Monte Carlo
sample size is 3000.

LRRT Cens. Wilcoxon Wilcoxon

(ny, ny)  Cens Df
1% 5% 109 1% 5% 10% 1% 5% 109

(10, 10) G = [A] 283 645 783 328 646 783 232 519 686
G = [B] 324 643 781 366 677 792 308 619 760

G = [(C] 343 646 787 399 684 809 353 641 781

(10, 30) G = [A] 464 719 825 321 568 687 18-4 405 518
i G = [B] 445 718 823 345 623 752 253 517 647
G = [C] 489 752 849 432 698 809 314 582 711

(30, 10) G = [A] 647 842 906 571 785 861 416 672 776
G = [B] 612 820 892 556 788 871 52:0 771 856

G = [C] 590 814 838 485 737 840 537 784 863

(30, 30) G = [A] 475 741 84-3 3009 587 722 187 422 575
G = [B] 630 849 917 549 791 869 430 716 821

G = [C] 640 861 929 567 822 904 495 764 859

(30, 50) G = [A] 464 7009 820 289 550 683 186 413 554
G = [B] 653 80 926 525 778 870 406 669 788
G = [C] 697 891 947 603 827 910 502 749 842

(50, 30) G = [A] 59-1 823 897 389 655 781 22:7 5144 658
G = [B] 707 889 945 627 838 914 536 781 867
G = [C] 651 87 930 566 810 896 549 790 883
(50, 50) G = [A] 498 750 845 307 573 705 201 43-8 572
G = [B] 747 909 949 613 839 914 491 753 858
G = [C] 74-1 9t+4 956 635 852 915 562 7999 889

corresponding generalized Cauchy shift (F = Cauchy df) with D, = 16F*(1 — F)>.
In Table 3 we considered generalized shift alternatives of the form

(X)) = L(U + 500cy, U1 — U)*),

where #(U) is the uniform distribution on (0,1). The (non-proportional hazard)
censoring dfs G have been selected according to formula (4.3).

For small sample sizes the Cens. Wilcoxon seems to be a good choice, whereas
for sample sizes (ny, n,) = (30, 30) and higher the LRRT seems to be comparable -
to the Cens. Wilcoxon for the generalized logistic shift alternatives and substantially
better than the Cens. Wilcoxon in the Cauchy situation and in the model situation
of Table 3. Therefore we propose the LRRT for sample sizes n; = 30 and n, = 30.
Obviously the usual Wilcoxon (based on the ranks R, ..., Ry only) is a bad choice.

(Received December 8, 1989.)
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