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KYBERNETIKA — VOLUME 20 (1984), NUMBER 2

HANKEL-MATRIX APPROACH
TO INVERTIBILITY OF LINEAR MULTIVARIABLE
SYSTEMS

K. B. DATTA

The transfer-function matrix R(s) of a linear multivariable system can be represented by the
matrix fraction description R(s)=P(s)Q~ (s)= O~1(5)B(s) or by R(s)=P(s)/q(s) where g(s) is the com-
mon denominator of all entries in R(s). Based on either of these descriptions, new criteria of
k-integral invertibility of linear multivariable systems are derived which are expressed as a rank
condition of matrices formed by the parameters in the numerator matrix P(s) (or P(s) or P(s))
and denominator matrix Q(s) (or Q(s) or the denominator polynomial ¢(s)). A new method
based on the Hankel-matrix is used to construct the inverse, to parametrize the set of all minimal
order inverses and to identify the stable minimal inverse if one such exists.

1. INTRODUCTION

In the last three decades the invertibility of linear systems has been extensively
studied with a view to applications in diversified fields of control systems such as
coding and decoding problems, filtering and prediction theory, decoupling and
synthesis of linear systems, and so on and so forth. Current interest in investigating
the fundamental questions of the existence, properties and construction of inverse
systems was initiated by Brockett and Mesarovi¢ [4] by introducing the concept
of functional reproducibility which is a characteristic of right invertible systems.
Subsequently Brockett [3] took the help of what is known as left inverse system
to offer a state-space interpretation of system zeros. In the following years the in-
vertibility of linear multivariable systems drew the attention of a large number of
research workers who were apparently divided principally into three classes. One
class of workers (Sain and Massey [15], [18] Dorato [7]) were led by Sain and
Massey who brought in the concept of k-integral or k-delay inverse and stated the
invertibility criteria as a rank condition of a matrix of Toeplitz type formed by the
system’s Markov parameters although state-variable description plays an important
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role in their construction of inverse system. Silverman pioneered the second class
by presenting his “structure algorithm™ ([19], [20]) which could be acclaimed
as an important tool for studying the diversified aspects of multivariable systems.
An interesting feature of this “‘structure algorithm™ is that it can be applied to the
construction of an inverse of time-invariant as well as time-varying multivariable
systems starting from their state-variable descriptions. In the third approach (Forney
[10]. Hautus [12], Borukhov [2], Wyman and Sain [24]) the system is described by
a transfer-function matrix in which the elements are looked upon as elements over
a PID R[[s™']], Ris the ficld of real numbers or over a PID Q where Q is a ratio
of polynomials in R[s] and invertibility criteria are stated in terms of what is called
invariant factors or #-MacMillan form of the transfer-function matrix. Or a theory
of inverse system can be laid down with the concept of zero module and pole module.

There are a number of works devoted primarily to the study of stable inversion
(Antsaklis [ 1] and Moylan [16]) or to the study of inverse system of minimal order
(Kuéera [14], Wang and Davison [22], Forney [11] and Yuan [25]). Sain-Massey
criterion of invertibility was improved by tightening the bounds on inherent integra-
tions or delays in (Willsky [23]) and additional criteria of invertibility were given
in (Wang and Davison [22]).

In deriving the invertibility criteria in all above cases one has to start with the state-
space dzscription (A, B, C, D) of the system or with the manipulation of the elements
in transfer-function matrix R(s) which is considered as having elements over the field
R(s) of fractions of the ring R[s] of polynomials with coefficients from the real-
number field R. By expressing R(s) as P(s)/q(s) where g(s) is common denominator
of all the elements in R(s), Orner [17], however, related in a straight-forward fashion
the Sain-Massefy invertibility criterion given in terms of Markov parameters. to a
similar criterion expressed in terms of coefficient matrices P;’s in the polynomial
matrix P(s). With the same system description P(s)/q(s) Emre and Hiiseyin [9] '
gave invertibility criteria in terms of P;’s but different from the above.

From a careful scrutiny of the foregoing references it scems justified to set up
a procedure for the study of k-integral invertibility of linear multivariable systems
when they are expressed as a (right or left) matrix fraction description in the form
R(s) = P(s) @7 (s) = G *(s) P(s). The purpose of this paper is, therefore, to esta-
blish an invertibility theory based on the matrix fraction description by deriving
a new invertibility criterion and a constructive procedure for an inverse system,
and making an effort to answer such questions as how to obtain an inverse of minimal
order and how to achieve a stable inverse. It is a consequence of the proposed theore-
tical approach to generate a sufficient number of Markov paramesters associated
with the inverse system from which its state-space realization is determined in a bid
to construct the inverse by applying the existing realization theories. The above inver-
tibility criterion and constructive procedure can be spzcialized to the case when the
transfer-function matrix is expressed as R(s) = P(s)[q(s) from which follows Orner’s
criterion. One can apply the invertibility results established in this paper to discrete-
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time system as well although the underlying system with the help of which the fore-
going results will be established is a continuous time system.

After a preliminary description in Section 2 of the multivariable system and its
inverse with which we shall mainly concern ourselves in this paper, we present
the main results in Section 3. The construction of an inverse possibly of a minimal
order is described in Section 4.

2. SYSTEM DESCRIPTION

Let a linear time-invariant multivariable system & be described by:
(2.1a) & x(t) = Ax(x) + Bu(t),
(2.1b) ¥r) = Cx(1) + Du(7),

where u(t) e R” is the input, x(r) € B” is the state, y(t) € R" is the output, A. B, C
and D are real constant matrices of compatible dimensions. The transfer function
matrix R(s) of the system & is a rational function matrix of order r x m given by

(2.2) R(s) = C(sI — A)"*B + D,
which as well can be written as
(2.3) &F: R(s) = P(s)Q7'(s),

where P(s) = [pi)(s)] is a polynomial matrix of order » x m expressed as:
(2.9 P(s)=Pos' + P;s'"™ P + ...+ P,

Pls(i=0,1,..., [ybeing r x m real constant matrices, Py # 0, = mdx [deg pi(s)]
and Q(s)is a matrlx of order m expressed as

(2:5) O(s) =0, + Qp_ys" ' + oo+ Qs + Qo

Q7s (i =0,1,...,n) being m x m matrices and [ £ n. At the beginning we shall
study the invertibility of & by assuming that @, is nonsingular.

Now R(s), a causal transfer function matrix, is defined to be a k-integral (left)
inverse of the system & if

(2.6) R(s) R(s) = s741,,,
which means that R(s) has rank m over the field of rational functions in 5. The mini-
mum value of k for which (2.6) is satisfied is called the inherent integrations of the

invertible system and is denoted by k,. The inverse R(s) is expressed as a series
1

ins™!as
2.7 R(s) =Ry + Rys™* + Rys™% + ...,

where R;’s (i = 0,1,2,...) are m x r real constant matrices. We now insert (2.3) to
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(2.5) and (2.7) into (2.6) to get:

(28)

RoPo + (RoP;y + RyPo)s™* + (RoP; + RyPy + RyPo)s™% + ...

=(0n+ QuoyS™ o+ Qs e Qs S"TERD

and observing that k
i=0,1,2,...where i

I v

n — I, equating coefficients of various powers of s ! for
k + I — non both sides of the above equation (2.8) we have

(29)
Ry R, N ST S 770 7 =10
Pl n+i+t=1
Ry R, - Royira-t R 0 | rows 0
: : : : Pofl+1 :
R, i1 Rytivz c Rasien-t -+ Ragwisny ||} rows 0
: : ) : e Py :
Rr—mv‘-H-l) Rt—(u+x') s Rr—l . Rt 0
and
(2'10) XA; = Qja
where
(2.11) X;=(Ro Ry ... R},
(2.12) T, =|Py Py ... P, |, j=0,1,..,1;
Py ... Pjy
P,
(2.13) A;=T;, j£1;
(2.14) A; =[Py P, P, ... P, , Ji> 1
Py Py ... Py Py
"Py Py ...P, O
Py ... Py Py
P,

Q; is a matrix of order 1 x (j + 1) having (m x m) submatrices as elements and is
given by

(2.15) (0,...,0), 0Zj<i;
(2.16) ©,...0,0), j=i,
i Oih col. ith column
(2.17) l((g,...,o, é Outroon Opegui)s G5 i
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(2.18) 0;=0, j>n and j>0.

Note that columns are counted as 0, 1, ..., j.

2.19. Remark. In view of (2.8 it is interesting to observe that the number of inhe-
rent integrations k, is lower bounded by n — I, a new insight offered by transfer-
function approach.

2.20. Example. Let us consider the transfer function

i s+1 s+2
R(s)= 5 s2+s5+3 2
554+ 35+ 2 3s 0

which when put in the form (2.3) gives us

11 12
Po=|10|, Py=[12], P,=130), Q=1I,, Q=3
00 30 00| and Q,=2I,.

It is obvious that here n = 2, [ = 2 and i = 0if k is chosen to be zero. Then

0,=[0: 0], j=1>i=0

and

sz[Qz Q4 QOOO], j=4>i=0;

and the set (2.10) is inconsistent because
. A
2.21 A; and |
220 s ma [g]
have not the same rank. Choosing k = 1 when also i = | we have
Qj=[0Q2QlQOO]7j=4>i=1
and the matrices in (2.21) have the same rank. Consequently (2.10) is now a consistent

set of equations and when solved gives R,’s which describe the inverse R(s) of R(s).

2.22. Remark, We claim that for a consistent system of linear equations descri-
bed by (2.10) for a suitable choice of i the sequence of m X r matrices {Ry R, ... R,}
in (2.9) is realizable for some finite value of ¢ (cf. [13], Problem 2) if # x m matrix
P(s) is full column rank. To justify our claim we write (2.10) in an expanded form as
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2

(2.23) [RoRy ... R][Po Py ... P, 1
Py ... Py P,
Py Py...P, 0O
Py ... Py P,
P,

2
=[0...00,0,-4 ... QoiO ... 0]

le——n + i + 1 cols.——|

If rank Py = g, < m, there exist a nonsingular matrix S, such that
Pao=PoSo=[pooE0]
where Py, has g, columns and rank g, and
Pio=P;Se =[P P}, j=12,..,1;

and

Oro = QuSo = [QAO Qko], k=0,1,...,n.

We now add the last m — g, columns in any block column to the last m — g4
columns in the block immediately preceding it in an order starting from the second
column block both in & and 2 matrices. Then starting from the first column block
we substract last m — g, columns in any column block from the last m — g, columns
in the next column block again in an order both in 2 and 2 matrix after which we get
the elements in these matrices as

[ijA ﬁj+1,o] 5 ] =0,1,..,1 -1, and [F,D 0]

and the last m — g, columns in last column block in & are zero. If i = 0 the
(n + i + 2)nd column block in 2 matrix is nonzero, otherwise it is zero, after one
step of these two sequences of operations. Now if

rank [Poo Pro] =g, <m
we can find a constant nonsingular matrix S, such that

Py = [Fooﬁw]sl = [pm()],

where Py, has g, columns and rank g,. The above step is then repeated till at the

end of o steps we have
rank [Po o1 Pray] =g, = m

where
aéé:‘]’aﬂk PO P, ... Pl—-l
Py ... P,
. }Jo



This result follows with a trivial modification of the method given in [8].
After these o steps, the set of equations (2.23) becomes

(2.24) [RoR; .- Rg_ | Ryoisy - Ry] =

B+1 j—a—p
NNy ... Ny

O

1 1

Ny ...N_, N,

Ny ;
= ‘J:Vo. 1:\1l 7\/, %0 =
No BT J.Vl_, i N,}
S .
Ne D,
‘NO.I :

|
|
|
i
1
! .l

| No.

= MM ...M...NllO...OE...O
o My ! I
e e

j—a—f  acolumns
where
B=n+i if aZi,
and
B=n+a if a>i,

No =[Po4-1> P1a—1] has full rank m, Np's (@a=0,..,L,b=1,...a) have
some zero columns and Ny, ... Ng, have rank less than m.

Choosing j > (a + ) the set of (j — 2 — ﬂ) number of equations in the middle
of (2.24) as shown can be written as

(2.25) R, ... Ry {Rg_1s1 -+ Ryt T JO T=707 ‘
| M :
1 . .
Ry oo Ry_iey [Ryoie2 Ry [0 0
‘ S
: : [ : N, :
: : H : : 0
LRy .-y Rj—-a—l—liRj—zz—I Rj_, Not
ﬂj—a—ﬂﬁ’rl

which shows as N,y has full column rank that the last block column of the Hankel
matrix #;_,_p g4+, in (2.25) can be expressed as a linear combination of the remain-
ing columns for all values of j > (« + f). This implies that rank #;_,_,, =
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=rank ®;_,_; 454 If we choose j to be the least positive integer such that
(2.26) mj —a— p) 2 Pr

then obviously
rank Z;_, gy p=T1ank R;_, 4,

These two rank conditions would imply (cf. [13]) that {Ry, R,, ..., R;} where
t< (j — «) is a realizable sequence for the choice of j given by (226).

3. CRITERIA OF INVERTIBILITY

With the above introduction we now present our first Theorem which is concerned
with a criterion of k-integral invertibility of the system &.

3.1. Theorem, The linear time-invariant multivariable system (LTIMS) & when
Q, in (2.5) is nonsingular has a k-integral (left) inverse if and only if for some non-
negative integer k < [

(3.2) rank (T) — rank (Tz—y) = m, (K =0,1,...,1)
rank (T_;):=0.

Proof. To prove the claim we note that the inverse of the polynomial matrix Q(s)
represented by (2.5) when @, is nonsingular can be expressed in the form

(33) L(s) = Los™ + Lys™ ! + Lys ™2 + ...
where L is nonsingular and we redefine P(s) in (2.4) to write
(3.4) P(s) = Pos" + P;s"* + ...+ P,_ys + P,,

where some higher degree coefficient matrices may be zero. It now follows from (2.2)
and (2.3) after substituting (3.3) and (3.4) into (2.3) that

PoPy ... P, |[LoLi ... L, |=[DCB..cCAI"'B]=:My,j<n
Py ... B, Lo ... L, D ...CA"B
Py I, "D

whence, since L, is nonsingular, it is evident that
rank (T;) = rank (Mp)}, j<n,

where T; is a matrix of the form (2.12) where P;’s are now replaced by P;’s given
in (3.4). Moreover rank T; = rank Tj,,_;,j = 0,1,..., . By interchanging rows
and columns one can derive from M, the matrix M as defined in [18], from which
follows the condition given in (3.2).
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3.5. Remark. The least integer ki, of k satisfying (3.2) is the minimum value of ;
for which (2.10) has a solution. Therefore from (2.8) the inherent integrations kq
of the invertible system are ko = ky, + n — [ £ n. Moreover rank (4g) —
—rank (4g—;) = m for all k = ki, Which shows that if a k,-integral inverse exists so
does an inverse with integrations k > ko. The finite sequence {R,, Ry, ..., R},
t < (j — «) obtained as a solution of {2.10) determines the state-space description
{4, B, C, D = R,} while for v > t, we set R, := CA"™'B which specifies (2.7) com-
pletely with the above state-space description.

3.6. Remark. By making Q(s) column proper in (2.3) and then augmenting the
column degrees of P(s) and Q(s) appropriately, 0, in (2.5) can always be made
nonsingular. Alternatively to achieve a nonsingular Q, we can write (2.3) in the form
R(s) = P(s) g7(s) where g(s) = s" + g,—18" " + ... + qo. Setting O(s) = q(s) I,
it is obvious that Q, = I,, is nonsingular.

From the proof of Theorem (3.1) it follows easily
3.7. Theorem. The LTIMS & with Q, nonsingular has a k-integral (left) inverse
iff for some nonnegative integer K < n
(3.8) rank (Tp) — rank (Tz—y) =m, k< n;
rank (T_,) = 0,
and the minimum value of k satisfying (3.8) gives inherent integrations of the inverse

system.

The invertibility criterion contained in Theorem 3.7 when specialized to R(s) =
= P(s) ¢~ *(s) gives Orner [17] criterion. Now in (2.5) if Q, happens to be singular
then we have the following theorem which can be easily verified.

3.9. Theorem. The LTIMS when @, in(2.5) is not necessarily nonsingular and has a
k-integral (left) inverse iff for some nonnegative integer kK < I

(3.10) rank [g" * j = rank (4,.x)
"+

and the number of inherent integrations is K,;, + n — | where K, is the minimum
value of k satisfying (3.10).

Let the transfer-function matrix R(s) of the given system & be expressed by the
(left) matrix fraction representation

G.11) Z: R(s) = 071(s) B(s)

where
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and 0 is nonsingular and let R(s) be the k-integral (right) inverse of & defined by

R(s) R(s) = s7",

re

This implies that R"(s) must have a k-integral (left) inverse where R(s) is given by
(3.11). This introduction leads, in a manner similar to the derivation of Theorem 3.1,
to the following:

3.12. Theorem. The LTIMS & when (, is nonsingular has a k-integral (right)
inverse iff for some nonnegative integer k < 1

(3.13) rank (T;) — rank (T—,) = 7,
rank (T_,) =0,
where )
T, =[5 N
P, P,
B, P,_, ... B,

and the number of inherent integrations is Ky + # — T where K, is the minimum
value of k satisfying (3.13).

The assumption that §; is nonsingular in the toregoing discussion is not too strin-
gent. In fact Q(s) can always be made row proper and then appropriately augmeating
the row degrees of J(s) and P(s) we can choose 0, invertible. In case §; is singular
we can put forward a theorem for (right) invertibility similar to Theorem 3.9.

4. CONSTRUCTION OF INVERSES

The inverse of the given system is described by (2.7) where the Markov paranmeters
Rg, Ry, ... are obtained as a solution of (2.10). As noted in Remark 3.10 at most
j — o number of R;’s are needed to realize the state-space description of the inverse
system. The realization algorithms given in [5], [6] are well suited for this purpose.
Moreover the state-space description of the inverse system by employing these
algorithms are given in multivariable companion forms. If the solution matrices
R;’s of (2.10) contain arbitrary parameters then these parameters can possibly be
adjusted to give a Hankel matrix formed by these R;’s which is of minimum rank.
The state-space realization corresponding to this Hankel matrix of minimum rank
is the state-variable description of the inverse system having minimal order. These
concepts will be illustrated by the following Example taken from [17] before finally
formulating the theory of a minimal order inverse system.
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4.1. Example. Let

1 [s+1 s+2
Rs) = = ’
) 2435 +2] s+3 242
s> +3s 0

which when considered to be in the form (2.3) gives us

(4.2) pP,=[00], Pp,=[11], P,=[12],
01 12 30
10 130 00

(4-3) 0, =1,, Q,=3I,, Qy=2I,.

Applying Theorem 3.1 we note that the system is invertible. Also we have n = 2

=2 knn=0,ky= Ky +n— [ =0and that a maximum number of j — « = 5.
R;’s are to be computed for realizing the state space description of the inverse system.

‘We denote R; by
R, = r"“ V‘;z T’is >
21 T2z a3
and then solve (2.10) successively with P;’s and Q;’s given by (4.2) and (4.3) to get
Ry =[rl, 01
9,10
and

“9 [hx]

= [ri =195 - 7?1 i —rin 2 - + 3]
rh, —r9 + 1, -y — 1 ;"%1, —r3 =L =1y + 39,
ri, —ri 2 —riy + 39, i i, —Ti, — T+ 3 — 69, —6
ZTHE TR —1 =73 + 38 |73y, —13, 73y + 3k — 6%,

where the parameters 15, r3y, 711, €tc. are arbitrary and can be assigned any value
whatsoever to make the rank of (4.4) a minimum. By elementary column transforma-
tions (4.4) is found to be equivalent to

1 (] 2
(4‘43) Fits —Tyi1s 0 iru 0 2
1 0 L2
Tap, ~72y + 1, =2 1121 0 —
B I il
i1, —Fins 24 3r |11 0 =2
2 1 0 3
Fas — T2, —1 4333, 0 =2
in which we select r3; = 1 and all other unassigned parameters equal to zero for

a minimum rank of (4.4). This is an obvious choice, although there are other choices
for the rank of (4.4) to be a minimum, one of which we shall see later. With the
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above choice of arbitrary parameters in Ro, Ry, R;, R3, we now solve (2.10) for R,
an R; assigning zero values to arbitrary parameters to get (see [6])

Ry 00 0

Ry R, 00— 2

Ry R, Ry | T= 00 000 2
R, Ry Ry P 00-200 2
Ry Ry Rs 00 000 200—6

loo—-600 1800 —54l

1l L
100000}000]< B }00 Ojc
10000000« {00 2|2

1000100/ 00 0100 2|
100600 00—2{00—4|%
10l000 =100 000 2 00 o

1 10083 00—-200 2 00 0
i100 00 200—6 00 O©

‘010 00 200-6 00 O

1 00T 00-—-600 18 00 O

T loo—600 18 00 o]

Fig. 1. Computation of state-space realization of the inverse system. Arrows indicate the
rows and columns which are of no consequence in constructing state-space realization
because dy = 0, dy = 0.

Following the algorithm and the notation given in [6] we find that controllability
indices are d; = 0, d, = 0 and d; = 2 and the inverse system is of minimal dimen-
sion 2 represented by

A=J0 17, B=[000], C=[ 2 0], D=Ry=[001
0 -3 001 —4 -2 110

If, however, we assign values different from above to the arbitrary parameters
in the solution matrices R/s, e.g.,

Ro=[-%301], R, =[33% %], Ry=[-% -3 -3
110 40 -2 -3 —% %

% %]

3

i who

we have Fig. 2

118



R T 3 3 %
(4.4b) Ry R, |T= £ 0 -2
Ry Ry 3 % %*é—%~%
$ 0-2-5-4 3
2 2 2 2 2
F-3-3 3 3 3
1-5-% % 4 % 3
!
-1 5] 21 07
1-251-10 0 |4,
1 00 0 |«
L1015
! 1254,
1
| | 1
T
|
= 1 2
= 1333
___________ |300]
3 001000
4401000
L—g 005000
-3 40000

Fig. 2. Computation of an alternative realization for the inverse system.

where d; = 1, d, = 1, d; = 0 (see [6] for notation). Observing that

A7' =10 ~15
01 25
00 1

it now follows from Fig. 2 that state-space description of the inverse of minimal

order is
A=[-2{-17, B=[10 —-15}, C=[%%
ERE) 00 25 40
D=Ry=[-3%01
110

which has all the poles on the left half of the s-plane.
We shall now try to theorise the ideas contained in the above example as how
to construct an inverse of a minimal order. The first step to construct an inverse
R(s) by the proposed method is to determine the Markov parameters Ro, Ry,
associated with R(s) by solving a consistent system of equations of the form

(4.5) RoNo = Mo, R,;No + RoN;y = M, ...

.oy

as given by (2.24) which is derived from (2.10) where N, is a matrix of full column
rank. We now find nonsigular matrices U and V of order r and m respectively such
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that

(4.6) UN,V = [(I)"]

We next define

4.7) R;:=RU™', M;:=M;V and N,.:=UN,V

for all i =0,1,..,j=1,2,...,6 and k =0,1,2,...] so that solving (4.5) for
Ry, Ry, ... is equivalent to solving the set of equations

(4.8) RoNy = Mo, RNy + R\N, = M, ...

for Ry, Ry, ... i.e.(2.24) with all elements replaced by those in (4.7) respectively. If
the sequence {RO, Ry, } represents the realizable system
X:{4,B,C,D =Ry}

so does {Ry, Ry, ...} represent the system

z,:{4,BU"',C, DU} .
Let #,, denote the Hankel matrix formed by the elements {Ry, Ry, ..., R,ppoy}
i.e., a Hankel matrix similar to that given in (2.25) with R;’s replaced by R;s.
With the above introduction we can put forward the following two assertions which
can be easily verified:

4.9. Theorem. Each element in the sequence {Ry, Ry, R;, ...} obtained as a solu-
tion of (4.8) has (r — m) m number of arbitrary parameters occupying columns
m + 1, ..., r. Consequently the columns m + 1 + kr, ..., + kr,fork =0,1,2, ...
..., b — 1 in the Hankel matrix Z,, have all elements arbitrarily assignable.

4.10. Corollary. The Hankel matrix 2, formed by the matrices in {R, Rz,
., R,4p-1} which are solutions of (2.10) has m(r — m){a + b — 1} number

of arbitrary parameters occupying the columns i, + kr, i, + kr, ..., i, + kr
(k=0,1,...,b — 1). The arbitrary parameters in R; are designated by
(a.11) Ri=Trl vl oo i,

Thiy Tty < T

where iy, iy, ..., i,_,, identifies the columns of R;.

The above Theorem 4.9 and Corollary 4.10 give information concerning the struc-
ture of the Hankel matrix associated with the inverse system R(s). This structural
information will prove crucial very soon in establishing the construction of a minimal
order inverse system. Intuitively it is obvious if all the arbitrary parameters are set
equal to zero we would get a fixed value for the rank of #;_, ;.. This value
of rank can possibly be reduced by suitably selecting the so-called arbitrary para-
meters. This observation gives us:

4.12, Theorem, The minimal rank of the Hankel matrix #;_,_, 5., is bounded
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below by

Ow=rank #;_,_po.y with RIE=0 (p=0,1,...,j — %)
where j is given by (2.26) and the dimension of a minimal order inverse system is
lower-bounded by ¢,

The bound given in Theorem 4.12 is. easy to obtain but is not strong enough.
A stronger bound is given below. This will be given first in terms of the matrix Z,,
with which the mathematical formulation is easily done and the criterion derived
very simply.

Taking into account (4.6), (4.8) and (2.24) it is not difficult to write the solution
of the sequence {Rg, Ry, ..., R, ..., R}

Ro = [A—’lo, Ré’]y Rl = [M1 - R0N1 B Ré],
Ez = [Mz - Roﬁz - R1N1a Rgz]wn, Rz = [Mz — RNy — ... — El—lﬁla Ré] 5

and

x|

R,=[M,-R_\N,... - R_,N,R], k=z1l; M,=0, k> §;
since f§ = I, where the arbitrary parameters are represented by R{ as in (4.11) but
with an overhead bar with each element and i; = m + 1,...,i,_, = r. Inserting
these solutions in #;_,_p 54+, We have

Ri-a-pps1 = IE‘ ) }E"' | _IEMI—IIE e T Izﬁﬁx’_ l?::
R, cer Nt ;‘ _Rﬁ+2—1N( e T Rﬁ+1N1v R:B
. . |
: : [
- - | — — — = =ig
Rjaep - Rj—a~1r(1 ~Rjq Ny — ... = Rj, N, Rcl

Adding fth, (f — 1)st,...,{# + 1 — I)th block columns post-multiplied respec-
tively by Ny, .... N, to the (8 + L)st, ..., Ist block column post-multiplied by N,
to the second we have

(‘“3) %j—z—n,;rﬂ W=
A S R
- R, }’Ma_RONS“R!Nz ’ RKS |
M N B |
R %_ N 7 N —a—ﬂ+11\
RjapiMjaupr1 = RNy piy— ... Ryyy1Ns, R |
Wiy~ RNy R, - By, R
M, — RN, ~ RyN,_,, Ré M,y — RN, , Ri*!

j—a
My R0, R
50 , R?H ‘t |‘0’ R?Jrz
i : [ .
‘ . ! D I
where Wis an elementary matrix. o, Ri—*| l0, Ri™*®
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The following simple Lemma is instrumental in establishing the structure of an
inverse system.

4.14. Lemma. Let G be the 2 x 2 matrix

G={pap+bg +c
qdp+fqg+4q

where p and g are two arbitrary parameters, and a, b, ¢, d, g, and [ are variables
independent of p and g. Define

¢ := minrank G .
p.a

Then (a) ¢ < 2, (b)e = 0, iff ¢ =g = 0 simultaneously and (c) ¢ = 1 iff both ¢
and g are not equal to zero.

The minimum value ¢ = 1 in the above Lemma is attained when p and ¢ satisfy
dp* + (f ~ a)pq — bg* + gp — ac =0
which is true for p = ¢ = 0 or an infinite number of nonzero values of p and gq.
By repeated application of this Lemma 4.14 to (4.13) reveals that if Rf's
(r=1,2,....j — ) are set equal to zero then o(R7) = rank %;_,_p 4., is a mini-
mum with respect to these arbitrary parameters R/, ..., R{~* and is a function of R}
only. With respect to the parameters in RY, Q(R?) is now minimized to give us a stron-
ger lower bound for the rank #;_,_; ;.. Denoting by

R, =[R,R:,.. . R™
and R; by a similar matrix without bar, from the preceding discussion it is easy
to state
4.15. Theorem. The rank of the Hankel matrix #;_,_ 4., is bounded below by

Omin = Minrank #;_,_,,,; at R, =0
R©
where minimization is effected with respect to the parameters in K?.

Since Z is obtained from £ by a nonsingular transformation given in (4.7) we have

4.16. Corollary. The dimension of the minimal order inverse system is bounded
below by

Ooiin = min rank Z;_,_g4541 at R, =0
R

where minimization is eff:cted with respzct to the parameters in R;.

We would now like to observe that such minimization would cause no computa-
tional problem. 1t is not hard to sce that #;_,_5 4., at R, = 0 has clements linear
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in the parameters of R{ having the form
0 o )
(4.17) By = Opro + Oy ¥y, + OpiaTps, + oon + Cprr—plpi,

where a,,,’s are real numbers. The values of the parameters in R are sought in such
a way that f, = 0 if f, contains unknown parameters reducing as many elements
as possible in a column of #;_,_4 5. to zero within limits of consistency. There are
many solutions for these parameters which are then used in #;_,_4 4., {at R, = 0)
for a minimum rank. But however the values of parameters in R{ for a minimal
rank of #;_,_p g+ is not unique. Even nonzero values of R, can give rise to innumer-
able number of minimal order inverses (see Example 4.1).

4.18. Example. In (4.4) of Example 4.1 to get a lower-bound for the rank we set

o1 _ .2 _ .2 _ .3 _ .3 _
Pl =T =Ty =Ty = =73 =0

and for parameters r{, and r3; we solve equations of the form 8, = 0 as given
in (4.17) if B, contains an unknown parameter. This operation gives

0 0
ri1=0—-%~1 and 13 =1 -1140,

but only the solution (0, 1) gives a minimum value of rank for (4.4) as already indi-
cated.

After deciding upon a minimal order inverse by the foregoing method we shall
now parametrize all the solutions of such an inverse. This parametrization will be
facilitated by the following theorem given in [22}

4.19. Theorem. All minimal order k-integral inverses of an invertible system have
the same set of observability indices.

The set of observability indices dy, ds, ..., d,, of the minimal order inverse obtained
in view of Theorem 4.15 will give a corresponding number of independent rows in
.%_”j_mnﬁ,ﬂ which can be identified. With the help of these earmarked number of rows,
Gaussian elimination procedure is applied either to #;_,_ 4, or to &, ;W (see
(4.13), Wis W without last r columns)to reduce to zero as many elements as possible
on the dependent rows in it. Elements, in the earmarked independent rows, which
are real numbers or are in terms of arbitrary parameters in the solution R’s of (4.8)
will take part in this reduction process but preference would be given to real number
elements. The nonzero elements on the dependent rows are now set equal to zero,
the existence of solutions for the arbitrary parameters from these equations being
quaranteed by Theorem 4.19. If there are more arbitrary parameters than the number
of cquations, these excess arbitrary parameters will parametrize all the minimal
order inverses. The row operations in the Gaussian elimination process will generate
an clementary matrix Z such that Z#;_,_, ;W will containonly dy + d; + ... + d,,
number of independent rows. Following a dual version of the realization algorithm
given in [6], A in the inverse system X can be directly obtained from the elements
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in last m rows of Z. The matrix A is therefore given in terms of some arbitrary
parameters from which the permissible number of excess parameters will then
determine how many eigenvalues of 4 which are consequently poles of T can be
arbitrarily assigned and wiil therefore generate a minimal order stable inverse if one
such exists.

4.20. Example. Choosing 7}, = x5;4;, i=0,1,2,3 and j=1,2 the matrix
in (4.4a) can be transformed by Gaussian process to

(4.21)
1 0 100][xy —x, 0 lxs0 2] =
1 1 PO Ot xy —x; +1 =2 xs 0 —2
24 3x%,2 143x2 10|{xs —x3  243x, | x;, 0 =2
(1 +3x)2 (=1 + 3x,)[2 | 0 1] x6 —x4 —1+3%, | x4 0 =2
A4 LA
=|x; —x, 01 x5 02
X3 + X4 —xl—x2+1—-2‘ix5+x500
0 0 0;:0 00
0 0 010 00

when solutions for
(4.22) Xy +x3+a8 =0, x; +x4+0=0,
X3+ %5+ =0, x3+%x+ Pe=0,
X5+ X7 + 790 =0, x5+ xg + 7y =0,
must exist where
o=%X; +X,— 1, B=x3+%x4, 7=0xs5+xg, 0=1+3x,,
e=(—1+ 3x,)/2.
The set of six equations (4‘22) with eight unknowns gives rise to two excess para-

meters which can be identified in the following manner. Employing A; and 4, in
(4.21) the matrix 4 of the inverse ¥, with the help of a dual version of the algorithm

in[6],is
A=[-(4+3x)2 —(2 + 3xy)2],
—(1 +3x5)2 (1 -3x,)2
whose characteristic polynomial is
$2 4+ 3(x, +xz+1)s+%(x2—i‘—1)=0.

Seeking the poles of the inverse X to be the solutions of s> + 2s + 1 = 0 we determine
x; = —% and x, = 1. These values when substituted in (4.22) gives rise to (4.4b)
from which a stable inverse follows as already outlined in Example 4.1.
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5. CONCLUSION

We have shown how an invertibility theory of linear time invariant multivariable
systems can be set up based on the matrix fraction description of the system. The
inverse system is initially represented by a sequence of Markov parameters from
which its state-space description or transfer-function representation can be obtained
by using the theory of realization. If one insists on an inverse system of minimal
order, it can be achieved by adjusting the arbitrary parameters in the Hankel matrix
associated with the inverse system. The same technique can be applied to obtain
a stable inverse if one such exists. An interesting question is how minimality and
stability of the inverse system can be predicted with some test involving P;’s and
Q7s in (2.4) and (2.5) without solving (2.10) which needs further investigation. The
results of this paper can obviously be extended to study the right invertibility of multi-
variable system invoking the principle of duality.

(Received November 26, 1982.)
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