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K Y B E R N E T I K A — V O L U M E 20 (1984), N U M B E R 5 

DUALITY IN VECTOR OPTIMIZATION 

Part II. Vector Quasiconcave Programming 

TRAN QUOC CHIEN 

In this part of the tripaper, on the basis of the abstract theory presented in the first part, 
a duality theory is developed for the vector quasiconcave programming. In Section 3 some neces­
sary concepts and assertions of (quasi)convexity are introduced. Section 4 deals with the duality 
theory in vector quasiconcave programming with affine constraints. Finally, in Section 5 a limit 
approach is proposed to define the dual problems for the vector quasiconcave programming with 
convex constraints. 

3. QUASICONVEXITY OF OPERATORS AND RELATED CONCEPTS 

In the following definitions X is a topological linear space, Yis a topological linear 
space ordered by a convex cone Y+ with int Y+ =t= 0 and Y+ n (— Y+) = {0}. Let 
D c.X be a convex subset, having at least two points. 

Given an operator G : D -+ Y we say that G is quasiconvex in D if the lower set 

{xeD\ G(x) £ b}) 

is convex for all b e Y (or equivalently: all its strict lower sets {x e D | G(x) < b} 
are convex). 
G is convex in D if for all x, y e D and X e (0, 1) 

G[Xx + (1 - /.) y] = XG(x) + (1 - ;.) G(y). 

G is (quasi) concave if — G is (quasi) convex. G je affine if for all x, y e D and X e 

€(0,1) 
G[Xx + (1 - / ) y] = XG(x) + (1 - X) G(y). 

G is quasimonotonic if it is both quasiconvex and quasiconcave. G is lower (upper) 
semicontinuous in D if its lower sets (upper sets) are closed with respect to D. 

A subset AaX is a polytope if it is an intersection of a finite number of half-
spaces. Obviously, if Yis of finite dimension and G is affine, then all lower (upper) 
sets of G are polytopes. 
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Theorem 3.1. (Theorem on polytopal feasible sets.) 

If y is of finite dimension and G is a lower semicontinuous quasimonotonic operator 
on a poly tope A, then the feasible set 

{x e A | G(x) = b} 
is a polytope for any b e Y. 

Proof. The proof is similiar to that in Martos [2] (cf. [2] page 78). The only 
difference is that X need not be finitely dimensional. • 

Suppose that X and Y are Banach spaces, G is Frechet-differentiable at x e D, 
i.e. there exists a continuous linear operator G'(x) : X -* Y such that 

l i m HG(X + / I X ) - G ( X ) - < G ' ( X ) , / I X > | 1 = Q 

!M*ll->o ||.dx|| 

G is said to be locally quasiconvex at x with respect to D if for all x e D 

C(x) < G(x) => <G'(x), x - x> £ 0 . 

G is locally pseudoconvex at x with respect to D if it is locally quasiconvex at x with 
respect to D and for all x e £) 

G(x) < G(x) => <G'(x), x - x> < 0 . 

G is pseudoconvex in D if it is locally pseudoconvex at any x e D with respect to D. 
G is pseudoconcave if — G is pseudoconvex. G is pseudomonotonic if it is both 
pseudoconvex and pseudoconcave. 

Theorem 3.2. (Linearization theorem for pseudomonotonic constraints.) 

Let G(x) be a pseudomonotonic operator in the convex set D and let /? e G(L>) c y. 
Then for any x° such that G(x°) = fi we have 

Jj?(j8) = {x e .0 | G(x) g /?} «• { e D | <G'(x°), x - x°> g 0} . 

If, in addition, D is a polytope and Tis of finite dimension, then if(j8) is a polytope. 

Proof. The proof is analogous to that of Theorem 43 in [2]. • 

We formulate finally a separation theorem of convex sets which will be used in 
the next section. 

Theorem 3.3. (see [3].) If a nonempty, relatively open convex set M does not meet 
a nonempty polytope N, then there existes a hyperplane H, strictly separating M from 
N, i.e. there exists a continuous linear functional/and a scalar a such that 

</, x> < a < if, y} Vx e N , Vy e M . 
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4. VECTOR QUASICONCAVE PROGRAMMING WITH 
AFFINE CONSTRAINTS 

In this section X, Y Z and If are topological linear spaces, Yand Z are ordered by 
the positive convex cones Y+ and Z+ (int Y+ 4= 0 and Y+ n (-Y+) = {0}), D is 
a subset of X. Further, suppose that we are given an affine operator Fx : D -* W, 
a quasiconcave operator F 2 : B -> Y where F,(iO) c B <z W, and an affine operator 
G :X -> Z. Denote F(x) = F2[F,(x)] Vx e D. The following problem ''''' 

find Supw {F(x) \xeD, G(x) = 0} = Sw 

is called the vector quasiconcave programming problem with affine constraints': 
Throug hout the paper we suppose that the problem (4.1) has a feasible solution. 

Further in order to apply the theory developed in Section 2 we slightly modify the 
problem (4.1) as follows. We put 

fiF(x)={yeY\ySF(x)} 

for any x e D. Then instead of the problem (4.1) we will study the following program 

(I) find Supw U HF(X) = S,. 
xeD,G(x) = 0 

This modification is rather formal than essential since if y* e St, y* e /tF(x*), 
x* e & = {x e D | G(x) = 0}, then obviously F(x*) e Sw and x* is an optimal solu­
tion of the problem (4.1). 

Now we can convert problem (I) into the abstract model from Section 2 of [ I ] . 
We put 

E = Z x W; A*=-ao; A*=+oo 

P = {(z; w) e E | 3x e D : z = G(x) &w = FL(x)} 

Qy = {(z; w) e E \ z = 0 &w e F,(£>) &F2(w) ^ y} Vy e Y 

e = u e , ; p0 = F n e 
yeY 

ti(a) = {yeY\aeQy}VaeP0 

We have then the problem 

(I) find Supw U n(a) = si 
aePo 

Lemma 4.1. 

U ufa) = u ."(«) 
xeO aePo 

Hence the problems (I) and (I) are equivalent. 

Proof. Let y e U >h(x), then there exists an x' e D such that y ^ F(x'). Put a' = 
xe3 

= (0; F,(x')). Evidently a' e P n Qy consequently y eju(a') c IJ /x(a). 
asPo 



Conversely \i y e \J n(a) then there is an a' e P0 such that a' e Qr It means that 
aePo 

there is an x' e D with a' = (0; F,(x')) and F2[F,(x ')] = F(x') ^ y which implies 

>• e /zf(x') c U ^ f(x) • 

Now for any (z*; w*; c ) e Z * x W * x R w e denote 

//z.,w., r = {(z; w ) e Z x W\ <z, r> + <w*, w> i£ r} 

and 

Further put 

E* = {/F.>w.>r | z* e Z* & w* e W*' & r e R} 

P* = { H e F * | P c H) 

Q* = {ff s F* | ff n gv, = 0 V / :> >>} 

Q* = U Q* 
yeY 

P* = P* n e* 

v ( H ) = { > ' e Y | H e e ; } VHeP*. 

According to Section 2 we have the following dual problem 

(I*) find Infw U v(H) = / , . 
HeP0* 

Lemma 4.2. If P is a polytope and F 2 is lower semicontinuous, then 

(4.2) Sj = lj. 

Proof. Using Theorem 3.3 it is easy to verify the conditions [A, ] , [A2] . Thus 
according to Theorem 2.2 (4.2) holds. Q 

Corollary. If X, Z and W are of finite dimension, D is a polytope and F2 is lower 
semicontinuius, then 

Si = !;. • 

Lemma 4.3. For any Hz .w .> r e P* 

lnfw v(ffz.,w.,r) = Supw \j nFiw) 
wsF,(D) 

<iv*,w><r 

Proof. Let y e Infw v(Hz*>wV). Then for any y' < y, y' £ v ( fF . w V ) , it means that 
there is w e F,(£>) such that <w*, w> g r and / § F2(w). It follows 

y e U ^F2(W) 

<w\vv>gr 
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hence 
,-eSup" U Atf2(

w) 
weF,(D) 

<w*,w>gr 

Now let y e Supw U U F 2 ( W ) - -^ t n e s a m e consideration we have y e v(ff2. tWV) 
wef,(D) 

<w*.w>fir 

and hence y e Infw v(Hz, w. r). Q 

We have now 

P* = {H2.>w.>r | z* e Z*, w* e W*, r e P : <z*, z> + <w*, w> = 

(4.3) = r V(z; w) e P & Supw {P2(w) | w 6 F,(Z)) : <w*, w> = r} * 0} 

Put 

(4.4) " r(z*, w*) = sup {<z*, z> + <w*, w> | (z; w) e P} 

(4.5) i f = {(z*; w*) e Z* x W* | 3r : tf2.>wV e P*} 

then obviously 

(4.6) P* = {H2 .> w V | (z*; w*) E _? & r = r(z*, w*)} 

Since 

v(H2.>wV) cz v ^ . ^ . , , . ^ . , ) Vr = r(z*, w*) 
we have 

(4-7) U v ( H ) = U vCif..,,....,...^) 
HeP0* (z*,w*)ejf 

Further 
Infw U v(H) = Infw U v ( i f , . i 1 f , i r l l W ) (see (4.7)) 

HePo* (z*,w*)e_5? 

= Infw U Infw v ^ . , ^ , ^ . . ^ , . ) ) (see Remark 1 of Sec. 1.) 
(z*,w*)ey 

= Infw U Supw U HF2(">) (see Lemma 4.3) 
(z*,w*)ei? weF,(D) 

<w*,w>gr(z*,w*) 

= Infw U L(z*, w*) 
(z*,w*)e.S? 

where 

(4.8) L(z*,w*) = Supw U AtF2(w) 
weF,(D) 

<w*,w>gr(z*,w*) 

Thus we have proved 

Lemma 4.4. Problem (I*) is equivalent to the problem 

(I*) findlnf* U L(z*,w*) = Ij. 
(z*,w*)6ir 

where L(z*, w*) is defined in (4.8). 

390 



The problem (I*) is called the Tj-dual to problem (I). From Lemmas 4.1, 4.2 and 
4.4 it follows 

Theorem 4.1. If P is a polytope and F2 is lower semicontinuous, then 

(4.9) S7 = / , . 

Corollary. If X, Z and Ware of finite dimension, D is a polytope and F2 is lower 
semicontinuous, then (4.9) holds. 

Remark 1. The problem with inequality constraints 

( I< ( ») find Supw {F(x) | x e D : G(x) g ( ^ ) 0} 

where F, G and D remain as in problem (I), can be transformed to the problem with 
equality constraints by the traditional way as in linear programming. Then after some 
simple arrangements we obtain the dual of ( I < ( > ) ) 

( I< ( ») findlnfw U L(z*,w*) 
( z * ,W)e^< ( > ) 

where 

(4.10) i f < ( > ) = {(z*; w*) e i f | z* S (t) 0} 

and L(z*, w*) is defined as in (4.8). 

Remark 2. If the constraint operator G is not affine, but quasimonotonic or pseudo-
monotonic, then after a linearization of the feasible set (see Theorems 3.1 and 3.2) 
we can apply the theory introduced above. 

We shall now apply this duality theory to some examples. 

Example 1. Suppose that 

A = (flfj) is an m x n matrix , 

b — (bt) is a vector in Rm 

F(x) = • ] for x = (xj . . . x„)' e R". 

We are given then the problem 

(4.11) findSupwi( : ) | x = (*!,. . . , x,) ^ O&Ax ^ b 

Since F(x) is quasiconcave in R"+, we can apply the theory introduced above. Here, 

X =W=Y=R", Z = Rm 

G(x) -Ax-b, Ft(x) = x . 
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Further, for any z e Rm and w e R" 

r(z, w) = sup {z'(Ax - fa) + w'x} = sup {(z'A + w') x - z'b} = 
xgO 1 5 0 

_ f - z ' b if z'A + w' =" 0 
[+00 otherwise 

and 

H, 1 
Supw \ ['• x = 0 & w'x = - z'b \ * 0 o w = 0 . 

I W I 
Hence according to (4.10) 

(4.12) Se< = {(z; w) e Km x R" | z = 0 & z'A + w' = 0 & w = 0} 

and 
(4.13) L(z,w) = Supw U I* Ax). 

xSO 
w'xf i -z ' fc 

The dual of problem (4.11) is then 

(4.14) findlnfw U L(z,w) 
(z,w)eSf< 

where $£ < and L(z, w) are defined in (4.12) and (4.13). 

We illustrate it by a concrete example. Let 

-W-'-G) 
then the problem (4.11) has the form 

(4.15) find Supw | r 2 ) | x,, x2 = 0 & xt + x2 = 1 & x, - x2 = o l . 

According to (4.12) we have 

(4.16) if < = {(z; w) e R2 x R2 | z = 0 & w = 0 & z. + z2 + w, = 

= 0 & z1 - z2 + w2 = 0} 
and 

r(z, w) = - Z i V(z; w) s ^ < . 

It is easy to see that 

(4.17) z. < 0 and z t = z2 jg 0 

and 

(4-18) U ^ W = U vA*) 
I S O J i O 
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find Infw (J L(z, w) 
• < = ,»>)e.r, 

So the T t-dual problem of (4.15) is 

(4.19) 

where 

(4.20) jS?t = {(z; w t; w2) e R3 | - 1 g z = 0 & w t, w2 ^ 0 & 

& - 1 + z + wt g 0 &• - 1 - z + w2 g 0} 

and 

(4.21) L(z, w) = Supw y / iF(x) . 

The set L(z, w) in (4.21) is illustrated in Fig. 2 where z = -->-, wt = f and w, = £. 

]4 

ДІИ4) 

Fig. 2. 

Example 2. Given a matrix 

j ' = 0 . 1 . . . 

we define 

(4.22) 3 = {x = (x t, ..., x„)' e R" | x > 0& a ; > 0 + £ aijXj = 0 

(4.23) 

= 1,..., m & am+кo + £ an+kjXj > 0 , k = 1, ..., p} 
j= i 

P R 

/.(*) = П K- .̂o + I am+t(Л.) 

(4-24) /2(x) = X e — + £ a m + w x y . 
t = i j = i 

The problem in question is 

(4.25) find Supw i(ffft) | x e 3> 

Put 

X = R" x Rp 

D = {(x; w)eR" x Rp | x > 0 & w > 0} 

a.(x, w) = fl;,0 + £ fli,;xy, i = 1, ..., m 
; = i 
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9m+k(x, w) = ű m + ( t , 0 + £ am+k,jXj - wk, k = 1, ..., p 
J = I 

G = (ð1,...,яm+i,) 

E = 
/.= ! 

then the problem (4.25) can be rewritten as follows: 

(4.26) find Supw {E(x, w) | (x; w) e D & G(x; w) = 0} 

For any z e Rm+P and u e Rp we have 

(4.27) r(z, «) = sup ( £ zioi(x, w) + £ ytw,) = 
( I , « ' | E B ; = I /, = I 

m + p n m+p p 

= sup ( £ z ;a i i 0 + £ ( £ Zjfly) x ; + X (ufc - zm + k) Wj.) = 
(x,w)el> i = l ./= 1 ;= 1 /c= 1 

= " i f z ^ o if £^ , .0^ < 0 Vj = 1, . . . , n & vk - zm + k = 0 Vfc = 1, . . . , p 

| + oo otherwise 

and 

(4.28) Sup" > 0 & £ Vkwk й £ z ; a i , 0 + 
£ e-
:=1 

m + p 
o £ z i a i , 0 > 0&vk y OVfe = l , . . . p 

;=i 
Summarizing (4.27) and (4.28) we have 

m+P m+p 

(4.29) Se = {(z; D) | z 6 Rm+" & v e Rp & £ z.aj>0 > 0 & £ Zja;,,. = 0 

Vj = 1, . . . s n & 0 < vk = ^m+fc V/c = 1 , . . . , />} 

L(z, ») = Supw U l(F(w) v (z ; t;) e S£ . 
w > 0 

| i! tw,<s"V'z/"i ' .o 

Notice that if 0 < uk = «t § Z m + k Vfc = 1, .. •> P then 

(4.31) V>> e U aF(w) 3 / e U M w ) : / > J 
w>0 w > 0 

£ f k» iS " j ^ i a , „ S «/"Wk§ .? -.«..0 

and 

(4.30) 
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From (4.31) it follows that 

(4.32) Infw U L(z, v) = Infw U L(z) 
(z.v)eX ze^a 

where 

(4.33) JS?0 = {zeRm + p\ £ z;a;,o > 0 & E - . « . j = ° V / = 1 , . . . , M 
; = I i=i 

&zmrk > 0 V/c = \,...,p} 
and 

(4.34) L(z) = Supw U dF(w). 
w>0 

I z,„ + kwki
my ZiOi.o 

Hence the problem 

(4.35) find Infw U L(z) 
zeSa 

where JSf0 and L(z) are defined in (4.33) and (4.34) is the dual of problem (4.26), 
thus of the initial problem (4.25). 

5. VECTOR QUASICONCAVE PROGRAMMING WITH 
CONVEX CONSTRAINTS 

In this section a duality theory is developed for the vector quasiconcave program­
ming the constraint operator of which is not affine, but convex or, equivalently, the 
feasible set of which is not polytopal but convex. In the foregoing section we have 
seen that Theorem 3.3 plays a crucial role in proving the strong duality principle 
(see Lemma 4.2) and it is easy to verify that it may fail if N is not a polytope. There­
fore we cannot use Theorem 3.3 directly if the constraint operator is not affine. Our 
main idea is to approximate the convex feasible set by a sequence of polytopal sets. 
After that, by a limit passage, we obtain the dual problem. 

At first let us define some basic distance notions. In this section X and Y are 
Banach spaces. For any subsets A and B o f l w e define 

(5.1) Q(A, B) = sup inf \\v — w\\ + sup inf |[u - w\\ 
weA veB veB weA 

Q(A, B) is called the Hausdorff distance of A and B. Let {A„},1°=1 be a sequence of 
subsets in X. We say that A„ converge to A in the Hausdorff sense, A„ ——^ A, if 

lim Q(A„, A) = 0 

A„ converge to A in the Kakutani sense, A„ ——* A, if 

(5.2) V{x„} °̂= jx„ e A„, x„ -> x => x e A 
and 
(5.3) V x e A 3x„eA„,n = 1, 2,... x„ -* x . 
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Lemma 5.1. 

Am-£~A=>An—*^A 

Proof. Let A„ ——-* A, x„ e A„, n = 1,2,. . . and x„ -* x. Fix an arbitrary e > 0, 
then there are an integer nc and a point x'„c e A such that ||x - x„J < e/2 and 
|x_ — x„J < e/2. Consequently Ve 3x„Jx — x„J < e what means x e A. 

Conversely if x e A then for any integer k there is an nk such that 

Vn ^ «k 3x„eA„ : |jx„ - x|] < ijk 

From these x„ one can choose a sequence that converges to x. • 

Let _, _„, n = 1, 2 , . . . be subsets of Yand Y+ be a convex positive cone in Y 

Lemma 5.2. 

B„ —a— _ = > _ „ - Y+ —8-» _ - Y+ 

Proof. Let v e _„, w e B, v + , w+ e Y+, then 

inf |j(_ — v+) — (w — w + ) | _ inf j | . — w|| 

and 

inf \\(w — w+) — (v — v+)\\ й inf Ijt) — 

Consequently 

(5.4) Q(BH - Y+, B - Y+) 5S Q(B„, B) 

The assertion of the lemma follows easily from (5.4). • 

Now let us have an operator F : D -* Y, where D _ X, let _?„ - £), Vn = 1, 2, . . . 
and _> _ D. Suppose that E is defined on the set 3A = [x eX \ inf ||x — x j = A} 
for some fixed _ > 0. *e® 

Lemma 5.3. If 3>n —B—* _> and E is uniformly continuous on 3A then 

F(_?„)—5_> f ( © ) . 

Proof. We have 

(5.5) g(F(3n), F(3)) = sup inf | | j - z\\ + sup inf |jj. — -||* = 
yeF(3„) zeF(3) zeF(3) yeF(3„) 

= sup inf \\F(v) - F(w)\\ + sup inf \\F(v) - F(w)\\ 
veSlr we3 we9 t>s_„ 

The assertion of the lemma follows from the uniform continuity of F, with regard 
to (5.5). • 
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Put 

fiF(A) = F(A) - y+ 

then from Lemmas 5.2 and 5.3 it follows 

Lemma 5.4. Under the same conditions as in Lemma 5.3 we have 

HF(®„)-2-*Hh(®) 

Lemma 5.5. Let B, B,,, n = 1,2, ... be subsets of Y such that 

(5.6) B - y+ c B and B„ - Y, <= B„ Vn = 1, 2, ... 

and B„ —S__» B. Then 
Supw B„ ——* Supw B . 

Proof. We need to verify conditions(5.2) and (5.3). Letx„ e Supw B„ Vn = 1, 2, . . . , 
x„ -> x. For every n there is an x„„ e B„ such that |x„„ — x„|j < 1/n. Consequently 
x„„ -> x and by Lemma 5.1 x e B. If x £ Supw JB, then there is an x' e B such that 
x' > x. According to Lemma 5.1 there exists a sequence{x'„}^ 1,x'„eB„ Vn = l, 2 , . . . 
... x'„ -> x'. Hence there is an n0 such that for all n — n0 : x'„ > x„, what is a con­
tradiction to x„ e Supw B„. We have proved (5.2). 

Conversely let x e Supw B. Choose an e e int Y+ such that 

(5.7) ^ 1 ( e ) « { j , e Y | | | j , - e | ! : g l } F Y + . 

Put 

(5.8) l(x;e) = {x + te\teR} 

and 

(5.9) /„(x; e) = B„ n /(x; e ) . 

By Lemma 5.1 there is a sequence {x'„}™=l, x'„ e B„ Vn such that x'„ -> x. Using (5.6) 
we can choose, for any n, y„ e (x„ — Y+) n l(x; e) such that y„ -* x. Put 

x„ = sup /„(x; e) = x + t„e Vn . 

From (5.6) it follows that x„ e Supw B„ and as lim inf x„ ^ lim y, = x we have 

t„ = 0 Vn = 1, 2 , . . . . If x„ does not converge to x there are an e > 0 and an integer 
n„ such that for any n = n£\\x„ — x|| = ||x + t„e — x | = t„\\e\\ > e. Hence t„ > 
> ej\\e\\. Consequently 

inf ||x„ - j>| = inf ||x + t„e - y\\ = inf t„\\e - (y - x)jt„\\ ^ 
yeB yeB yeB 

^ inf t„\\e - z\\=t„> ej\\e\\ Vn = n£ (see (5.7)). 
ZEY\Y + 

It means Q(B„, B) -t-> 0, what is a contradiction to B„ ——-»B. We have proved x„ -> x 
and thus (5.3). The proof is complete. D 
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Summarizing Lemmas 5.4 and 5.5 we obtain the following theorem. 

Theorem 5.1. Suppose that 3)n —-—• & and F is uniformly continuous on <&A. Then 

Supw ne(<S„) —^— Supw nF(2). 

Lemma 5.6. If A <=. B <=. Y then 

\/y e Supw A Vz e Supw B:y < z . 

Proof. Trivial. 

Lemma 5.7. Let B, 5 , , B2, ..., Bn,... be subsets of Yfulfilling (5.6) and 

(5.10) B„ r> B Vn = 1,2,. . . 

Then B„ — ^ B implies 

Supw B = Infw U Supw B„. 
n= 1 

Proof. Let y e Supw B then by Lemma 5.5 y e U Supw B„. From Lemma 5.6 it 

follows that there is no z £ (J Supw Bn with z < y which means y e Infw U Supw B„. 

Now let y $ Supw B. Then if 

(i) y e B, there is j ' 6 Supw (l(y; e) n B) a Supw B such that y' < y, where e and 
l(y; e) are defined as in the proof of Lemma 5.5 (see 5.8). According to Lemma 5.5 

there is some y" e IJ Supw B„ such that y" < y, thus y <£ Infw U Supw Bn, or (ii) there 
n=1 n=\ 

is v' e B such that y' > y, one can choose an e > 0 such that SMe(y) = {z e Y| j|z — 
— y\ < e] c B c Bn Mn, which means that @c(y) n Supw i?„ = 0 Vn. Hence 

y $ U Supw Bn and thus >• ^ Infw U Supw B„. The proof is complete. • 
n = i „ = 1 

In the further development suppose that Fx : D -* W is affine, F2 : B -+ Y, where 
FX(D) C B a W, is quasiconcave and g„ : X -* R, n = 1,2, ..., are real affine 
functionals. We will extend the duality theory introduced in Section 4 to the class 
of problems of the following type: 

(5.11) find Supw{E(x) = F2[Fl(x)] | x e D & g„(x) g 0 Vn = 1, 2, . . .} . 

Instead of the problem (5.11) we will work, as in Section 4, with the problem 

(5.12) find Supw U HF(X) = Supw nF(3>) = S 

where 

(5.13) 9 = {XB D | gn(x) < 0 Vn = 1, 2, ...} . 

398 



Put 

(5.14) 9n = { x e D | a , ( x ) g 0 , i = 1,2, •••«} 

then we have, for all n, the subproblems 

(5.15) find Supw/.f(®„) = S„. 

According to Section 4 the T-dual problem of (5.15) is 

(5.16) find lnfw U h(~, w*) = L, 
(z,w*)e2>„ 

where 

(5.17) if,, = {(z; w*)eR" x IK* | z, < 0, i = 1, ..., n & r(z, w*) = 

= sup [ X z;a,(x) + <w*, T,(x)>] < + oo & Supw{E2(w) | w e 
X E D I = 1 

e F,(D) : <w*, w> ^ r(z, w*)} + 0} 
and 

(5.18) L„(z, w) = Supw U /Ww) • 
wef",(fl) 

<w*,w>gr(z,w*) 

Remark 1. By the Corollary to Theorem 4.1, if X, W are of finite dimension D is 
a polytope and F is lower semicontinuous then 

(5.19) S„ = /„ Vn. 

Definition. The problem 

(5.20) find lnfw \J [) Ln(z, w*) = 7 
11=1 (Z,W*)EJ?'„ 

where J?,, and L„ are defined in (5.17) and (5.18), is called the Tj-dual for the problem 
(5.12). 

We have immediately 

Theorem 5.2. (Weak Duality Principle.) 

Vy e S Vz e / : y = z 

Theorem 5.3. (Strong Duality Principle.) 
Suppose that X, Ware of finite dimension, D is a polytope E2 is lower semicontinuous 
and ®„ —2~-> Qi. Then S = I. 

Proof. By Lemma 5.7 we have 

(5.21) S = Supw nF(9) = Infw U Supw /iF(®„) 
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and according to the Corollary of Lemma 4.2 

(5.22) Supw nF(9„) = Infw U v(H) 
HeP«o,„ 

where P*?„ stands for P* in problem (I*) for the problem (5.15). From (5.21), (5.22), 
with regard to Remark 1 of Section 1, we have 

S = Inf" U Infw U v(H) = Infw U U v(tf) = 
1=1 HeP*o,„ n = l HeP'o.n 

= Infw U U Infw v(H) = Infw U U L„(z, w*) = / 
n = l ffeP»o,„ n = l (z,\v*)sSe„ 

(cf. Lemma 4.3). • 

Further suppose that fk:D^R, k = 1, ..., p, are convex real functional. The 
problem 

(5.23) find Supw{E(x) \xeD :fk(x) ^ 0, k = \, ..., p} 

is called the vector quasiconcave programming with convex constraints. In order 
to apply the duality theory introduced above we need to transform the convex con­
straints to the affine ones (maybe of an infinite number). 

Definition. Let / : D -• R be a convex functional and z e D. A linear continuous 
functional v e X* is called to be a subgradiant of j at z if 

J(x)^,f(z)- <v,x-z) V i e D . 

The set of all subgradients of j at z is denoted by dj(z) and called the subdifferential 
o f ja t z. 

We summarize some facts concerning subgradients and subdifferentials (for details 
see [5]): 

(i) If j is differentiable at z then df(z) = {df(z)jdx} where dj(z)jdx is the gradient 
of j at z. 

(ii) I f j i s continuous at z, then df(z) is nonempty weak*-compact and bounded 
in X*. 

(iii) If j is continuous on D, then 

f(x) = max {j(z) + <v(z), x - z>} V x e D 
zeD 

where v(z) is an arbitrary vector from df(z) for all z e D. 

From (iii) it follows immediately 

Lemma 5.8. If j is continuous on D and D' a D is dense in D, then 

j(x) = sup {j(z') + <v(z'), x - z>} V i e D 
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and consequently 

(5.24) {x e D \f(x) = 0} = {x e D \f(z') + (v(z'), x - z'> = 0 Vz' e D'} 

where v(z') is an arbitrary vector from df(z') for all z' e D'• 

Lemma 5.9. Suppose that dim X < + o&, A„ are closed convex subsets of X such 

that A„ _• A„+1 Vn and f) A„ = A is bounded, then 

A„—a—A. 

Proof. At first we prove that 

(5.25) 3N Vn= N : A„ is bounded. 

Indeed, if (5.25) does not hold the sets 

C„ = { x e * | |x| | = 1,A„ + tx _ A„ V? = 0} 

are nonempty and closed for all n. Since C„+i _ C„ Vn we have 

0 4 = n C „ = C _ { x 6 _ ' | ||x| = 1 & A + tx _ A Vf ^ 0} 

what is a contradiction to the boundedness of A. 
Suppose that A„ —-^ A, then there exists an e > 0 such that 

Bn = A„ n (X \ AE) 4= 0 Vn 
where 

A£ = { x e X | inf |jx - zfl < e} . 
ze/l 

B„ are compact for all n ^ N (see (5.25)) and Bn+1 _ £„ for all n. Hence 

0 + f] Bn = f]A„n(X \ AE) = An(X \ A.) = 0 
« = 1 n = 1 

what is absurd. The proof is complete. • 

Now let us return to the problem (5.23). From the foregoing lemma it follows 
immediately 

Theorem 5.4. Suppose that dim X < + oo and 

_? = {xe£>|A(x) = 0 , fc= l , . . . , p} 

is bounded. Let the system {zk„}k=] p _ D be such that 
n = l ' . 2 . . . 

{xeD |A(z M )+ < » M , x - z M > =g0,fc = l , . . . ,p ,„ = 1,2,...} = _) 

where uM is an arbitrary vector from dfk(zk>„). Then 

_>„ —JS—> S 

401 



where 

Q„ = [x e D \fk(zkJ) + <vkyi, x - z t t t > < 0, k = 1, ..., p, i = \, ..., n} . 

We have then, with regard to Lemma 5.8, the following 

Corollary. Suppose that dim X < +co, S> is bounded and the set {zB}*_, <= D 
is dense in D, then 

£?. —H— 3? 
where 

S>„ = {x6D| / A (z , ) + <vkJ,x - z;> <0,k = l,...,p,i = I , . . , n} 

and vk j is an arbitrary vector from 8fk(zt). 

On the basis of Lemma 5.8 one can transform the problem (5.23) to problem 
(5.11) and then apply the duality theory presented above. If dim X < +cc and Q 
is bounded Theorem 5.4 or its Corollary guarantee the strong duality principle. 

Example. 

(5.26) Find Supw n *jj J | xu x2 = 0 & x2 + x2 _ l ] 

The modified problem of (5.26) is 

(5.27) find Supw U /*F(*) = S 

where 

(5.28) 9 = {x = ( x i ; x 2 ) e R 2 | x , , x 2 = 0 & x2 + x\ < 1} 

and 

/ iF(x) = { j 6 R 2 | j = ( x ? , X 3
2 ) } 

The function / (x) = x2 + x2 — 1 is convex and differentiate with 

-y(-) = pr 
3x \2z2 

By (iii) we have 

£? = {x e R2 I 2zjXi + 2z2x2 < 1 + z\ + z\ Vz = (z,; z2) = 0} = 

= n j*eR2 \—J±-Xx + _ ^ _ _ ^ 2 < v L + V(z? + 2 ^ 1 = 

zgo j. V(z? + z2) V(z? + z\) 2 W(zf + z2
2) ) \ 

= f| { " « + | ax, + fox2 = 1} 
fl.tgO 

a2 + fc2=, 

On the curve F = {(a; b) _ 0 | a2 + b2 = 1} we choose an arbitrary countable set 
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ro = {(ak'-> bk) | a
2 + bl = 1} that is dense in T. According to Theorem 5.4 

9n = n {x e R2
+ | akXj + 5 tx2 < 1} - H - * 0 . 

& = i 

We have 

(5.29) JSP, = ( ( z , , . . . ^ , , , ^ , p2) 6 R" + 2 | z; gO, i = l,..., n & sup [(fjziai + -,)*,+ 
(. j rgO / = 1 

+ ( £ z.ft, + p2) x2 - f z;] = - f Zi & Sup" | ^ A | x„ x2 £ 0 : P,X, + 

+ t>2*2 =
 _ . i z j * 0 } = 

= {(r„ ..., z,,, p , , p 2 ) e R " + 2 | r, g 0, i = 1, ..., n & P = (p.; p2) ^ 0 & 

X z, < 0 & X z.flj + P, <= 0 & X z;fe; + P2 < 0} 
1 = 1 i = 1 i = l 

and 

(5.30) 1^2, p) = Sup" U Ify - K+j 

D,.X, + D 2 U 2 g ~ r 21 

Hence, by Theorem 5.3 the T r dua l of (5.27) is 

(5.31) find Infw [) \J L„(z, v) = I 
n = l (z,v)eSfn 

and we have 
S = 1 

After a short arrangement we obtain a simpler form of (5.31) 

(5.32) find Infw U U K„(z) = I 
n = 1 .-EJf„ 

where 

Jf„ = {z = ( z I , . . . , z „ ) e R " j z < 0 & - £ z ; = 1} 
; = l 

and 

w-**- ,y,K {CD-4 
( - 1 nail.v, + ( - I zifci)x2£ 1 

(Received October 3, 1983.) 
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