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KYBERNETIKA —VOLUME 15 (1979), NUMBER 2 

On the Core of an Incomplete n-Person Game 

ANTONÍN OTÁHAL 

Analogously as Bondareva's theorem (cf [1]) we state that the core of a game is nonempty if 
and only if the game is balanced but general incomplete games are considered, i.e. some coali­
tions may be unfeasible. 

0. INTRODUCTION 

Our method of studying incomplete games is that of an approximation of any 
incomplete game by some complete one. 

Parts 1, 2 introduce basic concepts, the 3rd part contains the main results of the 
paper. 

1. PREREQUISITIES 

We suppose that J is a finite nonempty set and K is some system of subsets of I. 
R denotes the set of all real numbers. 

A set function v : K -* R is superadditive if, whenever S is a system of disjoint 
sets from K such that \JSeK, then 

Yv(s)^v(\JS). 
KS 

For K <= exp /, s c / we denote 

r(K, s) = {R : R c K , \JR = s, the elements of R are disjoint sets} . 

We write r(K) instead of r(K, I). 
Let r(K) 4= 0. Then a game v = (v, K, I) is any superadditive set function v : K -* 

-* R. The game v is complete if K = exp / and incomplete otherwise. 



150 We make no difference between vectors x e R1 and additive set functions x : 
: e x p j - y R, x(s) = £ * , . 

lea 

The core of the game v = (v, K, I) is the set of all x e R1 for which 

(a) x(s) = v(s) for all s e K, 

(b) there exists R e r(K) such that x(t) = u(r) for all t e R. 

We denote the core of the game v through C(v) (or C(v, K, I) if needed). 

If/ : K -> R is any set function and if R c: K, we denote 

</ *> = £/(-) • 
Kit 

To every game v = (v, K, I) we assigne the number 

m(v) = max {<u, J?> : R e r(K)} . 

1.1. Lemma. Let x e R'. Then x € C(v, K, I) if and only if 

(a) x(s) = u(s) for all seK, 

(b')x(l) = m(v). 

Proof. Under holding (a), any of (b), (b') is clearly equivalent to the condition 

x(t) = v(t) for all t e R , 

where R is that element of r(K) for which m(v) = <u, R>. 

2. BALANCED GAMES 

Let S be a nonempty subsystem of iC such that 0 £ S, c e Rs be a vector whose 
coordinates are strictly positive real numbers. S is said to be a balanced K-cover 
with the weight vector c if for every i e / 

£ c . « i 
•sS , 

holds, where S4 = {s : s e S, i e s}. 
A game u = (v, K, I) is balanced if, whenever S is a balanced ZC-cover with the 

weight vector c, we have 

£ c. v(s) = m(u) . 
jeS 

It is natural to say that S is a balanced X-cover (write S e @K) if there exists c 6 Rs 

such that S is the balanced K-cover with the weight vector c. 
Moreover, S is said to be the balanced cover (write S e J1) instead of saying S 

is the balanced exp /-cover. 



A balanced K-cover T is the minimal balanced K-cover if from S c 7" and 
Se38K the equality S = Tfollows. In this case we write Te JlK- That is, JlK is the 
set of all in inclusion sense minimal elements of 38K. As previously omitting K means 
K = exp I. 

For S e 38K we denote 

V(S) = {c : c is the weight vector of S} . 

2.1. Lemma. Let S be the balanced K-cover. Then 

(i) V(S) is a convex set in Rs, 

(ii) V(S) contains exactly one point if and only if S is minimal, 

(iii) \J{V(T): T<= S, Te.#K} is the set of all extremal points of cl V(S)(clA: 
denotes the topological closure of a set X). 

Proof is given in [2]. 

2.2. Theorem. The game v = (v, K, I) is balanced if and only if 

(1) £ c, v(t) = m(v) 
teT 

for every T being a minimal balanced K-cover with the (unique) weight vector c. 

Proof. The "only if" is obvious. 

According to the previous lemma, if S e 38K and c e V(S) then there exist T1, . . . 
. . . , Tm e JtK with weight vectors c1, . . . , cm (respectively) such that c is some 
convex linear combination of c1, . . . , cm. (c1 taken as an element of R7"' x {0}S - T ' ) . 

As 

(1') ZJv(t) = m(v) 
fsT1 

holds for every i = 1, . . . , m the same convex combination applied on (l1), . . . , (lm) 
implies 

X c, v(s) = m(v). 
SES 

2.3. Remark. Let v be a complete game. Then 

1) v is superadditive if and only if for every disjoint pair 5, t of subsets of I 

v(s) + v(t) S v(s u t), 

2) m(v) = ,(/). 



3. THE CORE OF THE GAME 

3.1. Theorem. Let v be a complete game. Then v is balanced if and only if the core 
of v is nonempty. 

Proof cf. [1], [3]. 

We shall generalize this result now. 
R+ denotes the set of all positive real numbers. 
For the brevity we shall use this terminology: Let P(h) be a statement depending 

on ft e R+ . Then "P(h) holds for h large" means the same as "there exists ft0 e R+ 

such that for every h S; h0 the statement P(h) holds". 

Let us denote K = K u {{i} : iel} and for every h &R+ define set functions 

77 n _ , •. f v(s) for seK vh:K->R, vh(s) = \ y 
[ — h for se K — K 

vh : exp / -» R , vh(s) = max {<vh, R) :Re r(K, s)} for s + 0 , 

t>*(0) = 0 . 

Obviously, for every h e R+ , the set function vh is superadditive and so vh is a complete 
game. 

We denote d(K) the set of all s c / for which r(K, s) + 0. 

3.2. Lemma. Let v = (v, K, I) be a game, s c: I. 

(i) if s e d(K) then 

vh(s) = max {<u, R> : R e r(X, s)} 

holds for h large, 

(ii) if s 4 d(K) then lim vh(s) = — oo. 

Proof. Let s c /, Re r(R, s) - r(K, s), R + 0. Then clearly (vh, R) ->• ~oo, 
ft -» oo. 
Both (i) and (ii) follow immediately. 

3.3. Lemma. Let v = (v, K, I). Then for ft large 

(i) vh\K = v, 

(ii) m(vh) = «.(_) 

hold. 

Proof. Let seK. Then {{s}} e r [K, s), i.e. D(S) = max {{v, R) : R e r(K, s)} 
(v is superadditive). So 3.2. (i) and the finiteness of K imply (i). (ii) follows from 
3.2. (i) as r(K) + 0. 



3.4. Lemma. A game v is balanced if and only if vh is balanced for h large. 

Proof. The "if" is obvious with regard to 3.3. For the proof of the "only if" it is 
sufficient to prove (cf. 2.2, 3.3. (ii)): whenever T e Jl and {c} = V(T) then 

(1) lctvh(t) = m(v) 
teT 

holds for h large. So let Te Ji, {c} = V(T). There are two possibilities. 

a) T e d(K). Then we define 

S = \JRt, 
teT 

bs = Y ct for seS, 
{.:s*R,l 

where Rt(t e T) are defined by the relation 

<», Rr> = max {<u, R> : R e r(K, t)} , 

Obviously Se@K,be V(S). According to 3.2. (i) 

I e, vh(t) = £ fe, v(s) 
teT seS 

holds for h large. 

Now (1) follows from v being balanced. 

b) 7 - d(K) #= 0. Then 

lim £ c, uA(f) = - co 
)c->co teT 

(from 3.2. (ii)). That is, (l) holds for h large. 

3.5. Lemma. Let h, k e R+, h sS k, vh, vk be defined as previously. Then for h large 

(i) if vh is balanced then vk is also balanced, 

(ii) C(vh) e C(^). 

Proof. If h is large enough then yA(7) = ^(/) = m(v) and vhJK = ft/X = f. 
Both (i), (ii) follow from obvious relation 

vh(s) ^ vk(s) for all s c I 

3.6. Theorem. Let v = (v, K, I) be a game (complete or incomplete). Then the core 
of v is nonempty if and only if v is the balanced game. 



154 Proof. 1) Let x e C(v). With regard to 3.3 there exists h e R+ such that 

(2) x(l) =m(vh) = vh(l), 

(3) vjK = v 

and 

(4) h = -xt for all ieJ 

hold. Let s c /. It is vh(s) = <vh, R} where R e r(K, s). If t e R then t e K or t e K -
- K, i.e. vh(t) = v(t) g x(f) or i;ft(r) = — h ^ x(r) (respectively). Consequently 

(5) ufc(s) g x(s) for all s c / 

is valid. 

(3), (5) mean x e C(vh). According to 3.1 the complete game vh is balanced, (2), (3) 
imply that v is a balanced game, too. 

2) Let v be a balanced game. From 3.3, 3.4 it follows the existence of h for which (3) 
and 

(6) m(v) = vh(I) 

hold and, moreover, vh is also balanced. So there exists x e C(vh). We define 

(7) k = max (h, max ( -* , ) ) . 

According to 3.5 it is x e C(vk) and with regard to (7) we obtain (analogously as 
i n l ) ) 

(8) v(s) ^ x(s) for all seK. 

As x e C(vk), the relation (6) is the same as 

(9) x(l) = m(v). 

(8) and (9) establish x e C(v). 

3.7. Remark. Let v = (v, K, I) be a game, vh be as above. We denote Ch = C(vh). 
Then 

lim Ch = C 
A-XJO 

is true in the following sense: 

(i) (Ch)h^ho is a monotone increasing system of sets and 

(ii) U Q = C 
*£»0 

hold for h0 large. 
(Received December 1, 1978.) 
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